Properties

Label 575.4.b.b.24.2
Level $575$
Weight $4$
Character 575.24
Analytic conductor $33.926$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [575,4,Mod(24,575)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(575, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("575.24");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 575 = 5^{2} \cdot 23 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 575.b (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(33.9260982533\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(i)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 23)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 24.2
Root \(1.00000i\) of defining polynomial
Character \(\chi\) \(=\) 575.24
Dual form 575.4.b.b.24.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+2.00000i q^{2} -5.00000i q^{3} +4.00000 q^{4} +10.0000 q^{6} +8.00000i q^{7} +24.0000i q^{8} +2.00000 q^{9} +O(q^{10})\) \(q+2.00000i q^{2} -5.00000i q^{3} +4.00000 q^{4} +10.0000 q^{6} +8.00000i q^{7} +24.0000i q^{8} +2.00000 q^{9} +34.0000 q^{11} -20.0000i q^{12} -57.0000i q^{13} -16.0000 q^{14} -16.0000 q^{16} +80.0000i q^{17} +4.00000i q^{18} +70.0000 q^{19} +40.0000 q^{21} +68.0000i q^{22} +23.0000i q^{23} +120.000 q^{24} +114.000 q^{26} -145.000i q^{27} +32.0000i q^{28} -245.000 q^{29} +103.000 q^{31} +160.000i q^{32} -170.000i q^{33} -160.000 q^{34} +8.00000 q^{36} +298.000i q^{37} +140.000i q^{38} -285.000 q^{39} +95.0000 q^{41} +80.0000i q^{42} +88.0000i q^{43} +136.000 q^{44} -46.0000 q^{46} +357.000i q^{47} +80.0000i q^{48} +279.000 q^{49} +400.000 q^{51} -228.000i q^{52} -414.000i q^{53} +290.000 q^{54} -192.000 q^{56} -350.000i q^{57} -490.000i q^{58} +408.000 q^{59} +822.000 q^{61} +206.000i q^{62} +16.0000i q^{63} -448.000 q^{64} +340.000 q^{66} -926.000i q^{67} +320.000i q^{68} +115.000 q^{69} +335.000 q^{71} +48.0000i q^{72} -899.000i q^{73} -596.000 q^{74} +280.000 q^{76} +272.000i q^{77} -570.000i q^{78} +1322.00 q^{79} -671.000 q^{81} +190.000i q^{82} -36.0000i q^{83} +160.000 q^{84} -176.000 q^{86} +1225.00i q^{87} +816.000i q^{88} +460.000 q^{89} +456.000 q^{91} +92.0000i q^{92} -515.000i q^{93} -714.000 q^{94} +800.000 q^{96} +964.000i q^{97} +558.000i q^{98} +68.0000 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 8 q^{4} + 20 q^{6} + 4 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 2 q + 8 q^{4} + 20 q^{6} + 4 q^{9} + 68 q^{11} - 32 q^{14} - 32 q^{16} + 140 q^{19} + 80 q^{21} + 240 q^{24} + 228 q^{26} - 490 q^{29} + 206 q^{31} - 320 q^{34} + 16 q^{36} - 570 q^{39} + 190 q^{41} + 272 q^{44} - 92 q^{46} + 558 q^{49} + 800 q^{51} + 580 q^{54} - 384 q^{56} + 816 q^{59} + 1644 q^{61} - 896 q^{64} + 680 q^{66} + 230 q^{69} + 670 q^{71} - 1192 q^{74} + 560 q^{76} + 2644 q^{79} - 1342 q^{81} + 320 q^{84} - 352 q^{86} + 920 q^{89} + 912 q^{91} - 1428 q^{94} + 1600 q^{96} + 136 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/575\mathbb{Z}\right)^\times\).

\(n\) \(51\) \(277\)
\(\chi(n)\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.00000i 0.707107i 0.935414 + 0.353553i \(0.115027\pi\)
−0.935414 + 0.353553i \(0.884973\pi\)
\(3\) − 5.00000i − 0.962250i −0.876652 0.481125i \(-0.840228\pi\)
0.876652 0.481125i \(-0.159772\pi\)
\(4\) 4.00000 0.500000
\(5\) 0 0
\(6\) 10.0000 0.680414
\(7\) 8.00000i 0.431959i 0.976398 + 0.215980i \(0.0692945\pi\)
−0.976398 + 0.215980i \(0.930705\pi\)
\(8\) 24.0000i 1.06066i
\(9\) 2.00000 0.0740741
\(10\) 0 0
\(11\) 34.0000 0.931944 0.465972 0.884799i \(-0.345705\pi\)
0.465972 + 0.884799i \(0.345705\pi\)
\(12\) − 20.0000i − 0.481125i
\(13\) − 57.0000i − 1.21607i −0.793909 0.608037i \(-0.791957\pi\)
0.793909 0.608037i \(-0.208043\pi\)
\(14\) −16.0000 −0.305441
\(15\) 0 0
\(16\) −16.0000 −0.250000
\(17\) 80.0000i 1.14134i 0.821178 + 0.570672i \(0.193317\pi\)
−0.821178 + 0.570672i \(0.806683\pi\)
\(18\) 4.00000i 0.0523783i
\(19\) 70.0000 0.845216 0.422608 0.906313i \(-0.361115\pi\)
0.422608 + 0.906313i \(0.361115\pi\)
\(20\) 0 0
\(21\) 40.0000 0.415653
\(22\) 68.0000i 0.658984i
\(23\) 23.0000i 0.208514i
\(24\) 120.000 1.02062
\(25\) 0 0
\(26\) 114.000 0.859894
\(27\) − 145.000i − 1.03353i
\(28\) 32.0000i 0.215980i
\(29\) −245.000 −1.56881 −0.784403 0.620252i \(-0.787030\pi\)
−0.784403 + 0.620252i \(0.787030\pi\)
\(30\) 0 0
\(31\) 103.000 0.596753 0.298377 0.954448i \(-0.403555\pi\)
0.298377 + 0.954448i \(0.403555\pi\)
\(32\) 160.000i 0.883883i
\(33\) − 170.000i − 0.896764i
\(34\) −160.000 −0.807052
\(35\) 0 0
\(36\) 8.00000 0.0370370
\(37\) 298.000i 1.32408i 0.749469 + 0.662039i \(0.230309\pi\)
−0.749469 + 0.662039i \(0.769691\pi\)
\(38\) 140.000i 0.597658i
\(39\) −285.000 −1.17017
\(40\) 0 0
\(41\) 95.0000 0.361866 0.180933 0.983495i \(-0.442088\pi\)
0.180933 + 0.983495i \(0.442088\pi\)
\(42\) 80.0000i 0.293911i
\(43\) 88.0000i 0.312090i 0.987750 + 0.156045i \(0.0498745\pi\)
−0.987750 + 0.156045i \(0.950125\pi\)
\(44\) 136.000 0.465972
\(45\) 0 0
\(46\) −46.0000 −0.147442
\(47\) 357.000i 1.10795i 0.832532 + 0.553977i \(0.186890\pi\)
−0.832532 + 0.553977i \(0.813110\pi\)
