Properties

Label 576.2.bl
Level $576$
Weight $2$
Character orbit 576.bl
Rep. character $\chi_{576}(11,\cdot)$
Character field $\Q(\zeta_{48})$
Dimension $1504$
Newform subspaces $1$
Sturm bound $192$
Trace bound $0$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 576 = 2^{6} \cdot 3^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 576.bl (of order \(48\) and degree \(16\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 576 \)
Character field: \(\Q(\zeta_{48})\)
Newform subspaces: \( 1 \)
Sturm bound: \(192\)
Trace bound: \(0\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(576, [\chi])\).

Total New Old
Modular forms 1568 1568 0
Cusp forms 1504 1504 0
Eisenstein series 64 64 0

Trace form

\( 1504 q - 24 q^{2} - 16 q^{3} - 8 q^{4} - 24 q^{5} - 16 q^{6} - 8 q^{7} - 16 q^{9} + O(q^{10}) \) \( 1504 q - 24 q^{2} - 16 q^{3} - 8 q^{4} - 24 q^{5} - 16 q^{6} - 8 q^{7} - 16 q^{9} - 32 q^{10} - 24 q^{11} - 16 q^{12} - 8 q^{13} - 24 q^{14} - 16 q^{15} - 8 q^{16} - 16 q^{18} - 32 q^{19} - 24 q^{20} - 16 q^{21} - 8 q^{22} - 24 q^{23} - 96 q^{24} - 8 q^{25} - 16 q^{27} - 32 q^{28} - 24 q^{29} + 64 q^{30} - 16 q^{31} - 24 q^{32} - 8 q^{34} + 64 q^{36} - 32 q^{37} - 24 q^{38} - 16 q^{39} - 8 q^{40} - 24 q^{41} - 96 q^{42} - 8 q^{43} - 16 q^{45} - 32 q^{46} - 24 q^{47} - 16 q^{48} - 8 q^{49} - 24 q^{50} - 16 q^{51} - 8 q^{52} - 16 q^{54} - 32 q^{55} - 24 q^{56} - 16 q^{57} + 64 q^{58} - 24 q^{59} - 16 q^{60} - 8 q^{61} - 32 q^{64} - 48 q^{65} - 8 q^{67} - 24 q^{68} - 16 q^{69} - 8 q^{70} - 16 q^{72} - 32 q^{73} - 24 q^{74} - 16 q^{75} - 56 q^{76} - 24 q^{77} - 40 q^{78} - 8 q^{79} - 16 q^{81} - 32 q^{82} - 24 q^{83} - 128 q^{84} - 8 q^{85} - 24 q^{86} - 16 q^{87} - 8 q^{88} - 160 q^{90} - 32 q^{91} - 480 q^{92} + 8 q^{93} - 8 q^{94} - 48 q^{95} - 152 q^{96} - 16 q^{99} + O(q^{100}) \)

Decomposition of \(S_{2}^{\mathrm{new}}(576, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
576.2.bl.a 576.bl 576.al $1504$ $4.599$ None \(-24\) \(-16\) \(-24\) \(-8\) $\mathrm{SU}(2)[C_{48}]$