Properties

Label 576.2.a.e
Level $576$
Weight $2$
Character orbit 576.a
Self dual yes
Analytic conductor $4.599$
Analytic rank $1$
Dimension $1$
CM discriminant -3
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [576,2,Mod(1,576)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(576, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("576.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 576 = 2^{6} \cdot 3^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 576.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(4.59938315643\)
Analytic rank: \(1\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 36)
Fricke sign: \(+1\)
Sato-Tate group: $N(\mathrm{U}(1))$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \( q - 4 q^{7}+O(q^{10}) \) Copy content Toggle raw display \( q - 4 q^{7} - 2 q^{13} - 8 q^{19} - 5 q^{25} - 4 q^{31} + 10 q^{37} - 8 q^{43} + 9 q^{49} - 14 q^{61} + 16 q^{67} - 10 q^{73} - 4 q^{79} + 8 q^{91} + 14 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
0
0 0 0 0 0 −4.00000 0 0 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( +1 \)
\(3\) \( +1 \)

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
3.b odd 2 1 CM by \(\Q(\sqrt{-3}) \)

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 576.2.a.e 1
3.b odd 2 1 CM 576.2.a.e 1
4.b odd 2 1 576.2.a.f 1
8.b even 2 1 36.2.a.a 1
8.d odd 2 1 144.2.a.a 1
12.b even 2 1 576.2.a.f 1
16.e even 4 2 2304.2.d.q 2
16.f odd 4 2 2304.2.d.a 2
24.f even 2 1 144.2.a.a 1
24.h odd 2 1 36.2.a.a 1
40.e odd 2 1 3600.2.a.e 1
40.f even 2 1 900.2.a.g 1
40.i odd 4 2 900.2.d.b 2
40.k even 4 2 3600.2.f.m 2
48.i odd 4 2 2304.2.d.q 2
48.k even 4 2 2304.2.d.a 2
56.e even 2 1 7056.2.a.bb 1
56.h odd 2 1 1764.2.a.e 1
56.j odd 6 2 1764.2.k.g 2
56.p even 6 2 1764.2.k.h 2
72.j odd 6 2 324.2.e.c 2
72.l even 6 2 1296.2.i.h 2
72.n even 6 2 324.2.e.c 2
72.p odd 6 2 1296.2.i.h 2
88.b odd 2 1 4356.2.a.g 1
104.e even 2 1 6084.2.a.i 1
104.j odd 4 2 6084.2.b.f 2
120.i odd 2 1 900.2.a.g 1
120.m even 2 1 3600.2.a.e 1
120.q odd 4 2 3600.2.f.m 2
120.w even 4 2 900.2.d.b 2
168.e odd 2 1 7056.2.a.bb 1
168.i even 2 1 1764.2.a.e 1
168.s odd 6 2 1764.2.k.h 2
168.ba even 6 2 1764.2.k.g 2
264.m even 2 1 4356.2.a.g 1
312.b odd 2 1 6084.2.a.i 1
312.y even 4 2 6084.2.b.f 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
36.2.a.a 1 8.b even 2 1
36.2.a.a 1 24.h odd 2 1
144.2.a.a 1 8.d odd 2 1
144.2.a.a 1 24.f even 2 1
324.2.e.c 2 72.j odd 6 2
324.2.e.c 2 72.n even 6 2
576.2.a.e 1 1.a even 1 1 trivial
576.2.a.e 1 3.b odd 2 1 CM
576.2.a.f 1 4.b odd 2 1
576.2.a.f 1 12.b even 2 1
900.2.a.g 1 40.f even 2 1
900.2.a.g 1 120.i odd 2 1
900.2.d.b 2 40.i odd 4 2
900.2.d.b 2 120.w even 4 2
1296.2.i.h 2 72.l even 6 2
1296.2.i.h 2 72.p odd 6 2
1764.2.a.e 1 56.h odd 2 1
1764.2.a.e 1 168.i even 2 1
1764.2.k.g 2 56.j odd 6 2
1764.2.k.g 2 168.ba even 6 2
1764.2.k.h 2 56.p even 6 2
1764.2.k.h 2 168.s odd 6 2
2304.2.d.a 2 16.f odd 4 2
2304.2.d.a 2 48.k even 4 2
2304.2.d.q 2 16.e even 4 2
2304.2.d.q 2 48.i odd 4 2
3600.2.a.e 1 40.e odd 2 1
3600.2.a.e 1 120.m even 2 1
3600.2.f.m 2 40.k even 4 2
3600.2.f.m 2 120.q odd 4 2
4356.2.a.g 1 88.b odd 2 1
4356.2.a.g 1 264.m even 2 1
6084.2.a.i 1 104.e even 2 1
6084.2.a.i 1 312.b odd 2 1
6084.2.b.f 2 104.j odd 4 2
6084.2.b.f 2 312.y even 4 2
7056.2.a.bb 1 56.e even 2 1
7056.2.a.bb 1 168.e odd 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(576))\):

\( T_{5} \) Copy content Toggle raw display
\( T_{7} + 4 \) Copy content Toggle raw display
\( T_{11} \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T \) Copy content Toggle raw display
$3$ \( T \) Copy content Toggle raw display
$5$ \( T \) Copy content Toggle raw display
$7$ \( T + 4 \) Copy content Toggle raw display
$11$ \( T \) Copy content Toggle raw display
$13$ \( T + 2 \) Copy content Toggle raw display
$17$ \( T \) Copy content Toggle raw display
$19$ \( T + 8 \) Copy content Toggle raw display
$23$ \( T \) Copy content Toggle raw display
$29$ \( T \) Copy content Toggle raw display
$31$ \( T + 4 \) Copy content Toggle raw display
$37$ \( T - 10 \) Copy content Toggle raw display
$41$ \( T \) Copy content Toggle raw display
$43$ \( T + 8 \) Copy content Toggle raw display
$47$ \( T \) Copy content Toggle raw display
$53$ \( T \) Copy content Toggle raw display
$59$ \( T \) Copy content Toggle raw display
$61$ \( T + 14 \) Copy content Toggle raw display
$67$ \( T - 16 \) Copy content Toggle raw display
$71$ \( T \) Copy content Toggle raw display
$73$ \( T + 10 \) Copy content Toggle raw display
$79$ \( T + 4 \) Copy content Toggle raw display
$83$ \( T \) Copy content Toggle raw display
$89$ \( T \) Copy content Toggle raw display
$97$ \( T - 14 \) Copy content Toggle raw display
show more
show less