\(48\) 80.0000i 0.240563i
\(49\) 279.000 0.813411
\(50\) 0 0
\(51\) 400.000 1.09826
\(52\) − 228.000i − 0.608037i
\(53\) − 414.000i − 1.07297i −0.843911 0.536484i \(-0.819752\pi\)
0.843911 0.536484i \(-0.180248\pi\)
\(54\) 290.000 0.730815
\(55\) 0 0
\(56\) −192.000 −0.458162
\(57\) − 350.000i − 0.813309i
\(58\) − 490.000i − 1.10931i
\(59\) 408.000 0.900289 0.450145 0.892956i \(-0.351372\pi\)
0.450145 + 0.892956i \(0.351372\pi\)
\(60\) 0 0
\(61\) 822.000 1.72535 0.862675 0.505759i \(-0.168788\pi\)
0.862675 + 0.505759i \(0.168788\pi\)
\(62\) 206.000i 0.421968i
\(63\) 16.0000i 0.0319970i
\(64\) −448.000 −0.875000
\(65\) 0 0
\(66\) 340.000 0.634108
\(67\) − 926.000i − 1.68849i −0.535957 0.844246i \(-0.680049\pi\)
0.535957 0.844246i \(-0.319951\pi\)
\(68\) 320.000i 0.570672i
\(69\) 115.000 0.200643
\(70\) 0 0
\(71\) 335.000 0.559960 0.279980 0.960006i \(-0.409672\pi\)
0.279980 + 0.960006i \(0.409672\pi\)
\(72\) 48.0000i 0.0785674i
\(73\) − 899.000i − 1.44137i −0.693263 0.720685i \(-0.743827\pi\)
0.693263 0.720685i \(-0.256173\pi\)
\(74\) −596.000 −0.936265
\(75\) 0 0
\(76\) 280.000 0.422608
\(77\) 272.000i 0.402562i
\(78\) − 570.000i − 0.827433i
\(79\) 1322.00 1.88274 0.941371 0.337373i \(-0.109538\pi\)
0.941371 + 0.337373i \(0.109538\pi\)
\(80\) 0 0
\(81\) −671.000 −0.920439
\(82\) 190.000i 0.255878i
\(83\) − 36.0000i − 0.0476086i −0.999717 0.0238043i \(-0.992422\pi\)
0.999717 0.0238043i \(-0.00757786\pi\)
\(84\) 160.000 0.207827
\(85\) 0 0
\(86\) −176.000 −0.220681
\(87\) 1225.00i 1.50958i
\(88\) 816.000i 0.988476i
\(89\) 460.000 0.547864 0.273932 0.961749i \(-0.411676\pi\)
0.273932 + 0.961749i \(0.411676\pi\)
\(90\) 0 0
\(91\) 456.000 0.525294
\(92\) 92.0000i 0.104257i
\(93\) − 515.000i − 0.574226i
\(94\) −714.000 −0.783441
\(95\) 0 0
\(96\) 800.000 0.850517
\(97\) 964.000i 1.00907i 0.863393 + 0.504533i \(0.168335\pi\)
−0.863393 + 0.504533i \(0.831665\pi\)
\(98\) 558.000i 0.575168i
\(99\) 68.0000 0.0690329
\(100\) 0 0
\(101\) −310.000 −0.305407 −0.152704 0.988272i \(-0.548798\pi\)
−0.152704 + 0.988272i \(0.548798\pi\)
\(102\) 800.000i 0.776586i
\(103\) 1044.00i 0.998722i 0.866394 + 0.499361i \(0.166432\pi\)
−0.866394 + 0.499361i \(0.833568\pi\)
\(104\) 1368.00 1.28984
\(105\) 0 0
\(106\) 828.000 0.758703
\(107\) − 414.000i − 0.374046i −0.982356 0.187023i \(-0.940116\pi\)
0.982356 0.187023i \(-0.0598838\pi\)
\(108\) − 580.000i − 0.516764i
\(109\) −704.000 −0.618633 −0.309316 0.950959i \(-0.600100\pi\)
−0.309316 + 0.950959i \(0.600100\pi\)
\(110\) 0 0
\(111\) 1490.00 1.27409
\(112\) − 128.000i − 0.107990i
\(113\) 952.000i 0.792537i 0.918135 + 0.396268i \(0.129695\pi\)
−0.918135 + 0.396268i \(0.870305\pi\)
\(114\) 700.000 0.575097
\(115\) 0 0
\(116\) −980.000 −0.784403
\(117\) − 114.000i − 0.0900795i
\(118\) 816.000i 0.636601i
\(119\) −640.000 −0.493014
\(120\) 0 0
\(121\) −175.000 −0.131480
\(122\) 1644.00i 1.22001i
\(123\) − 475.000i − 0.348206i
\(124\) 412.000 0.298377
\(125\) 0 0
\(126\) −32.0000 −0.0226253
\(127\) − 261.000i − 0.182362i −0.995834 0.0911811i \(-0.970936\pi\)
0.995834 0.0911811i \(-0.0290642\pi\)
\(128\) 384.000i 0.265165i
\(129\) 440.000 0.300309
\(130\) 0 0
\(131\) −1441.00 −0.961074 −0.480537 0.876974i \(-0.659558\pi\)
−0.480537 + 0.876974i \(0.659558\pi\)
\(132\) − 680.000i − 0.448382i
\(133\) 560.000i 0.365099i
\(134\) 1852.00 1.19394
\(135\) 0 0
\(136\) −1920.00 −1.21058
\(137\) − 1556.00i − 0.970351i −0.874417 0.485175i \(-0.838756\pi\)
0.874417 0.485175i \(-0.161244\pi\)
\(138\) 230.000i 0.141876i
\(139\) −25.0000 −0.0152552 −0.00762760 0.999971i \(-0.502428\pi\)
−0.00762760 + 0.999971i \(0.502428\pi\)
\(140\) 0 0
\(141\) 1785.00 1.06613
\(142\) 670.000i 0.395952i
\(143\) − 1938.00i − 1.13331i
\(144\) −32.0000 −0.0185185
\(145\) 0 0
\(146\) 1798.00 1.01920
\(147\) − 1395.00i − 0.782705i
\(148\) 1192.00i 0.662039i
\(149\) −822.000 −0.451952 −0.225976 0.974133i \(-0.572557\pi\)
−0.225976 + 0.974133i \(0.572557\pi\)
\(150\) 0 0
\(151\) −1489.00 −0.802471 −0.401235 0.915975i \(-0.631419\pi\)
−0.401235 + 0.915975i \(0.631419\pi\)
\(152\) 1680.00i 0.896487i
\(153\) 160.000i 0.0845440i
\(154\) −544.000 −0.284654
\(155\) 0 0
\(156\) −1140.00 −0.585084
\(157\) 632.000i 0.321268i 0.987014 + 0.160634i \(0.0513539\pi\)
−0.987014 + 0.160634i \(0.948646\pi\)
\(158\) 2644.00i 1.33130i
\(159\) −2070.00 −1.03246
\(160\) 0 0
\(161\) −184.000 −0.0900698
\(162\) − 1342.00i − 0.650849i
\(163\) − 3043.00i − 1.46225i −0.682245 0.731123i \(-0.738996\pi\)
0.682245 0.731123i \(-0.261004\pi\)
\(164\) 380.000 0.180933
\(165\) 0 0
\(166\) 72.0000 0.0336644
\(167\) 2224.00i 1.03053i 0.857031 + 0.515264i \(0.172306\pi\)
−0.857031 + 0.515264i \(0.827694\pi\)
\(168\) 960.000i 0.440867i
\(169\) −1052.00 −0.478835
\(170\) 0 0
\(171\) 140.000 0.0626086
\(172\) 352.000i 0.156045i
\(173\) 3230.00i 1.41949i 0.704457 + 0.709747i \(0.251191\pi\)
−0.704457 + 0.709747i \(0.748809\pi\)
\(174\) −2450.00 −1.06744
\(175\) 0 0
\(176\) −544.000 −0.232986
\(177\) − 2040.00i − 0.866304i
\(178\) 920.000i 0.387398i
\(179\) −369.000 −0.154080 −0.0770401 0.997028i \(-0.524547\pi\)
