Properties

Label 575.4.a.g.1.1
Level $575$
Weight $4$
Character 575.1
Self dual yes
Analytic conductor $33.926$
Analytic rank $0$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [575,4,Mod(1,575)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(575, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("575.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 575 = 5^{2} \cdot 23 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 575.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(33.9260982533\)
Analytic rank: \(0\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 23)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Character \(\chi\) \(=\) 575.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+2.00000 q^{2} +5.00000 q^{3} -4.00000 q^{4} +10.0000 q^{6} +8.00000 q^{7} -24.0000 q^{8} -2.00000 q^{9} +O(q^{10})\) \(q+2.00000 q^{2} +5.00000 q^{3} -4.00000 q^{4} +10.0000 q^{6} +8.00000 q^{7} -24.0000 q^{8} -2.00000 q^{9} +34.0000 q^{11} -20.0000 q^{12} +57.0000 q^{13} +16.0000 q^{14} -16.0000 q^{16} +80.0000 q^{17} -4.00000 q^{18} -70.0000 q^{19} +40.0000 q^{21} +68.0000 q^{22} -23.0000 q^{23} -120.000 q^{24} +114.000 q^{26} -145.000 q^{27} -32.0000 q^{28} +245.000 q^{29} +103.000 q^{31} +160.000 q^{32} +170.000 q^{33} +160.000 q^{34} +8.00000 q^{36} +298.000 q^{37} -140.000 q^{38} +285.000 q^{39} +95.0000 q^{41} +80.0000 q^{42} -88.0000 q^{43} -136.000 q^{44} -46.0000 q^{46} +357.000 q^{47} -80.0000 q^{48} -279.000 q^{49} +400.000 q^{51} -228.000 q^{52} +414.000 q^{53} -290.000 q^{54} -192.000 q^{56} -350.000 q^{57} +490.000 q^{58} -408.000 q^{59} +822.000 q^{61} +206.000 q^{62} -16.0000 q^{63} +448.000 q^{64} +340.000 q^{66} -926.000 q^{67} -320.000 q^{68} -115.000 q^{69} +335.000 q^{71} +48.0000 q^{72} +899.000 q^{73} +596.000 q^{74} +280.000 q^{76} +272.000 q^{77} +570.000 q^{78} -1322.00 q^{79} -671.000 q^{81} +190.000 q^{82} +36.0000 q^{83} -160.000 q^{84} -176.000 q^{86} +1225.00 q^{87} -816.000 q^{88} -460.000 q^{89} +456.000 q^{91} +92.0000 q^{92} +515.000 q^{93} +714.000 q^{94} +800.000 q^{96} +964.000 q^{97} -558.000 q^{98} -68.0000 q^{99} +O(q^{100})\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.00000 0.707107 0.353553 0.935414i \(-0.384973\pi\)
0.353553 + 0.935414i \(0.384973\pi\)
\(3\) 5.00000 0.962250 0.481125 0.876652i \(-0.340228\pi\)
0.481125 + 0.876652i \(0.340228\pi\)
\(4\) −4.00000 −0.500000
\(5\) 0 0
\(6\) 10.0000 0.680414
