Newspace parameters
Level: | \( N \) | \(=\) | \( 576 = 2^{6} \cdot 3^{2} \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 576.bb (of order \(12\), degree \(4\), not minimal) |
Newform invariants
Self dual: | no |
Analytic conductor: | \(4.59938315643\) |
Analytic rank: | \(0\) |
Dimension: | \(4\) |
Coefficient field: | \(\Q(\zeta_{12})\) |
comment: defining polynomial
gp: f.mod \\ as an extension of the character field
|
|
Defining polynomial: |
\( x^{4} - x^{2} + 1 \)
|
Coefficient ring: | \(\Z[a_1, \ldots, a_{7}]\) |
Coefficient ring index: | \( 1 \) |
Twist minimal: | no (minimal twist has level 144) |
Sato-Tate group: | $\mathrm{SU}(2)[C_{12}]$ |
$q$-expansion
Coefficients of the \(q\)-expansion are expressed in terms of a primitive root of unity \(\zeta_{12}\). We also show the integral \(q\)-expansion of the trace form.
Character values
We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/576\mathbb{Z}\right)^\times\).
\(n\) | \(65\) | \(127\) | \(325\) |
\(\chi(n)\) | \(-1 + \zeta_{12}^{2}\) | \(1\) | \(\zeta_{12}^{3}\) |
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
Label | \(\iota_m(\nu)\) | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
49.1 |
|
0 | 1.50000 | − | 0.866025i | 0 | −3.73205 | + | 1.00000i | 0 | 0.633975 | − | 0.366025i | 0 | 1.50000 | − | 2.59808i | 0 | ||||||||||||||||||||||
241.1 | 0 | 1.50000 | + | 0.866025i | 0 | −0.267949 | + | 1.00000i | 0 | 2.36603 | + | 1.36603i | 0 | 1.50000 | + | 2.59808i | 0 | |||||||||||||||||||||||
337.1 | 0 | 1.50000 | − | 0.866025i | 0 | −0.267949 | − | 1.00000i | 0 | 2.36603 | − | 1.36603i | 0 | 1.50000 | − | 2.59808i | 0 | |||||||||||||||||||||||
529.1 | 0 | 1.50000 | + | 0.866025i | 0 | −3.73205 | − | 1.00000i | 0 | 0.633975 | + | 0.366025i | 0 | 1.50000 | + | 2.59808i | 0 | |||||||||||||||||||||||
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
144.x | even | 12 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 576.2.bb.d | 4 | |
3.b | odd | 2 | 1 | 1728.2.bc.d | 4 | ||
4.b | odd | 2 | 1 | 144.2.x.b | ✓ | 4 | |
9.c | even | 3 | 1 | 576.2.bb.c | 4 | ||
9.d | odd | 6 | 1 | 1728.2.bc.a | 4 | ||
12.b | even | 2 | 1 | 432.2.y.c | 4 | ||
16.e | even | 4 | 1 | 576.2.bb.c | 4 | ||
16.f | odd | 4 | 1 | 144.2.x.c | yes | 4 | |
36.f | odd | 6 | 1 | 144.2.x.c | yes | 4 | |
36.h | even | 6 | 1 | 432.2.y.b | 4 | ||
48.i | odd | 4 | 1 | 1728.2.bc.a | 4 | ||
48.k | even | 4 | 1 | 432.2.y.b | 4 | ||
144.u | even | 12 | 1 | 432.2.y.c | 4 | ||
144.v | odd | 12 | 1 | 144.2.x.b | ✓ | 4 | |
144.w | odd | 12 | 1 | 1728.2.bc.d | 4 | ||
144.x | even | 12 | 1 | inner | 576.2.bb.d | 4 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
144.2.x.b | ✓ | 4 | 4.b | odd | 2 | 1 | |
144.2.x.b | ✓ | 4 | 144.v | odd | 12 | 1 | |
144.2.x.c | yes | 4 | 16.f | odd | 4 | 1 | |
144.2.x.c | yes | 4 | 36.f | odd | 6 | 1 | |
432.2.y.b | 4 | 36.h | even | 6 | 1 | ||
432.2.y.b | 4 | 48.k | even | 4 | 1 | ||
432.2.y.c | 4 | 12.b | even | 2 | 1 | ||
432.2.y.c | 4 | 144.u | even | 12 | 1 | ||
576.2.bb.c | 4 | 9.c | even | 3 | 1 | ||
576.2.bb.c | 4 | 16.e | even | 4 | 1 | ||
576.2.bb.d | 4 | 1.a | even | 1 | 1 | trivial | |
576.2.bb.d | 4 | 144.x | even | 12 | 1 | inner | |
1728.2.bc.a | 4 | 9.d | odd | 6 | 1 | ||
1728.2.bc.a | 4 | 48.i | odd | 4 | 1 | ||
1728.2.bc.d | 4 | 3.b | odd | 2 | 1 | ||
1728.2.bc.d | 4 | 144.w | odd | 12 | 1 |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator
\( T_{5}^{4} + 8T_{5}^{3} + 20T_{5}^{2} + 16T_{5} + 16 \)
acting on \(S_{2}^{\mathrm{new}}(576, [\chi])\).
Hecke characteristic polynomials
$p$
$F_p(T)$
$2$
\( T^{4} \)
$3$
\( (T^{2} - 3 T + 3)^{2} \)
$5$
\( T^{4} + 8 T^{3} + 20 T^{2} + 16 T + 16 \)
$7$
\( T^{4} - 6 T^{3} + 14 T^{2} - 12 T + 4 \)
$11$
\( T^{4} - 10 T^{3} + 41 T^{2} + \cdots + 169 \)
$13$
\( T^{4} + 10 T^{3} + 74 T^{2} + \cdots + 484 \)
$17$
\( (T^{2} + 8 T + 13)^{2} \)
$19$
\( T^{4} - 6 T^{3} + 18 T^{2} - 18 T + 9 \)
$23$
\( T^{4} + 6 T^{3} + 6 T^{2} - 36 T + 36 \)
$29$
\( T^{4} + 6 T^{3} + 18 T^{2} + 36 T + 36 \)
$31$
\( T^{4} - 8 T^{3} + 60 T^{2} - 32 T + 16 \)
$37$
\( T^{4} - 12 T^{3} + 72 T^{2} + \cdots + 144 \)
$41$
\( T^{4} - 9T^{2} + 81 \)
$43$
\( T^{4} - 16 T^{3} + 65 T^{2} + \cdots + 121 \)
$47$
\( T^{4} - 2 T^{3} + 78 T^{2} + \cdots + 5476 \)
$53$
\( T^{4} + 16 T^{3} + 128 T^{2} + \cdots + 64 \)
$59$
\( T^{4} + 6 T^{3} + 45 T^{2} + \cdots + 1521 \)
$61$
\( T^{4} + 12 T^{3} + 180 T^{2} + \cdots + 1296 \)
$67$
\( T^{4} + 16 T^{3} + 113 T^{2} + \cdots + 1369 \)
$71$
\( T^{4} + 128T^{2} + 1024 \)
$73$
\( T^{4} + 134T^{2} + 3721 \)
$79$
\( (T^{2} - 12 T + 144)^{2} \)
$83$
\( T^{4} - 2 T^{3} + 2 T^{2} - 4 T + 4 \)
$89$
\( (T^{2} + 4)^{2} \)
$97$
\( T^{4} + 20 T^{3} + 303 T^{2} + \cdots + 9409 \)
show more
show less