−0.0770401 + 0.997028i \(0.524547\pi\)
\(180\) 0 0
\(181\) −1370.00 −0.562604 −0.281302 0.959619i \(-0.590766\pi\)
−0.281302 + 0.959619i \(0.590766\pi\)
\(182\) 912.000i 0.371439i
\(183\) − 4110.00i − 1.66022i
\(184\) −552.000 −0.221163
\(185\) 0 0
\(186\) 1030.00 0.406039
\(187\) 2720.00i 1.06367i
\(188\) 1428.00i 0.553977i
\(189\) 1160.00 0.446442
\(190\) 0 0
\(191\) 4410.00 1.67066 0.835331 0.549747i \(-0.185276\pi\)
0.835331 + 0.549747i \(0.185276\pi\)
\(192\) 2240.00i 0.841969i
\(193\) − 135.000i − 0.0503498i −0.999683 0.0251749i \(-0.991986\pi\)
0.999683 0.0251749i \(-0.00801427\pi\)
\(194\) −1928.00 −0.713517
\(195\) 0 0
\(196\) 1116.00 0.406706
\(197\) − 1221.00i − 0.441587i −0.975321 0.220794i \(-0.929135\pi\)
0.975321 0.220794i \(-0.0708647\pi\)
\(198\) 136.000i 0.0488136i
\(199\) 1098.00 0.391131 0.195566 0.980691i \(-0.437346\pi\)
0.195566 + 0.980691i \(0.437346\pi\)
\(200\) 0 0
\(201\) −4630.00 −1.62475
\(202\) − 620.000i − 0.215956i
\(203\) − 1960.00i − 0.677660i
\(204\) 1600.00 0.549129
\(205\) 0 0
\(206\) −2088.00 −0.706203
\(207\) 46.0000i 0.0154455i
\(208\) 912.000i 0.304018i
\(209\) 2380.00 0.787694
\(210\) 0 0
\(211\) −3676.00 −1.19937 −0.599683 0.800238i \(-0.704707\pi\)
−0.599683 + 0.800238i \(0.704707\pi\)
\(212\) − 1656.00i − 0.536484i
\(213\) − 1675.00i − 0.538822i
\(214\) 828.000 0.264490
\(215\) 0 0
\(216\) 3480.00 1.09622
\(217\) 824.000i 0.257773i
\(218\) − 1408.00i − 0.437439i
\(219\) −4495.00 −1.38696
\(220\) 0 0
\(221\) 4560.00 1.38796
\(222\) 2980.00i 0.900921i
\(223\) 1656.00i 0.497282i 0.968596 + 0.248641i \(0.0799840\pi\)
−0.968596 + 0.248641i \(0.920016\pi\)
\(224\) −1280.00 −0.381802
\(225\) 0 0
\(226\) −1904.00 −0.560408
\(227\) − 2940.00i − 0.859624i −0.902918 0.429812i \(-0.858580\pi\)
0.902918 0.429812i \(-0.141420\pi\)
\(228\) − 1400.00i − 0.406655i
\(229\) −3612.00 −1.04230 −0.521152 0.853464i \(-0.674498\pi\)
−0.521152 + 0.853464i \(0.674498\pi\)
\(230\) 0 0
\(231\) 1360.00 0.387366
\(232\) − 5880.00i − 1.66397i
\(233\) − 4325.00i − 1.21605i −0.793917 0.608026i \(-0.791962\pi\)
0.793917 0.608026i \(-0.208038\pi\)
\(234\) 228.000 0.0636958
\(235\) 0 0
\(236\) 1632.00 0.450145
\(237\) − 6610.00i − 1.81167i
\(238\) − 1280.00i − 0.348614i
\(239\) −2735.00 −0.740219 −0.370110 0.928988i \(-0.620680\pi\)
−0.370110 + 0.928988i \(0.620680\pi\)
\(240\) 0 0
\(241\) −6710.00 −1.79348 −0.896741 0.442556i \(-0.854072\pi\)
−0.896741 + 0.442556i \(0.854072\pi\)
\(242\) − 350.000i − 0.0929705i
\(243\) − 560.000i − 0.147835i
\(244\) 3288.00 0.862675
\(245\) 0 0
\(246\) 950.000 0.246219
\(247\) − 3990.00i − 1.02784i
\(248\) 2472.00i 0.632952i
\(249\) −180.000 −0.0458114
\(250\) 0 0
\(251\) −6948.00 −1.74723 −0.873613 0.486621i \(-0.838229\pi\)
−0.873613 + 0.486621i \(0.838229\pi\)
\(252\) 64.0000i 0.0159985i
\(253\) 782.000i 0.194324i
\(254\) 522.000 0.128950
\(255\) 0 0
\(256\) −4352.00 −1.06250
\(257\) 4929.00i 1.19635i 0.801365 + 0.598176i \(0.204108\pi\)
−0.801365 + 0.598176i \(0.795892\pi\)
\(258\) 880.000i 0.212350i
\(259\) −2384.00 −0.571948
\(260\) 0 0
\(261\) −490.000 −0.116208
\(262\) − 2882.00i − 0.679582i
\(263\) 6138.00i 1.43911i 0.694437 + 0.719554i \(0.255654\pi\)
−0.694437 + 0.719554i \(0.744346\pi\)
\(264\) 4080.00 0.951162
\(265\) 0 0
\(266\) −1120.00 −0.258164
\(267\) − 2300.00i − 0.527182i
\(268\) − 3704.00i − 0.844246i
\(269\) 2063.00 0.467596 0.233798 0.972285i \(-0.424885\pi\)
0.233798 + 0.972285i \(0.424885\pi\)
\(270\) 0 0
\(271\) −1064.00 −0.238500 −0.119250 0.992864i \(-0.538049\pi\)
−0.119250 + 0.992864i \(0.538049\pi\)
\(272\) − 1280.00i − 0.285336i
\(273\) − 2280.00i − 0.505465i
\(274\) 3112.00 0.686142
\(275\) 0 0
\(276\) 460.000 0.100322
\(277\) − 5729.00i − 1.24268i −0.783541 0.621340i \(-0.786589\pi\)
0.783541 0.621340i \(-0.213411\pi\)
\(278\) − 50.0000i − 0.0107871i
\(279\) 206.000 0.0442039
\(280\) 0 0
\(281\) −960.000 −0.203804 −0.101902 0.994794i \(-0.532493\pi\)
−0.101902 + 0.994794i \(0.532493\pi\)
\(282\) 3570.00i 0.753867i
\(283\) − 114.000i − 0.0239456i −0.999928 0.0119728i \(-0.996189\pi\)
0.999928 0.0119728i \(-0.00381115\pi\)
\(284\) 1340.00 0.279980
\(285\) 0 0
\(286\) 3876.00 0.801373
\(287\) 760.000i 0.156311i
\(288\) 320.000i 0.0654729i
\(289\) −1487.00 −0.302666
\(290\) 0 0
\(291\) 4820.00 0.970974
\(292\) − 3596.00i − 0.720685i
\(293\) − 7048.00i − 1.40529i −0.711543 0.702643i \(-0.752003\pi\)
0.711543 0.702643i \(-0.247997\pi\)
\(294\) 2790.00 0.553456
\(295\) 0 0
\(296\) −7152.00 −1.40440
\(297\) − 4930.00i − 0.963191i
\(298\) − 1644.00i − 0.319578i
\(299\) 1311.00 0.253569
\(300\) 0 0
\(301\) −704.000 −0.134810
\(302\) − 2978.00i − 0.567433i
\(303\) 1550.00i 0.293878i
\(304\) −1120.00 −0.211304
\(305\) 0 0
\(306\) −320.000 −0.0597816
\(307\) − 3872.00i − 0.719826i −0.932986 0.359913i \(-0.882806\pi\)
0.932986 0.359913i \(-0.117194\pi\)
\(308\) 1088.00i 0.201281i
\(309\) 5220.00 0.961021
\(310\) 0 0
\(311\) −4977.00 −0.907459 −0.453730 0.891139i \(-0.649907\pi\)
−0.453730 + 0.891139i \(0.649907\pi\)
\(312\) − 6840.00i − 1.24115i