\(7\) 8.00000 0.431959 0.215980 0.976398i \(-0.430705\pi\)
0.215980 + 0.976398i \(0.430705\pi\)
\(8\) −24.0000 −1.06066
\(9\) −2.00000 −0.0740741
\(10\) 0 0
\(11\) 34.0000 0.931944 0.465972 0.884799i \(-0.345705\pi\)
0.465972 + 0.884799i \(0.345705\pi\)
\(12\) −20.0000 −0.481125
\(13\) 57.0000 1.21607 0.608037 0.793909i \(-0.291957\pi\)
0.608037 + 0.793909i \(0.291957\pi\)
\(14\) 16.0000 0.305441
\(15\) 0 0
\(16\) −16.0000 −0.250000
\(17\) 80.0000 1.14134 0.570672 0.821178i \(-0.306683\pi\)
0.570672 + 0.821178i \(0.306683\pi\)
\(18\) −4.00000 −0.0523783
\(19\) −70.0000 −0.845216 −0.422608 0.906313i \(-0.638885\pi\)
−0.422608 + 0.906313i \(0.638885\pi\)
\(20\) 0 0
\(21\) 40.0000 0.415653
\(22\) 68.0000 0.658984
\(23\) −23.0000 −0.208514
\(24\) −120.000 −1.02062
\(25\) 0 0
\(26\) 114.000 0.859894
\(27\) −145.000 −1.03353
\(28\) −32.0000 −0.215980
\(29\) 245.000 1.56881 0.784403 0.620252i \(-0.212970\pi\)
0.784403 + 0.620252i \(0.212970\pi\)
\(30\) 0 0
\(31\) 103.000 0.596753 0.298377 0.954448i \(-0.403555\pi\)
0.298377 + 0.954448i \(0.403555\pi\)
\(32\) 160.000 0.883883
\(33\) 170.000 0.896764
\(34\) 160.000 0.807052
\(35\) 0 0
\(36\) 8.00000 0.0370370
\(37\) 298.000 1.32408 0.662039 0.749469i \(-0.269691\pi\)
0.662039 + 0.749469i \(0.269691\pi\)
\(38\) −140.000 −0.597658
\(39\) 285.000 1.17017
\(40\) 0 0
\(41\) 95.0000 0.361866 0.180933 0.983495i \(-0.442088\pi\)
0.180933 + 0.983495i \(0.442088\pi\)
\(42\) 80.0000 0.293911
\(43\) −88.0000 −0.312090 −0.156045 0.987750i \(-0.549875\pi\)
−0.156045 + 0.987750i \(0.549875\pi\)
\(44\) −136.000 −0.465972
\(45\) 0 0
\(46\) −46.0000 −0.147442
\(47\) 357.000 1.10795 0.553977 0.832532i \(-0.313110\pi\)
0.553977 + 0.832532i \(0.313110\pi\)
\(48\) −80.0000 −0.240563
\(49\) −279.000 −0.813411
\(50\) 0 0
\(51\) 400.000 1.09826
\(52\) −228.000 −0.608037
\(53\) 414.000 1.07297 0.536484 0.843911i \(-0.319752\pi\)
0.536484 + 0.843911i \(0.319752\pi\)
\(54\) −290.000 −0.730815
\(55\) 0 0
\(56\) −192.000 −0.458162
\(57\) −350.000 −0.813309
\(58\) 490.000 1.10931
\(59\) −408.000 −0.900289 −0.450145 0.892956i \(-0.648628\pi\)
−0.450145 + 0.892956i \(0.648628\pi\)
\(60\) 0 0
\(61\) 822.000 1.72535 0.862675 0.505759i \(-0.168788\pi\)
0.862675 + 0.505759i \(0.168788\pi\)
\(62\) 206.000 0.421968
\(63\) −16.0000 −0.0319970
\(64\) 448.000 0.875000
\(65\) 0 0
\(66\) 340.000 0.634108
\(67\) −926.000 −1.68849 −0.844246 0.535957i \(-0.819951\pi\)
−0.844246 + 0.535957i \(0.819951\pi\)
