Defining parameters
Level: | \( N \) | \(=\) | \( 576 = 2^{6} \cdot 3^{2} \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 576.k (of order \(4\) and degree \(2\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 16 \) |
Character field: | \(\Q(i)\) | ||
Newform subspaces: | \( 3 \) | ||
Sturm bound: | \(192\) | ||
Trace bound: | \(11\) | ||
Distinguishing \(T_p\): | \(5\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(576, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 224 | 22 | 202 |
Cusp forms | 160 | 18 | 142 |
Eisenstein series | 64 | 4 | 60 |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(576, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
576.2.k.a | $2$ | $4.599$ | \(\Q(\sqrt{-1}) \) | None | \(0\) | \(0\) | \(2\) | \(0\) | \(q+(1+i)q^{5}+2iq^{7}+(1+i)q^{11}+(-1+\cdots)q^{13}+\cdots\) |
576.2.k.b | $8$ | $4.599$ | 8.0.18939904.2 | None | \(0\) | \(0\) | \(0\) | \(0\) | \(q+(\beta _{4}+\beta _{6})q^{5}+(\beta _{1}+\beta _{3}-\beta _{4}-\beta _{5}+\cdots)q^{7}+\cdots\) |
576.2.k.c | $8$ | $4.599$ | 8.0.629407744.1 | None | \(0\) | \(0\) | \(0\) | \(0\) | \(q+\beta _{2}q^{5}+(\beta _{3}-\beta _{7})q^{7}+(-\beta _{1}-\beta _{2}+\cdots)q^{11}+\cdots\) |
Decomposition of \(S_{2}^{\mathrm{old}}(576, [\chi])\) into lower level spaces
\( S_{2}^{\mathrm{old}}(576, [\chi]) \cong \) \(S_{2}^{\mathrm{new}}(16, [\chi])\)\(^{\oplus 9}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(48, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(64, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(144, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(192, [\chi])\)\(^{\oplus 2}\)