\(313\) − 2536.00i − 0.457965i −0.973430 0.228983i \(-0.926460\pi\)
0.973430 0.228983i \(-0.0735399\pi\)
\(314\) −1264.00 −0.227171
\(315\) 0 0
\(316\) 5288.00 0.941371
\(317\) − 1434.00i − 0.254074i −0.991898 0.127037i \(-0.959453\pi\)
0.991898 0.127037i \(-0.0405467\pi\)
\(318\) − 4140.00i − 0.730062i
\(319\) −8330.00 −1.46204
\(320\) 0 0
\(321\) −2070.00 −0.359926
\(322\) − 368.000i − 0.0636889i
\(323\) 5600.00i 0.964682i
\(324\) −2684.00 −0.460219
\(325\) 0 0
\(326\) 6086.00 1.03396
\(327\) 3520.00i 0.595280i
\(328\) 2280.00i 0.383817i
\(329\) −2856.00 −0.478591
\(330\) 0 0
\(331\) 5469.00 0.908167 0.454084 0.890959i \(-0.349967\pi\)
0.454084 + 0.890959i \(0.349967\pi\)
\(332\) − 144.000i − 0.0238043i
\(333\) 596.000i 0.0980799i
\(334\) −4448.00 −0.728694
\(335\) 0 0
\(336\) −640.000 −0.103913
\(337\) 7796.00i 1.26016i 0.776529 + 0.630082i \(0.216979\pi\)
−0.776529 + 0.630082i \(0.783021\pi\)
\(338\) − 2104.00i − 0.338587i
\(339\) 4760.00 0.762619
\(340\) 0 0
\(341\) 3502.00 0.556141
\(342\) 280.000i 0.0442710i
\(343\) 4976.00i 0.783320i
\(344\) −2112.00 −0.331022
\(345\) 0 0
\(346\) −6460.00 −1.00373
\(347\) 10068.0i 1.55758i 0.627288 + 0.778788i \(0.284165\pi\)
−0.627288 + 0.778788i \(0.715835\pi\)
\(348\) 4900.00i 0.754792i
\(349\) 7495.00 1.14956 0.574782 0.818306i \(-0.305087\pi\)
0.574782 + 0.818306i \(0.305087\pi\)
\(350\) 0 0
\(351\) −8265.00 −1.25685
\(352\) 5440.00i 0.823730i
\(353\) 10617.0i 1.60081i 0.599460 + 0.800405i \(0.295382\pi\)
−0.599460 + 0.800405i \(0.704618\pi\)
\(354\) 4080.00 0.612569
\(355\) 0 0
\(356\) 1840.00 0.273932
\(357\) 3200.00i 0.474403i
\(358\) − 738.000i − 0.108951i
\(359\) −2522.00 −0.370769 −0.185384 0.982666i \(-0.559353\pi\)
−0.185384 + 0.982666i \(0.559353\pi\)
\(360\) 0 0
\(361\) −1959.00 −0.285610
\(362\) − 2740.00i − 0.397821i
\(363\) 875.000i 0.126517i
\(364\) 1824.00 0.262647
\(365\) 0 0
\(366\) 8220.00 1.17395
\(367\) − 7204.00i − 1.02465i −0.858792 0.512324i \(-0.828785\pi\)
0.858792 0.512324i \(-0.171215\pi\)
\(368\) − 368.000i − 0.0521286i
\(369\) 190.000 0.0268049
\(370\) 0 0
\(371\) 3312.00 0.463478
\(372\) − 2060.00i − 0.287113i
\(373\) − 13310.0i − 1.84763i −0.382840 0.923815i \(-0.625054\pi\)
0.382840 0.923815i \(-0.374946\pi\)
\(374\) −5440.00 −0.752128
\(375\) 0 0
\(376\) −8568.00 −1.17516
\(377\) 13965.0i 1.90778i
\(378\) 2320.00i 0.315682i
\(379\) −12952.0 −1.75541 −0.877704 0.479203i \(-0.840926\pi\)
−0.877704 + 0.479203i \(0.840926\pi\)
\(380\) 0 0
\(381\) −1305.00 −0.175478
\(382\) 8820.00i 1.18134i
\(383\) − 2812.00i − 0.375161i −0.982249 0.187580i \(-0.939936\pi\)
0.982249 0.187580i \(-0.0600645\pi\)
\(384\) 1920.00 0.255155
\(385\) 0 0
\(386\) 270.000 0.0356027
\(387\) 176.000i 0.0231178i
\(388\) 3856.00i 0.504533i
\(389\) −1264.00 −0.164749 −0.0823745 0.996601i \(-0.526250\pi\)
−0.0823745 + 0.996601i \(0.526250\pi\)
\(390\) 0 0
\(391\) −1840.00 −0.237987
\(392\) 6696.00i 0.862753i
\(393\) 7205.00i 0.924794i
\(394\) 2442.00 0.312249
\(395\) 0 0
\(396\) 272.000 0.0345165
\(397\) − 7119.00i − 0.899981i −0.893033 0.449990i \(-0.851427\pi\)
0.893033 0.449990i \(-0.148573\pi\)
\(398\) 2196.00i 0.276572i
\(399\) 2800.00 0.351317
\(400\) 0 0
\(401\) 4262.00 0.530758 0.265379 0.964144i \(-0.414503\pi\)
0.265379 + 0.964144i \(0.414503\pi\)
\(402\) − 9260.00i − 1.14887i
\(403\) − 5871.00i − 0.725696i
\(404\) −1240.00 −0.152704
\(405\) 0 0
\(406\) 3920.00 0.479178
\(407\) 10132.0i 1.23397i
\(408\) 9600.00i 1.16488i
\(409\) −229.000 −0.0276854 −0.0138427 0.999904i \(-0.504406\pi\)
−0.0138427 + 0.999904i \(0.504406\pi\)
\(410\) 0 0
\(411\) −7780.00 −0.933720
\(412\) 4176.00i 0.499361i
\(413\) 3264.00i 0.388888i
\(414\) −92.0000 −0.0109216
\(415\) 0 0
\(416\) 9120.00 1.07487
\(417\) 125.000i 0.0146793i
\(418\) 4760.00i 0.556984i
\(419\) −15776.0 −1.83940 −0.919699 0.392623i \(-0.871568\pi\)
−0.919699 + 0.392623i \(0.871568\pi\)
\(420\) 0 0
\(421\) −8728.00 −1.01040 −0.505198 0.863003i \(-0.668581\pi\)
−0.505198 + 0.863003i \(0.668581\pi\)
\(422\) − 7352.00i − 0.848080i
\(423\) 714.000i 0.0820706i
\(424\) 9936.00 1.13805
\(425\) 0 0
\(426\) 3350.00 0.381005
\(427\) 6576.00i 0.745281i
\(428\) − 1656.00i − 0.187023i
\(429\) −9690.00 −1.09053
\(430\) 0 0
\(431\) −2928.00 −0.327232 −0.163616 0.986524i \(-0.552316\pi\)
−0.163616 + 0.986524i \(0.552316\pi\)
\(432\) 2320.00i 0.258382i
\(433\) − 5314.00i − 0.589780i −0.955531 0.294890i \(-0.904717\pi\)
0.955531 0.294890i \(-0.0952829\pi\)
\(434\) −1648.00 −0.182273
\(435\) 0 0
\(436\) −2816.00 −0.309316
\(437\) 1610.00i 0.176240i
\(438\) − 8990.00i − 0.980728i
\(439\) −2585.00 −0.281037 −0.140519 0.990078i \(-0.544877\pi\)
−0.140519 + 0.990078i \(0.544877\pi\)
\(440\) 0 0
\(441\) 558.000 0.0602527
\(442\) 9120.00i 0.981435i
\(443\) − 2997.00i − 0.321426i −0.987001 0.160713i \(-0.948621\pi\)
0.987001 0.160713i \(-0.0513794\pi\)
\(444\) 5960.00 0.637047
\(445\) 0 0
\(446\) −3312.00 −0.351632
\(447\) 4110.00i 0.434891i
\(448\) − 3584.00i − 0.377964i
\(449\) 16562.0 1.74078 0.870389 0.492365i \(-0.163868\pi\)
0.870389 + 0.492365i \(0.163868\pi\)
\(450\) 0 0