\(68\) −320.000 −0.570672
\(69\) −115.000 −0.200643
\(70\) 0 0
\(71\) 335.000 0.559960 0.279980 0.960006i \(-0.409672\pi\)
0.279980 + 0.960006i \(0.409672\pi\)
\(72\) 48.0000 0.0785674
\(73\) 899.000 1.44137 0.720685 0.693263i \(-0.243827\pi\)
0.720685 + 0.693263i \(0.243827\pi\)
\(74\) 596.000 0.936265
\(75\) 0 0
\(76\) 280.000 0.422608
\(77\) 272.000 0.402562
\(78\) 570.000 0.827433
\(79\) −1322.00 −1.88274 −0.941371 0.337373i \(-0.890462\pi\)
−0.941371 + 0.337373i \(0.890462\pi\)
\(80\) 0 0
\(81\) −671.000 −0.920439
\(82\) 190.000 0.255878
\(83\) 36.0000 0.0476086 0.0238043 0.999717i \(-0.492422\pi\)
0.0238043 + 0.999717i \(0.492422\pi\)
\(84\) −160.000 −0.207827
\(85\) 0 0
\(86\) −176.000 −0.220681
\(87\) 1225.00 1.50958
\(88\) −816.000 −0.988476
\(89\) −460.000 −0.547864 −0.273932 0.961749i \(-0.588324\pi\)
−0.273932 + 0.961749i \(0.588324\pi\)
\(90\) 0 0
\(91\) 456.000 0.525294
\(92\) 92.0000 0.104257
\(93\) 515.000 0.574226
\(94\) 714.000 0.783441
\(95\) 0 0
\(96\) 800.000 0.850517
\(97\) 964.000 1.00907 0.504533 0.863393i \(-0.331665\pi\)
0.504533 + 0.863393i \(0.331665\pi\)
\(98\) −558.000 −0.575168
\(99\) −68.0000 −0.0690329
\(100\) 0 0
\(101\) −310.000 −0.305407 −0.152704 0.988272i \(-0.548798\pi\)
−0.152704 + 0.988272i \(0.548798\pi\)
\(102\) 800.000 0.776586
\(103\) −1044.00 −0.998722 −0.499361 0.866394i \(-0.666432\pi\)
−0.499361 + 0.866394i \(0.666432\pi\)
\(104\) −1368.00 −1.28984
\(105\) 0 0
\(106\) 828.000 0.758703
\(107\) −414.000 −0.374046 −0.187023 0.982356i \(-0.559884\pi\)
−0.187023 + 0.982356i \(0.559884\pi\)
\(108\) 580.000 0.516764
\(109\) 704.000 0.618633 0.309316 0.950959i \(-0.399900\pi\)
0.309316 + 0.950959i \(0.399900\pi\)
\(110\) 0 0
\(111\) 1490.00 1.27409
\(112\) −128.000 −0.107990
\(113\) −952.000 −0.792537 −0.396268 0.918135i \(-0.629695\pi\)
−0.396268 + 0.918135i \(0.629695\pi\)
\(114\) −700.000 −0.575097
\(115\) 0 0
\(116\) −980.000 −0.784403
\(117\) −114.000 −0.0900795
\(118\) −816.000 −0.636601
\(119\) 640.000 0.493014
\(120\) 0 0
\(121\) −175.000 −0.131480
\(122\) 1644.00 1.22001
\(123\) 475.000 0.348206
\(124\) −412.000 −0.298377
\(125\) 0 0
\(126\) −32.0000 −0.0226253
\(127\) −261.000 −0.182362 −0.0911811 0.995834i \(-0.529064\pi\)
−0.0911811 + 0.995834i \(0.529064\pi\)
\(128\) −384.000 −0.265165
\(129\) −440.000 −0.300309
\(130\) 0 0
\(131\) −1441.00 −0.961074 −0.480537 0.876974i \(-0.659558\pi\)
−0.480537 + 0.876974i \(0.659558\pi\)
\(132\) −680.000 −0.448382
