Defining parameters
Level: | \( N \) | \(=\) | \( 576 = 2^{6} \cdot 3^{2} \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 576.d (of order \(2\) and degree \(1\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 8 \) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 3 \) | ||
Sturm bound: | \(192\) | ||
Trace bound: | \(17\) | ||
Distinguishing \(T_p\): | \(5\), \(7\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(576, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 120 | 10 | 110 |
Cusp forms | 72 | 10 | 62 |
Eisenstein series | 48 | 0 | 48 |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(576, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
576.2.d.a | $2$ | $4.599$ | \(\Q(\sqrt{-1}) \) | \(\Q(\sqrt{-2}) \) | \(0\) | \(0\) | \(0\) | \(0\) | \(q+3\beta q^{11}+6 q^{17}+\beta q^{19}+5 q^{25}+\cdots\) |
576.2.d.b | $4$ | $4.599$ | \(\Q(\zeta_{12})\) | None | \(0\) | \(0\) | \(0\) | \(0\) | \(q+\beta_{2} q^{5}-\beta_1 q^{7}-6 q^{17}-\beta_{3} q^{19}+\cdots\) |
576.2.d.c | $4$ | $4.599$ | \(\Q(\zeta_{12})\) | \(\Q(\sqrt{-3}) \) | \(0\) | \(0\) | \(0\) | \(0\) | \(q-\beta_1 q^{7}-\beta_{2} q^{13}-\beta_{3} q^{19}+5 q^{25}+\cdots\) |
Decomposition of \(S_{2}^{\mathrm{old}}(576, [\chi])\) into lower level spaces
\( S_{2}^{\mathrm{old}}(576, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(24, [\chi])\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(64, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(72, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(96, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(192, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(288, [\chi])\)\(^{\oplus 2}\)