\(451\) 3230.00 0.337239
\(452\) 3808.00i 0.396268i
\(453\) 7445.00i 0.772178i
\(454\) 5880.00 0.607846
\(455\) 0 0
\(456\) 8400.00 0.862645
\(457\) − 3924.00i − 0.401656i −0.979626 0.200828i \(-0.935637\pi\)
0.979626 0.200828i \(-0.0643633\pi\)
\(458\) − 7224.00i − 0.737020i
\(459\) 11600.0 1.17961
\(460\) 0 0
\(461\) −4543.00 −0.458977 −0.229489 0.973311i \(-0.573705\pi\)
−0.229489 + 0.973311i \(0.573705\pi\)
\(462\) 2720.00i 0.273909i
\(463\) 9616.00i 0.965213i 0.875837 + 0.482606i \(0.160310\pi\)
−0.875837 + 0.482606i \(0.839690\pi\)
\(464\) 3920.00 0.392201
\(465\) 0 0
\(466\) 8650.00 0.859879
\(467\) − 7826.00i − 0.775469i −0.921771 0.387735i \(-0.873258\pi\)
0.921771 0.387735i \(-0.126742\pi\)
\(468\) − 456.000i − 0.0450398i
\(469\) 7408.00 0.729360
\(470\) 0 0
\(471\) 3160.00 0.309140
\(472\) 9792.00i 0.954901i
\(473\) 2992.00i 0.290851i
\(474\) 13220.0 1.28104
\(475\) 0 0
\(476\) −2560.00 −0.246507
\(477\) − 828.000i − 0.0794791i
\(478\) − 5470.00i − 0.523414i
\(479\) −11404.0 −1.08781 −0.543906 0.839146i \(-0.683055\pi\)
−0.543906 + 0.839146i \(0.683055\pi\)
\(480\) 0 0
\(481\) 16986.0 1.61018
\(482\) − 13420.0i − 1.26818i
\(483\) 920.000i 0.0866697i
\(484\) −700.000 −0.0657400
\(485\) 0 0
\(486\) 1120.00 0.104535
\(487\) 9267.00i 0.862275i 0.902286 + 0.431137i \(0.141888\pi\)
−0.902286 + 0.431137i \(0.858112\pi\)
\(488\) 19728.0i 1.83001i
\(489\) −15215.0 −1.40705
\(490\) 0 0
\(491\) −18191.0 −1.67199 −0.835996 0.548735i \(-0.815110\pi\)
−0.835996 + 0.548735i \(0.815110\pi\)
\(492\) − 1900.00i − 0.174103i
\(493\) − 19600.0i − 1.79055i
\(494\) 7980.00 0.726796
\(495\) 0 0
\(496\) −1648.00 −0.149188
\(497\) 2680.00i 0.241880i
\(498\) − 360.000i − 0.0323935i
\(499\) −19315.0 −1.73278 −0.866391 0.499366i \(-0.833566\pi\)
−0.866391 + 0.499366i \(0.833566\pi\)
\(500\) 0 0
\(501\) 11120.0 0.991627
\(502\) − 13896.0i − 1.23548i
\(503\) 8422.00i 0.746557i 0.927719 + 0.373279i \(0.121766\pi\)
−0.927719 + 0.373279i \(0.878234\pi\)
\(504\) −384.000 −0.0339379
\(505\) 0 0
\(506\) −1564.00 −0.137408
\(507\) 5260.00i 0.460759i
\(508\) − 1044.00i − 0.0911811i
\(509\) 863.000 0.0751509 0.0375754 0.999294i \(-0.488037\pi\)
0.0375754 + 0.999294i \(0.488037\pi\)
\(510\) 0 0
\(511\) 7192.00 0.622613
\(512\) − 5632.00i − 0.486136i
\(513\) − 10150.0i − 0.873554i
\(514\) −9858.00 −0.845949
\(515\) 0 0
\(516\) 1760.00 0.150154
\(517\) 12138.0i 1.03255i
\(518\) − 4768.00i − 0.404428i
\(519\) 16150.0 1.36591
\(520\) 0 0
\(521\) 19260.0 1.61957 0.809785 0.586727i \(-0.199584\pi\)
0.809785 + 0.586727i \(0.199584\pi\)
\(522\) − 980.000i − 0.0821713i
\(523\) − 11740.0i − 0.981557i −0.871284 0.490779i \(-0.836712\pi\)
0.871284 0.490779i \(-0.163288\pi\)
\(524\) −5764.00 −0.480537
\(525\) 0 0
\(526\) −12276.0 −1.01760
\(527\) 8240.00i 0.681101i
\(528\) 2720.00i 0.224191i
\(529\) −529.000 −0.0434783
\(530\) 0 0
\(531\) 816.000 0.0666881
\(532\) 2240.00i 0.182549i
\(533\) − 5415.00i − 0.440056i
\(534\) 4600.00 0.372774
\(535\) 0 0
\(536\) 22224.0 1.79092
\(537\) 1845.00i 0.148264i
\(538\) 4126.00i 0.330640i
\(539\) 9486.00 0.758054
\(540\) 0 0
\(541\) 17741.0 1.40988 0.704940 0.709267i \(-0.250974\pi\)
0.704940 + 0.709267i \(0.250974\pi\)
\(542\) − 2128.00i − 0.168645i
\(543\) 6850.00i 0.541366i
\(544\) −12800.0 −1.00882
\(545\) 0 0
\(546\) 4560.00 0.357418
\(547\) 6571.00i 0.513630i 0.966461 + 0.256815i \(0.0826731\pi\)
−0.966461 + 0.256815i \(0.917327\pi\)
\(548\) − 6224.00i − 0.485175i
\(549\) 1644.00 0.127804
\(550\) 0 0
\(551\) −17150.0 −1.32598
\(552\) 2760.00i 0.212814i
\(553\) 10576.0i 0.813268i
\(554\) 11458.0 0.878707
\(555\) 0 0
\(556\) −100.000 −0.00762760
\(557\) 1372.00i 0.104369i 0.998637 + 0.0521845i \(0.0166184\pi\)
−0.998637 + 0.0521845i \(0.983382\pi\)
\(558\) 412.000i 0.0312569i
\(559\) 5016.00 0.379524
\(560\) 0 0
\(561\) 13600.0 1.02352
\(562\) − 1920.00i − 0.144111i
\(563\) 4332.00i 0.324284i 0.986767 + 0.162142i \(0.0518403\pi\)
−0.986767 + 0.162142i \(0.948160\pi\)
\(564\) 7140.00 0.533064
\(565\) 0 0
\(566\) 228.000 0.0169321
\(567\) − 5368.00i − 0.397592i
\(568\) 8040.00i 0.593928i
\(569\) 3546.00 0.261258 0.130629 0.991431i \(-0.458300\pi\)
0.130629 + 0.991431i \(0.458300\pi\)
\(570\) 0 0
\(571\) −6160.00 −0.451468 −0.225734 0.974189i \(-0.572478\pi\)
−0.225734 + 0.974189i \(0.572478\pi\)
\(572\) − 7752.00i − 0.566656i
\(573\) − 22050.0i − 1.60760i
\(574\) −1520.00 −0.110529
\(575\) 0 0
\(576\) −896.000 −0.0648148
\(577\) − 2953.00i − 0.213059i −0.994310 0.106529i \(-0.966026\pi\)
0.994310 0.106529i \(-0.0339738\pi\)
\(578\) − 2974.00i − 0.214017i
\(579\) −675.000 −0.0484491
\(580\) 0 0
\(581\) 288.000 0.0205650
\(582\) 9640.00i 0.686582i
\(583\) − 14076.0i − 0.999946i
\(584\) 21576.0 1.52880
\(585\) 0 0
\(586\) 14096.0 0.993687
\(587\) 2949.00i 0.207356i 0.994611 + 0.103678i \(0.0330612\pi\)
−0.994611 + 0.103678i \(0.966939\pi\)
\(588\) − 5580.00i − 0.391353i
\(589\) 7210.00 0.504385
\(590\) 0 0
\(591\) −6105.00 −0.424917
\(592\) − 4768.00i − 0.331020i
\(593\) 16390.0i 1.13500i 0.823372 + 0.567501i \(0.192090\pi\)
−0.823372 + 0.567501i \(0.807910\pi\)