\(133\) −560.000 −0.365099
\(134\) −1852.00 −1.19394
\(135\) 0 0
\(136\) −1920.00 −1.21058
\(137\) −1556.00 −0.970351 −0.485175 0.874417i \(-0.661244\pi\)
−0.485175 + 0.874417i \(0.661244\pi\)
\(138\) −230.000 −0.141876
\(139\) 25.0000 0.0152552 0.00762760 0.999971i \(-0.497572\pi\)
0.00762760 + 0.999971i \(0.497572\pi\)
\(140\) 0 0
\(141\) 1785.00 1.06613
\(142\) 670.000 0.395952
\(143\) 1938.00 1.13331
\(144\) 32.0000 0.0185185
\(145\) 0 0
\(146\) 1798.00 1.01920
\(147\) −1395.00 −0.782705
\(148\) −1192.00 −0.662039
\(149\) 822.000 0.451952 0.225976 0.974133i \(-0.427443\pi\)
0.225976 + 0.974133i \(0.427443\pi\)
\(150\) 0 0
\(151\) −1489.00 −0.802471 −0.401235 0.915975i \(-0.631419\pi\)
−0.401235 + 0.915975i \(0.631419\pi\)
\(152\) 1680.00 0.896487
\(153\) −160.000 −0.0845440
\(154\) 544.000 0.284654
\(155\) 0 0
\(156\) −1140.00 −0.585084
\(157\) 632.000 0.321268 0.160634 0.987014i \(-0.448646\pi\)
0.160634 + 0.987014i \(0.448646\pi\)
\(158\) −2644.00 −1.33130
\(159\) 2070.00 1.03246
\(160\) 0 0
\(161\) −184.000 −0.0900698
\(162\) −1342.00 −0.650849
\(163\) 3043.00 1.46225 0.731123 0.682245i \(-0.238996\pi\)
0.731123 + 0.682245i \(0.238996\pi\)
\(164\) −380.000 −0.180933
\(165\) 0 0
\(166\) 72.0000 0.0336644
\(167\) 2224.00 1.03053 0.515264 0.857031i \(-0.327694\pi\)
0.515264 + 0.857031i \(0.327694\pi\)
\(168\) −960.000 −0.440867
\(169\) 1052.00 0.478835
\(170\) 0 0
\(171\) 140.000 0.0626086
\(172\) 352.000 0.156045
\(173\) −3230.00 −1.41949 −0.709747 0.704457i \(-0.751191\pi\)
−0.709747 + 0.704457i \(0.751191\pi\)
\(174\) 2450.00 1.06744
\(175\) 0 0
\(176\) −544.000 −0.232986
\(177\) −2040.00 −0.866304
\(178\) −920.000 −0.387398
\(179\) 369.000 0.154080 0.0770401 0.997028i \(-0.475453\pi\)
0.0770401 + 0.997028i \(0.475453\pi\)
\(180\) 0 0
\(181\) −1370.00 −0.562604 −0.281302 0.959619i \(-0.590766\pi\)
−0.281302 + 0.959619i \(0.590766\pi\)
\(182\) 912.000 0.371439
\(183\) 4110.00 1.66022
\(184\) 552.000 0.221163
\(185\) 0 0
\(186\) 1030.00 0.406039
\(187\) 2720.00 1.06367
\(188\) −1428.00 −0.553977
\(189\) −1160.00 −0.446442
\(190\) 0 0
\(191\) 4410.00 1.67066 0.835331 0.549747i \(-0.185276\pi\)
0.835331 + 0.549747i \(0.185276\pi\)
\(192\) 2240.00 0.841969
\(193\) 135.000 0.0503498 0.0251749 0.999683i \(-0.491986\pi\)
0.0251749 + 0.999683i \(0.491986\pi\)
\(194\) 1928.00 0.713517
\(195\) 0 0
\(196\) 1116.00 0.406706
\(197\) −1221.00 −0.441587 −0.220794 0.975321i \(-0.570865\pi\)
