Properties

Label 576.2.d.c
Level $576$
Weight $2$
Character orbit 576.d
Analytic conductor $4.599$
Analytic rank $0$
Dimension $4$
CM discriminant -3
Inner twists $8$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 576 = 2^{6} \cdot 3^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 576.d (of order \(2\), degree \(1\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(4.59938315643\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(\zeta_{12})\)
Defining polynomial: \(x^{4} - x^{2} + 1\)
Coefficient ring: \(\Z[a_1, \ldots, a_{19}]\)
Coefficient ring index: \( 2^{8} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{U}(1)[D_{2}]$

$q$-expansion

Coefficients of the \(q\)-expansion are expressed in terms of a primitive root of unity \(\zeta_{12}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + ( -4 \zeta_{12} + 2 \zeta_{12}^{3} ) q^{7} +O(q^{10})\) \( q + ( -4 \zeta_{12} + 2 \zeta_{12}^{3} ) q^{7} + ( 4 - 8 \zeta_{12}^{2} ) q^{13} -8 \zeta_{12}^{3} q^{19} + 5 q^{25} + ( -12 \zeta_{12} + 6 \zeta_{12}^{3} ) q^{31} + ( 4 - 8 \zeta_{12}^{2} ) q^{37} + 8 \zeta_{12}^{3} q^{43} + 5 q^{49} + ( -4 + 8 \zeta_{12}^{2} ) q^{61} -16 \zeta_{12}^{3} q^{67} -10 q^{73} + ( 20 \zeta_{12} - 10 \zeta_{12}^{3} ) q^{79} + 24 \zeta_{12}^{3} q^{91} -14 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4q + O(q^{10}) \) \( 4q + 20q^{25} + 20q^{49} - 40q^{73} - 56q^{97} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/576\mathbb{Z}\right)^\times\).

\(n\) \(65\) \(127\) \(325\)
\(\chi(n)\) \(1\) \(1\) \(-1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
289.1
0.866025 + 0.500000i
0.866025 0.500000i
−0.866025 0.500000i
−0.866025 + 0.500000i
0 0 0 0 0 −3.46410 0 0 0
289.2 0 0 0 0 0 −3.46410 0 0 0
289.3 0 0 0 0 0 3.46410 0 0 0
289.4 0 0 0 0 0 3.46410 0 0 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
3.b odd 2 1 CM by \(\Q(\sqrt{-3}) \)
4.b odd 2 1 inner
8.b even 2 1 inner
8.d odd 2 1 inner
12.b even 2 1 inner
24.f even 2 1 inner
24.h odd 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 576.2.d.c 4
3.b odd 2 1 CM 576.2.d.c 4
4.b odd 2 1 inner 576.2.d.c 4
8.b even 2 1 inner 576.2.d.c 4
8.d odd 2 1 inner 576.2.d.c 4
12.b even 2 1 inner 576.2.d.c 4
16.e even 4 1 2304.2.a.v 2
16.e even 4 1 2304.2.a.w 2
16.f odd 4 1 2304.2.a.v 2
16.f odd 4 1 2304.2.a.w 2
24.f even 2 1 inner 576.2.d.c 4
24.h odd 2 1 inner 576.2.d.c 4
48.i odd 4 1 2304.2.a.v 2
48.i odd 4 1 2304.2.a.w 2
48.k even 4 1 2304.2.a.v 2
48.k even 4 1 2304.2.a.w 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
576.2.d.c 4 1.a even 1 1 trivial
576.2.d.c 4 3.b odd 2 1 CM
576.2.d.c 4 4.b odd 2 1 inner
576.2.d.c 4 8.b even 2 1 inner
576.2.d.c 4 8.d odd 2 1 inner
576.2.d.c 4 12.b even 2 1 inner
576.2.d.c 4 24.f even 2 1 inner
576.2.d.c 4 24.h odd 2 1 inner
2304.2.a.v 2 16.e even 4 1
2304.2.a.v 2 16.f odd 4 1
2304.2.a.v 2 48.i odd 4 1
2304.2.a.v 2 48.k even 4 1
2304.2.a.w 2 16.e even 4 1
2304.2.a.w 2 16.f odd 4 1
2304.2.a.w 2 48.i odd 4 1
2304.2.a.w 2 48.k even 4 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(576, [\chi])\):

\( T_{5} \)
\( T_{7}^{2} - 12 \)

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{4} \)
$3$ \( T^{4} \)
$5$ \( T^{4} \)
$7$ \( ( -12 + T^{2} )^{2} \)
$11$ \( T^{4} \)
$13$ \( ( 48 + T^{2} )^{2} \)
$17$ \( T^{4} \)
$19$ \( ( 64 + T^{2} )^{2} \)
$23$ \( T^{4} \)
$29$ \( T^{4} \)
$31$ \( ( -108 + T^{2} )^{2} \)
$37$ \( ( 48 + T^{2} )^{2} \)
$41$ \( T^{4} \)
$43$ \( ( 64 + T^{2} )^{2} \)
$47$ \( T^{4} \)
$53$ \( T^{4} \)
$59$ \( T^{4} \)
$61$ \( ( 48 + T^{2} )^{2} \)
$67$ \( ( 256 + T^{2} )^{2} \)
$71$ \( T^{4} \)
$73$ \( ( 10 + T )^{4} \)
$79$ \( ( -300 + T^{2} )^{2} \)
$83$ \( T^{4} \)
$89$ \( T^{4} \)
$97$ \( ( 14 + T )^{4} \)
show more
show less