\(594\) 9860.00 0.681079
\(595\) 0 0
\(596\) −3288.00 −0.225976
\(597\) − 5490.00i − 0.376366i
\(598\) 2622.00i 0.179300i
\(599\) 12920.0 0.881297 0.440648 0.897680i \(-0.354749\pi\)
0.440648 + 0.897680i \(0.354749\pi\)
\(600\) 0 0
\(601\) −13835.0 −0.939004 −0.469502 0.882931i \(-0.655567\pi\)
−0.469502 + 0.882931i \(0.655567\pi\)
\(602\) − 1408.00i − 0.0953252i
\(603\) − 1852.00i − 0.125073i
\(604\) −5956.00 −0.401235
\(605\) 0 0
\(606\) −3100.00 −0.207803
\(607\) − 6004.00i − 0.401474i −0.979645 0.200737i \(-0.935666\pi\)
0.979645 0.200737i \(-0.0643337\pi\)
\(608\) 11200.0i 0.747072i
\(609\) −9800.00 −0.652079
\(610\) 0 0
\(611\) 20349.0 1.34735
\(612\) 640.000i 0.0422720i
\(613\) − 16416.0i − 1.08162i −0.841143 0.540812i \(-0.818117\pi\)
0.841143 0.540812i \(-0.181883\pi\)
\(614\) 7744.00 0.508994
\(615\) 0 0
\(616\) −6528.00 −0.426982
\(617\) − 3786.00i − 0.247032i −0.992343 0.123516i \(-0.960583\pi\)
0.992343 0.123516i \(-0.0394170\pi\)
\(618\) 10440.0i 0.679544i
\(619\) −15824.0 −1.02750 −0.513748 0.857941i \(-0.671743\pi\)
−0.513748 + 0.857941i \(0.671743\pi\)
\(620\) 0 0
\(621\) 3335.00 0.215506
\(622\) − 9954.00i − 0.641670i
\(623\) 3680.00i 0.236655i
\(624\) 4560.00 0.292542
\(625\) 0 0
\(626\) 5072.00 0.323830
\(627\) − 11900.0i − 0.757959i
\(628\) 2528.00i 0.160634i
\(629\) −23840.0 −1.51123
\(630\) 0 0
\(631\) 17852.0 1.12627 0.563135 0.826365i \(-0.309595\pi\)
0.563135 + 0.826365i \(0.309595\pi\)
\(632\) 31728.0i 1.99695i
\(633\) 18380.0i 1.15409i
\(634\) 2868.00 0.179657
\(635\) 0 0
\(636\) −8280.00 −0.516232
\(637\) − 15903.0i − 0.989168i
\(638\) − 16660.0i − 1.03382i
\(639\) 670.000 0.0414785
\(640\) 0 0
\(641\) 10324.0 0.636152 0.318076 0.948065i \(-0.396963\pi\)
0.318076 + 0.948065i \(0.396963\pi\)
\(642\) − 4140.00i − 0.254506i
\(643\) − 14702.0i − 0.901696i −0.892601 0.450848i \(-0.851122\pi\)
0.892601 0.450848i \(-0.148878\pi\)
\(644\) −736.000 −0.0450349
\(645\) 0 0
\(646\) −11200.0 −0.682133
\(647\) − 11939.0i − 0.725457i −0.931895 0.362728i \(-0.881845\pi\)
0.931895 0.362728i \(-0.118155\pi\)
\(648\) − 16104.0i − 0.976273i
\(649\) 13872.0 0.839019
\(650\) 0 0
\(651\) 4120.00 0.248042
\(652\) − 12172.0i − 0.731123i
\(653\) 6159.00i 0.369097i 0.982823 + 0.184548i \(0.0590823\pi\)
−0.982823 + 0.184548i \(0.940918\pi\)
\(654\) −7040.00 −0.420926
\(655\) 0 0
\(656\) −1520.00 −0.0904665
\(657\) − 1798.00i − 0.106768i
\(658\) − 5712.00i − 0.338415i
\(659\) 21692.0 1.28225 0.641123 0.767438i \(-0.278469\pi\)
0.641123 + 0.767438i \(0.278469\pi\)
\(660\) 0 0
\(661\) 16502.0 0.971034 0.485517 0.874227i \(-0.338631\pi\)
0.485517 + 0.874227i \(0.338631\pi\)
\(662\) 10938.0i 0.642171i
\(663\) − 22800.0i − 1.33556i
\(664\) 864.000 0.0504965
\(665\) 0 0
\(666\) −1192.00 −0.0693529
\(667\) − 5635.00i − 0.327119i
\(668\) 8896.00i 0.515264i
\(669\) 8280.00 0.478510
\(670\) 0 0
\(671\) 27948.0 1.60793
\(672\) 6400.00i 0.367389i
\(673\) − 27733.0i − 1.58845i −0.607622 0.794226i \(-0.707876\pi\)
0.607622 0.794226i \(-0.292124\pi\)
\(674\) −15592.0 −0.891070
\(675\) 0 0
\(676\) −4208.00 −0.239417
\(677\) 8814.00i 0.500369i 0.968198 + 0.250184i \(0.0804912\pi\)
−0.968198 + 0.250184i \(0.919509\pi\)
\(678\) 9520.00i 0.539253i
\(679\) −7712.00 −0.435875
\(680\) 0 0
\(681\) −14700.0 −0.827174
\(682\) 7004.00i 0.393251i
\(683\) − 22999.0i − 1.28848i −0.764823 0.644240i \(-0.777174\pi\)
0.764823 0.644240i \(-0.222826\pi\)
\(684\) 560.000 0.0313043
\(685\) 0 0
\(686\) −9952.00 −0.553891
\(687\) 18060.0i 1.00296i
\(688\) − 1408.00i − 0.0780225i
\(689\) −23598.0 −1.30481
\(690\) 0 0
\(691\) −12140.0 −0.668346 −0.334173 0.942512i \(-0.608457\pi\)
−0.334173 + 0.942512i \(0.608457\pi\)
\(692\) 12920.0i 0.709747i
\(693\) 544.000i 0.0298194i
\(694\) −20136.0 −1.10137
\(695\) 0 0
\(696\) −29400.0 −1.60116
\(697\) 7600.00i 0.413014i
\(698\) 14990.0i 0.812865i
\(699\) −21625.0 −1.17015
\(700\) 0 0
\(701\) −20024.0 −1.07888 −0.539441 0.842024i \(-0.681364\pi\)
−0.539441 + 0.842024i \(0.681364\pi\)
\(702\) − 16530.0i − 0.888725i
\(703\) 20860.0i 1.11913i
\(704\) −15232.0 −0.815451
\(705\) 0 0
\(706\) −21234.0 −1.13194
\(707\) − 2480.00i − 0.131924i
\(708\) − 8160.00i − 0.433152i
\(709\) 4956.00 0.262520 0.131260 0.991348i \(-0.458098\pi\)
0.131260 + 0.991348i \(0.458098\pi\)
\(710\) 0 0
\(711\) 2644.00 0.139462
\(712\) 11040.0i 0.581098i
\(713\) 2369.00i 0.124432i
\(714\) −6400.00 −0.335454
\(715\) 0 0
\(716\) −1476.00 −0.0770401
\(717\) 13675.0i 0.712276i
\(718\) − 5044.00i − 0.262173i
\(719\) −2760.00 −0.143158 −0.0715790 0.997435i \(-0.522804\pi\)
−0.0715790 + 0.997435i \(0.522804\pi\)
\(720\) 0 0
\(721\) −8352.00 −0.431407
\(722\) − 3918.00i − 0.201957i
\(723\) 33550.0i 1.72578i
\(724\) −5480.00 −0.281302
\(725\) 0 0
\(726\) −1750.00 −0.0894609
\(727\) − 7746.00i − 0.395163i −0.980287 0.197581i \(-0.936691\pi\)
0.980287 0.197581i \(-0.0633086\pi\)
\(728\) 10944.0i 0.557159i
\(729\) −20917.0 −1.06269
\(730\) 0 0
\(731\) −7040.00 −0.356202
\(732\) − 16440.0i − 0.830109i
\(733\) − 11976.0i − 0.603470i −0.953392 0.301735i \(-0.902434\pi\)