−0.220794 + 0.975321i \(0.570865\pi\)
\(198\) −136.000 −0.0488136
\(199\) −1098.00 −0.391131 −0.195566 0.980691i \(-0.562654\pi\)
−0.195566 + 0.980691i \(0.562654\pi\)
\(200\) 0 0
\(201\) −4630.00 −1.62475
\(202\) −620.000 −0.215956
\(203\) 1960.00 0.677660
\(204\) −1600.00 −0.549129
\(205\) 0 0
\(206\) −2088.00 −0.706203
\(207\) 46.0000 0.0154455
\(208\) −912.000 −0.304018
\(209\) −2380.00 −0.787694
\(210\) 0 0
\(211\) −3676.00 −1.19937 −0.599683 0.800238i \(-0.704707\pi\)
−0.599683 + 0.800238i \(0.704707\pi\)
\(212\) −1656.00 −0.536484
\(213\) 1675.00 0.538822
\(214\) −828.000 −0.264490
\(215\) 0 0
\(216\) 3480.00 1.09622
\(217\) 824.000 0.257773
\(218\) 1408.00 0.437439
\(219\) 4495.00 1.38696
\(220\) 0 0
\(221\) 4560.00 1.38796
\(222\) 2980.00 0.900921
\(223\) −1656.00 −0.497282 −0.248641 0.968596i \(-0.579984\pi\)
−0.248641 + 0.968596i \(0.579984\pi\)
\(224\) 1280.00 0.381802
\(225\) 0 0
\(226\) −1904.00 −0.560408
\(227\) −2940.00 −0.859624 −0.429812 0.902918i \(-0.641420\pi\)
−0.429812 + 0.902918i \(0.641420\pi\)
\(228\) 1400.00 0.406655
\(229\) 3612.00 1.04230 0.521152 0.853464i \(-0.325502\pi\)
0.521152 + 0.853464i \(0.325502\pi\)
\(230\) 0 0
\(231\) 1360.00 0.387366
\(232\) −5880.00 −1.66397
\(233\) 4325.00 1.21605 0.608026 0.793917i \(-0.291962\pi\)
0.608026 + 0.793917i \(0.291962\pi\)
\(234\) −228.000 −0.0636958
\(235\) 0 0
\(236\) 1632.00 0.450145
\(237\) −6610.00 −1.81167
\(238\) 1280.00 0.348614
\(239\) 2735.00 0.740219 0.370110 0.928988i \(-0.379320\pi\)
0.370110 + 0.928988i \(0.379320\pi\)
\(240\) 0 0
\(241\) −6710.00 −1.79348 −0.896741 0.442556i \(-0.854072\pi\)
−0.896741 + 0.442556i \(0.854072\pi\)
\(242\) −350.000 −0.0929705
\(243\) 560.000 0.147835
\(244\) −3288.00 −0.862675
\(245\) 0 0
\(246\) 950.000 0.246219
\(247\) −3990.00 −1.02784
\(248\) −2472.00 −0.632952
\(249\) 180.000 0.0458114
\(250\) 0 0
\(251\) −6948.00 −1.74723 −0.873613 0.486621i \(-0.838229\pi\)
−0.873613 + 0.486621i \(0.838229\pi\)
\(252\) 64.0000 0.0159985
\(253\) −782.000 −0.194324
\(254\) −522.000 −0.128950
\(255\) 0 0
\(256\) −4352.00 −1.06250
\(257\) 4929.00 1.19635 0.598176 0.801365i \(-0.295892\pi\)
0.598176 + 0.801365i \(0.295892\pi\)
\(258\) −880.000 −0.212350
\(259\) 2384.00 0.571948
\(260\) 0 0
\(261\) −490.000 −0.116208
\(262\) −2882.00 −0.679582
\(263\) −6138.00 −1.43911 −0.719554 0.694437i \(-0.755654\pi\)
−0.719554 + 0.694437i \(0.755654\pi\)
\(264\) −4080.00 −0.951162
\(265\) 0 0
