Properties

Label 576.2.k
Level $576$
Weight $2$
Character orbit 576.k
Rep. character $\chi_{576}(145,\cdot)$
Character field $\Q(\zeta_{4})$
Dimension $18$
Newform subspaces $3$
Sturm bound $192$
Trace bound $11$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 576 = 2^{6} \cdot 3^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 576.k (of order \(4\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 16 \)
Character field: \(\Q(i)\)
Newform subspaces: \( 3 \)
Sturm bound: \(192\)
Trace bound: \(11\)
Distinguishing \(T_p\): \(5\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(576, [\chi])\).

Total New Old
Modular forms 224 22 202
Cusp forms 160 18 142
Eisenstein series 64 4 60

Trace form

\( 18q + 2q^{5} + O(q^{10}) \) \( 18q + 2q^{5} - 6q^{11} - 2q^{13} + 4q^{17} + 10q^{19} + 10q^{29} + 16q^{31} + 20q^{35} + 6q^{37} + 22q^{43} + 16q^{47} - 10q^{49} - 6q^{53} + 26q^{59} + 14q^{61} + 12q^{65} - 6q^{67} - 20q^{77} - 32q^{79} - 42q^{83} - 28q^{85} - 52q^{91} - 60q^{95} - 4q^{97} + O(q^{100}) \)

Decomposition of \(S_{2}^{\mathrm{new}}(576, [\chi])\) into newform subspaces

Label Dim. \(A\) Field CM Traces $q$-expansion
\(a_2\) \(a_3\) \(a_5\) \(a_7\)
576.2.k.a \(2\) \(4.599\) \(\Q(\sqrt{-1}) \) None \(0\) \(0\) \(2\) \(0\) \(q+(1+i)q^{5}+2iq^{7}+(1+i)q^{11}+(-1+\cdots)q^{13}+\cdots\)
576.2.k.b \(8\) \(4.599\) 8.0.18939904.2 None \(0\) \(0\) \(0\) \(0\) \(q+(\beta _{4}+\beta _{6})q^{5}+(\beta _{1}+\beta _{3}-\beta _{4}-\beta _{5}+\cdots)q^{7}+\cdots\)
576.2.k.c \(8\) \(4.599\) 8.0.629407744.1 None \(0\) \(0\) \(0\) \(0\) \(q+\beta _{2}q^{5}+(\beta _{3}-\beta _{7})q^{7}+(-\beta _{1}-\beta _{2}+\cdots)q^{11}+\cdots\)

Decomposition of \(S_{2}^{\mathrm{old}}(576, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(576, [\chi]) \cong \) \(S_{2}^{\mathrm{new}}(16, [\chi])\)\(^{\oplus 9}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(48, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(64, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(144, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(192, [\chi])\)\(^{\oplus 2}\)