0.953392 0.301735i \(-0.0975658\pi\)
\(734\) 14408.0 0.724535
\(735\) 0 0
\(736\) −3680.00 −0.184302
\(737\) − 31484.0i − 1.57358i
\(738\) 380.000i 0.0189539i
\(739\) −15057.0 −0.749500 −0.374750 0.927126i \(-0.622272\pi\)
−0.374750 + 0.927126i \(0.622272\pi\)
\(740\) 0 0
\(741\) −19950.0 −0.989044
\(742\) 6624.00i 0.327729i
\(743\) 18532.0i 0.915038i 0.889200 + 0.457519i \(0.151262\pi\)
−0.889200 + 0.457519i \(0.848738\pi\)
\(744\) 12360.0 0.609059
\(745\) 0 0
\(746\) 26620.0 1.30647
\(747\) − 72.0000i − 0.00352656i
\(748\) 10880.0i 0.531834i
\(749\) 3312.00 0.161573
\(750\) 0 0
\(751\) −192.000 −0.00932913 −0.00466457 0.999989i \(-0.501485\pi\)
−0.00466457 + 0.999989i \(0.501485\pi\)
\(752\) − 5712.00i − 0.276988i
\(753\) 34740.0i 1.68127i
\(754\) −27930.0 −1.34901
\(755\) 0 0
\(756\) 4640.00 0.223221
\(757\) 9830.00i 0.471965i 0.971757 + 0.235982i \(0.0758308\pi\)
−0.971757 + 0.235982i \(0.924169\pi\)
\(758\) − 25904.0i − 1.24126i
\(759\) 3910.00 0.186988
\(760\) 0 0
\(761\) −30219.0 −1.43947 −0.719736 0.694248i \(-0.755737\pi\)
−0.719736 + 0.694248i \(0.755737\pi\)
\(762\) − 2610.00i − 0.124082i
\(763\) − 5632.00i − 0.267224i
\(764\) 17640.0 0.835331
\(765\) 0 0
\(766\) 5624.00 0.265279
\(767\) − 23256.0i − 1.09482i
\(768\) 21760.0i 1.02239i
\(769\) −1122.00 −0.0526142 −0.0263071 0.999654i \(-0.508375\pi\)
−0.0263071 + 0.999654i \(0.508375\pi\)
\(770\) 0 0
\(771\) 24645.0 1.15119
\(772\) − 540.000i − 0.0251749i
\(773\) 19300.0i 0.898024i 0.893526 + 0.449012i \(0.148224\pi\)
−0.893526 + 0.449012i \(0.851776\pi\)
\(774\) −352.000 −0.0163467
\(775\) 0 0
\(776\) −23136.0 −1.07028
\(777\) 11920.0i 0.550357i
\(778\) − 2528.00i − 0.116495i
\(779\) 6650.00 0.305855
\(780\) 0 0
\(781\) 11390.0 0.521852
\(782\) − 3680.00i − 0.168282i
\(783\) 35525.0i 1.62140i
\(784\) −4464.00 −0.203353
\(785\) 0 0
\(786\) −14410.0 −0.653928
\(787\) 19396.0i 0.878517i 0.898361 + 0.439258i \(0.144759\pi\)
−0.898361 + 0.439258i \(0.855241\pi\)
\(788\) − 4884.00i − 0.220794i
\(789\) 30690.0 1.38478
\(790\) 0 0
\(791\) −7616.00 −0.342344
\(792\) 1632.00i 0.0732204i
\(793\) − 46854.0i − 2.09815i
\(794\) 14238.0 0.636383
\(795\) 0 0
\(796\) 4392.00 0.195566
\(797\) 39034.0i 1.73482i 0.497590 + 0.867412i \(0.334218\pi\)
−0.497590 + 0.867412i \(0.665782\pi\)
\(798\) 5600.00i 0.248418i
\(799\) −28560.0 −1.26456
\(800\) 0 0
\(801\) 920.000 0.0405825
\(802\) 8524.00i 0.375303i
\(803\) − 30566.0i − 1.34328i
\(804\) −18520.0 −0.812376
\(805\) 0 0
\(806\) 11742.0 0.513144
\(807\) − 10315.0i − 0.449944i
\(808\) − 7440.00i − 0.323934i
\(809\) 10310.0 0.448060 0.224030 0.974582i \(-0.428079\pi\)
0.224030 + 0.974582i \(0.428079\pi\)
\(810\) 0 0
\(811\) −40693.0 −1.76193 −0.880965 0.473182i \(-0.843105\pi\)
−0.880965 + 0.473182i \(0.843105\pi\)
\(812\) − 7840.00i − 0.338830i
\(813\) 5320.00i 0.229496i
\(814\) −20264.0 −0.872546
\(815\) 0 0
\(816\) −6400.00 −0.274565
\(817\) 6160.00i 0.263784i
\(818\) − 458.000i − 0.0195765i
\(819\) 912.000 0.0389107
\(820\) 0 0
\(821\) −13934.0 −0.592326 −0.296163 0.955137i \(-0.595707\pi\)
−0.296163 + 0.955137i \(0.595707\pi\)
\(822\) − 15560.0i − 0.660240i
\(823\) 6175.00i 0.261539i 0.991413 + 0.130770i \(0.0417449\pi\)
−0.991413 + 0.130770i \(0.958255\pi\)
\(824\) −25056.0 −1.05930
\(825\) 0 0
\(826\) −6528.00 −0.274986
\(827\) − 28664.0i − 1.20525i −0.798023 0.602627i \(-0.794121\pi\)
0.798023 0.602627i \(-0.205879\pi\)
\(828\) 184.000i 0.00772276i
\(829\) 39590.0 1.65865 0.829323 0.558770i \(-0.188726\pi\)
0.829323 + 0.558770i \(0.188726\pi\)
\(830\) 0 0
\(831\) −28645.0 −1.19577
\(832\) 25536.0i 1.06406i
\(833\) 22320.0i 0.928382i
\(834\) −250.000 −0.0103798
\(835\) 0 0
\(836\) 9520.00 0.393847
\(837\) − 14935.0i − 0.616761i
\(838\) − 31552.0i − 1.30065i
\(839\) 14316.0 0.589086 0.294543 0.955638i \(-0.404833\pi\)
0.294543 + 0.955638i \(0.404833\pi\)
\(840\) 0 0
\(841\) 35636.0 1.46115
\(842\) − 17456.0i − 0.714458i
\(843\) 4800.00i 0.196110i
\(844\) −14704.0 −0.599683
\(845\) 0 0
\(846\) −1428.00 −0.0580327
\(847\) − 1400.00i − 0.0567941i
\(848\) 6624.00i 0.268242i
\(849\) −570.000 −0.0230416
\(850\) 0 0
\(851\) −6854.00 −0.276089
\(852\) − 6700.00i − 0.269411i
\(853\) 28366.0i 1.13861i 0.822127 + 0.569304i \(0.192787\pi\)
−0.822127 + 0.569304i \(0.807213\pi\)
\(854\) −13152.0 −0.526993
\(855\) 0 0
\(856\) 9936.00 0.396735
\(857\) − 19283.0i − 0.768605i −0.923207 0.384303i \(-0.874442\pi\)
0.923207 0.384303i \(-0.125558\pi\)
\(858\) − 19380.0i − 0.771122i
\(859\) 26101.0 1.03673 0.518367 0.855158i \(-0.326540\pi\)
0.518367 + 0.855158i \(0.326540\pi\)
\(860\) 0 0
\(861\) 3800.00 0.150411
\(862\) − 5856.00i − 0.231388i
\(863\) 973.000i 0.0383793i 0.999816 + 0.0191896i \(0.00610862\pi\)
−0.999816 + 0.0191896i \(0.993891\pi\)
\(864\) 23200.0 0.913519
\(865\) 0 0
\(866\) 10628.0 0.417037
\(867\) 7435.00i 0.291241i
\(868\) 3296.00i 0.128887i
\(869\) 44948.0 1.75461
\(870\) 0 0
\(871\) −52782.0 −2.05333
\(872\) − 16896.0i − 0.656159i
\(873\) 1928.00i 0.0747456i
\(874\) −3220.00 −0.124620
\(875\) 0 0
\(876\) −17980.0 −0.693479