\(266\) −1120.00 −0.258164
\(267\) −2300.00 −0.527182
\(268\) 3704.00 0.844246
\(269\) −2063.00 −0.467596 −0.233798 0.972285i \(-0.575115\pi\)
−0.233798 + 0.972285i \(0.575115\pi\)
\(270\) 0 0
\(271\) −1064.00 −0.238500 −0.119250 0.992864i \(-0.538049\pi\)
−0.119250 + 0.992864i \(0.538049\pi\)
\(272\) −1280.00 −0.285336
\(273\) 2280.00 0.505465
\(274\) −3112.00 −0.686142
\(275\) 0 0
\(276\) 460.000 0.100322
\(277\) −5729.00 −1.24268 −0.621340 0.783541i \(-0.713411\pi\)
−0.621340 + 0.783541i \(0.713411\pi\)
\(278\) 50.0000 0.0107871
\(279\) −206.000 −0.0442039
\(280\) 0 0
\(281\) −960.000 −0.203804 −0.101902 0.994794i \(-0.532493\pi\)
−0.101902 + 0.994794i \(0.532493\pi\)
\(282\) 3570.00 0.753867
\(283\) 114.000 0.0239456 0.0119728 0.999928i \(-0.496189\pi\)
0.0119728 + 0.999928i \(0.496189\pi\)
\(284\) −1340.00 −0.279980
\(285\) 0 0
\(286\) 3876.00 0.801373
\(287\) 760.000 0.156311
\(288\) −320.000 −0.0654729
\(289\) 1487.00 0.302666
\(290\) 0 0
\(291\) 4820.00 0.970974
\(292\) −3596.00 −0.720685
\(293\) 7048.00 1.40529 0.702643 0.711543i \(-0.252003\pi\)
0.702643 + 0.711543i \(0.252003\pi\)
\(294\) −2790.00 −0.553456
\(295\) 0 0
\(296\) −7152.00 −1.40440
\(297\) −4930.00 −0.963191
\(298\) 1644.00 0.319578
\(299\) −1311.00 −0.253569
\(300\) 0 0
\(301\) −704.000 −0.134810
\(302\) −2978.00 −0.567433
\(303\) −1550.00 −0.293878
\(304\) 1120.00 0.211304
\(305\) 0 0
\(306\) −320.000 −0.0597816
\(307\) −3872.00 −0.719826 −0.359913 0.932986i \(-0.617194\pi\)
−0.359913 + 0.932986i \(0.617194\pi\)
\(308\) −1088.00 −0.201281
\(309\) −5220.00 −0.961021
\(310\) 0 0
\(311\) −4977.00 −0.907459 −0.453730 0.891139i \(-0.649907\pi\)
−0.453730 + 0.891139i \(0.649907\pi\)
\(312\) −6840.00 −1.24115
\(313\) 2536.00 0.457965 0.228983 0.973430i \(-0.426460\pi\)
0.228983 + 0.973430i \(0.426460\pi\)
\(314\) 1264.00 0.227171
\(315\) 0 0
\(316\) 5288.00 0.941371
\(317\) −1434.00 −0.254074 −0.127037 0.991898i \(-0.540547\pi\)
−0.127037 + 0.991898i \(0.540547\pi\)
\(318\) 4140.00 0.730062
\(319\) 8330.00 1.46204
\(320\) 0 0
\(321\) −2070.00 −0.359926
\(322\) −368.000 −0.0636889
\(323\) −5600.00 −0.964682
\(324\) 2684.00 0.460219
\(325\) 0 0
\(326\) 6086.00 1.03396
\(327\) 3520.00 0.595280
\(328\) −2280.00 −0.383817
\(329\) 2856.00 0.478591
\(330\) 0 0
\(331\) 5469.00 0.908167 0.454084 0.890959i \(-0.349967\pi\)
0.454084 + 0.890959i \(0.349967\pi\)
\(332\) −144.000 −0.0238043
\(333\) −596.000 −0.0980799
\(334\) 4448.00 0.728694
\(335\) 0 0
\(336\) −640.000 −0.103913
\(337\) 7796.00 1.26016 0.630082 0.776529i \(-0.283021\pi\)
0.630082 + 0.776529i \(0.283021\pi\)
\(338\) 2104.00 0.338587
\(339\) −4760.00 −0.762619
\(340\) 0 0
\(341\) 3502.00 0.556141
\(342\) 280.000 0.0442710
\(343\) −4976.00 −0.783320
\(344\) 2112.00 0.331022
\(345\) 0 0
\(346\) −6460.00 −1.00373
\(347\) 10068.0 1.55758 0.778788 0.627288i \(-0.215835\pi\)
0.778788 + 0.627288i \(0.215835\pi\)
\(348\) −4900.00 −0.754792
\(349\) −7495.00 −1.14956 −0.574782 0.818306i \(-0.694913\pi\)
−0.574782 + 0.818306i \(0.694913\pi\)
\(350\) 0 0
\(351\) −8265.00 −1.25685
\(352\) 5440.00 0.823730
\(353\) −10617.0 −1.60081 −0.800405 0.599460i \(-0.795382\pi\)
−0.800405 + 0.599460i \(0.795382\pi\)
\(354\) −4080.00 −0.612569
\(355\) 0 0
\(356\) 1840.00 0.273932
\(357\) 3200.00 0.474403
\(358\) 738.000 0.108951
\(359\) 2522.00 0.370769 0.185384 0.982666i \(-0.440647\pi\)
0.185384 + 0.982666i \(0.440647\pi\)
\(360\) 0 0
\(361\) −1959.00 −0.285610
\(362\) −2740.00 −0.397821
\(363\) −875.000 −0.126517
\(364\) −1824.00 −0.262647
\(365\) 0 0
\(366\) 8220.00 1.17395
\(367\) −7204.00 −1.02465 −0.512324 0.858792i \(-0.671215\pi\)
−0.512324 + 0.858792i \(0.671215\pi\)
\(368\) 368.000 0.0521286
\(369\) −190.000 −0.0268049
\(370\) 0 0
\(371\) 3312.00 0.463478
\(372\) −2060.00 −0.287113
\(373\) 13310.0 1.84763 0.923815 0.382840i \(-0.125054\pi\)
0.923815 + 0.382840i \(0.125054\pi\)
\(374\) 5440.00 0.752128
\(375\) 0 0
\(376\) −8568.00 −1.17516
\(377\) 13965.0 1.90778
\(378\) −2320.00 −0.315682
\(379\) 12952.0 1.75541 0.877704 0.479203i \(-0.159074\pi\)
0.877704 + 0.479203i \(0.159074\pi\)
\(380\) 0 0
\(381\) −1305.00 −0.175478
\(382\) 8820.00 1.18134
\(383\) 2812.00 0.375161 0.187580 0.982249i \(-0.439936\pi\)
0.187580 + 0.982249i \(0.439936\pi\)
\(384\) −1920.00 −0.255155
\(385\) 0 0
\(386\) 270.000 0.0356027
\(387\) 176.000 0.0231178
\(388\) −3856.00 −0.504533
\(389\) 1264.00 0.164749 0.0823745 0.996601i \(-0.473750\pi\)
0.0823745 + 0.996601i \(0.473750\pi\)
\(390\) 0 0
\(391\) −1840.00 −0.237987
\(392\) 6696.00 0.862753
\(393\) −7205.00 −0.924794
\(394\) −2442.00 −0.312249
\(395\) 0 0
\(396\) 272.000 0.0345165
\(397\) −7119.00 −0.899981 −0.449990 0.893033i \(-0.648573\pi\)
−0.449990 + 0.893033i \(0.648573\pi\)
\(398\) −2196.00 −0.276572
\(399\) −2800.00 −0.351317
\(400\) 0 0
\(401\) 4262.00 0.530758 0.265379 0.964144i \(-0.414503\pi\)
0.265379 + 0.964144i \(0.414503\pi\)