\(877\) − 5694.00i − 0.219239i −0.993974 0.109620i \(-0.965037\pi\)
0.993974 0.109620i \(-0.0349633\pi\)
\(878\) − 5170.00i − 0.198723i
\(879\) −35240.0 −1.35224
\(880\) 0 0
\(881\) 45960.0 1.75758 0.878792 0.477205i \(-0.158350\pi\)
0.878792 + 0.477205i \(0.158350\pi\)
\(882\) 1116.00i 0.0426051i
\(883\) 17188.0i 0.655065i 0.944840 + 0.327532i \(0.106217\pi\)
−0.944840 + 0.327532i \(0.893783\pi\)
\(884\) 18240.0 0.693979
\(885\) 0 0
\(886\) 5994.00 0.227283
\(887\) − 8451.00i − 0.319906i −0.987125 0.159953i \(-0.948866\pi\)
0.987125 0.159953i \(-0.0511343\pi\)
\(888\) 35760.0i 1.35138i
\(889\) 2088.00 0.0787731
\(890\) 0 0
\(891\) −22814.0 −0.857798
\(892\) 6624.00i 0.248641i
\(893\) 24990.0i 0.936460i
\(894\) −8220.00 −0.307514
\(895\) 0 0
\(896\) −3072.00 −0.114541
\(897\) − 6555.00i − 0.243997i
\(898\) 33124.0i 1.23092i
\(899\) −25235.0 −0.936190
\(900\) 0 0
\(901\) 33120.0 1.22463
\(902\) 6460.00i 0.238464i
\(903\) 3520.00i 0.129721i
\(904\) −22848.0 −0.840612
\(905\) 0 0
\(906\) −14890.0 −0.546012
\(907\) − 32774.0i − 1.19983i −0.800065 0.599913i \(-0.795202\pi\)
0.800065 0.599913i \(-0.204798\pi\)
\(908\) − 11760.0i − 0.429812i
\(909\) −620.000 −0.0226228
\(910\) 0 0
\(911\) −23690.0 −0.861564 −0.430782 0.902456i \(-0.641762\pi\)
−0.430782 + 0.902456i \(0.641762\pi\)
\(912\) 5600.00i 0.203327i
\(913\) − 1224.00i − 0.0443686i
\(914\) 7848.00 0.284014
\(915\) 0 0
\(916\) −14448.0 −0.521152
\(917\) − 11528.0i − 0.415145i
\(918\) 23200.0i 0.834111i
\(919\) 30044.0 1.07841 0.539206 0.842174i \(-0.318725\pi\)
0.539206 + 0.842174i \(0.318725\pi\)
\(920\) 0 0
\(921\) −19360.0 −0.692653
\(922\) − 9086.00i − 0.324546i
\(923\) − 19095.0i − 0.680953i
\(924\) 5440.00 0.193683
\(925\) 0 0
\(926\) −19232.0 −0.682508
\(927\) 2088.00i 0.0739794i
\(928\) − 39200.0i − 1.38664i
\(929\) 39705.0 1.40224 0.701119 0.713044i \(-0.252684\pi\)
0.701119 + 0.713044i \(0.252684\pi\)
\(930\) 0 0
\(931\) 19530.0 0.687508
\(932\) − 17300.0i − 0.608026i
\(933\) 24885.0i 0.873203i
\(934\) 15652.0 0.548339
\(935\) 0 0
\(936\) 2736.00 0.0955438
\(937\) − 17422.0i − 0.607419i −0.952765 0.303710i \(-0.901775\pi\)
0.952765 0.303710i \(-0.0982253\pi\)
\(938\) 14816.0i 0.515735i
\(939\) −12680.0 −0.440677
\(940\) 0 0
\(941\) −25292.0 −0.876191 −0.438095 0.898928i \(-0.644347\pi\)
−0.438095 + 0.898928i \(0.644347\pi\)
\(942\) 6320.00i 0.218595i
\(943\) 2185.00i 0.0754543i
\(944\) −6528.00 −0.225072
\(945\) 0 0
\(946\) −5984.00 −0.205662
\(947\) − 33211.0i − 1.13961i −0.821779 0.569806i \(-0.807018\pi\)
0.821779 0.569806i \(-0.192982\pi\)
\(948\) − 26440.0i − 0.905835i
\(949\) −51243.0 −1.75281
\(950\) 0 0
\(951\) −7170.00 −0.244483
\(952\) − 15360.0i − 0.522921i
\(953\) − 14154.0i − 0.481105i −0.970636 0.240552i \(-0.922671\pi\)
0.970636 0.240552i \(-0.0773286\pi\)
\(954\) 1656.00 0.0562002
\(955\) 0 0
\(956\) −10940.0 −0.370110
\(957\) 41650.0i 1.40685i
\(958\) − 22808.0i − 0.769199i
\(959\) 12448.0 0.419152
\(960\) 0 0
\(961\) −19182.0 −0.643886
\(962\) 33972.0i 1.13857i
\(963\) − 828.000i − 0.0277071i
\(964\) −26840.0 −0.896741
\(965\) 0 0
\(966\) −1840.00 −0.0612847
\(967\) 46343.0i 1.54115i 0.637350 + 0.770574i \(0.280030\pi\)
−0.637350 + 0.770574i \(0.719970\pi\)
\(968\) − 4200.00i − 0.139456i
\(969\) 28000.0 0.928266
\(970\) 0 0
\(971\) 11710.0 0.387015 0.193508 0.981099i \(-0.438014\pi\)
0.193508 + 0.981099i \(0.438014\pi\)
\(972\) − 2240.00i − 0.0739177i
\(973\) − 200.000i − 0.00658963i
\(974\) −18534.0 −0.609720
\(975\) 0 0
\(976\) −13152.0 −0.431337
\(977\) − 47854.0i − 1.56703i −0.621375 0.783513i \(-0.713426\pi\)
0.621375 0.783513i \(-0.286574\pi\)
\(978\) − 30430.0i − 0.994933i
\(979\) 15640.0 0.510579
\(980\) 0 0
\(981\) −1408.00 −0.0458246
\(982\) − 36382.0i − 1.18228i
\(983\) − 22078.0i − 0.716357i −0.933653 0.358178i \(-0.883398\pi\)
0.933653 0.358178i \(-0.116602\pi\)
\(984\) 11400.0 0.369328
\(985\) 0 0
\(986\) 39200.0 1.26611
\(987\) 14280.0i 0.460524i
\(988\) − 15960.0i − 0.513922i
\(989\) −2024.00 −0.0650753
\(990\) 0 0
\(991\) −4288.00 −0.137450 −0.0687249 0.997636i \(-0.521893\pi\)
−0.0687249 + 0.997636i \(0.521893\pi\)
\(992\) 16480.0i 0.527460i
\(993\) − 27345.0i − 0.873885i
\(994\) −5360.00 −0.171035
\(995\) 0 0
\(996\) −720.000 −0.0229057
\(997\) − 28966.0i − 0.920123i −0.887887 0.460061i \(-0.847827\pi\)
0.887887 0.460061i \(-0.152173\pi\)
\(998\) − 38630.0i − 1.22526i
\(999\) 43210.0 1.36847
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 575.4.b.b.24.2 2
5.2 odd 4 23.4.a.a.1.1 1
5.3 odd 4 575.4.a.g.1.1 1
5.4 even 2 inner 575.4.b.b.24.1 2
15.2 even 4 207.4.a.a.1.1 1
20.7 even 4 368.4.a.d.1.1 1
35.27 even 4 1127.4.a.a.1.1 1
40.27 even 4 1472.4.a.c.1.1 1
40.37 odd 4 1472.4.a.h.1.1 1
115.22 even 4 529.4.a.a.1.1 1
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
23.4.a.a.1.1 1 5.2 odd 4
207.4.a.a.1.1 1 15.2 even 4
368.4.a.d.1.1 1 20.7 even 4
529.4.a.a.1.1 1 115.22 even 4
575.4.a.g.1.1 1 5.3 odd 4
575.4.b.b.24.1 2 5.4 even 2 inner
575.4.b.b.24.2 2 1.1 even 1 trivial
1127.4.a.a.1.1 1 35.27 even 4
1472.4.a.c.1.1 1 40.27 even 4
1472.4.a.h.1.1 1 40.37 odd 4