\(402\) −9260.00 −1.14887
\(403\) 5871.00 0.725696
\(404\) 1240.00 0.152704
\(405\) 0 0
\(406\) 3920.00 0.479178
\(407\) 10132.0 1.23397
\(408\) −9600.00 −1.16488
\(409\) 229.000 0.0276854 0.0138427 0.999904i \(-0.495594\pi\)
0.0138427 + 0.999904i \(0.495594\pi\)
\(410\) 0 0
\(411\) −7780.00 −0.933720
\(412\) 4176.00 0.499361
\(413\) −3264.00 −0.388888
\(414\) 92.0000 0.0109216
\(415\) 0 0
\(416\) 9120.00 1.07487
\(417\) 125.000 0.0146793
\(418\) −4760.00 −0.556984
\(419\) 15776.0 1.83940 0.919699 0.392623i \(-0.128432\pi\)
0.919699 + 0.392623i \(0.128432\pi\)
\(420\) 0 0
\(421\) −8728.00 −1.01040 −0.505198 0.863003i \(-0.668581\pi\)
−0.505198 + 0.863003i \(0.668581\pi\)
\(422\) −7352.00 −0.848080
\(423\) −714.000 −0.0820706
\(424\) −9936.00 −1.13805
\(425\) 0 0
\(426\) 3350.00 0.381005
\(427\) 6576.00 0.745281
\(428\) 1656.00 0.187023
\(429\) 9690.00 1.09053
\(430\) 0 0
\(431\) −2928.00 −0.327232 −0.163616 0.986524i \(-0.552316\pi\)
−0.163616 + 0.986524i \(0.552316\pi\)
\(432\) 2320.00 0.258382
\(433\) 5314.00 0.589780 0.294890 0.955531i \(-0.404717\pi\)
0.294890 + 0.955531i \(0.404717\pi\)
\(434\) 1648.00 0.182273
\(435\) 0 0
\(436\) −2816.00 −0.309316
\(437\) 1610.00 0.176240
\(438\) 8990.00 0.980728
\(439\) 2585.00 0.281037 0.140519 0.990078i \(-0.455123\pi\)
0.140519 + 0.990078i \(0.455123\pi\)
\(440\) 0 0
\(441\) 558.000 0.0602527
\(442\) 9120.00 0.981435
\(443\) 2997.00 0.321426 0.160713 0.987001i \(-0.448621\pi\)
0.160713 + 0.987001i \(0.448621\pi\)
\(444\) −5960.00 −0.637047
\(445\) 0 0
\(446\) −3312.00 −0.351632
\(447\) 4110.00 0.434891
\(448\) 3584.00 0.377964
\(449\) −16562.0 −1.74078 −0.870389 0.492365i \(-0.836132\pi\)
−0.870389 + 0.492365i \(0.836132\pi\)
\(450\) 0 0
\(451\) 3230.00 0.337239
\(452\) 3808.00 0.396268
\(453\) −7445.00 −0.772178
\(454\) −5880.00 −0.607846
\(455\) 0 0
\(456\) 8400.00 0.862645
\(457\) −3924.00 −0.401656 −0.200828 0.979626i \(-0.564363\pi\)
−0.200828 + 0.979626i \(0.564363\pi\)
\(458\) 7224.00 0.737020
\(459\) −11600.0 −1.17961
\(460\) 0 0
\(461\) −4543.00 −0.458977 −0.229489 0.973311i \(-0.573705\pi\)
−0.229489 + 0.973311i \(0.573705\pi\)
\(462\) 2720.00 0.273909
\(463\) −9616.00 −0.965213 −0.482606 0.875837i \(-0.660310\pi\)
−0.482606 + 0.875837i \(0.660310\pi\)
\(464\) −3920.00 −0.392201
\(465\) 0 0
\(466\) 8650.00 0.859879
\(467\) −7826.00 −0.775469 −0.387735 0.921771i \(-0.626742\pi\)
−0.387735 + 0.921771i \(0.626742\pi\)
\(468\) 456.000 0.0450398
\(469\) −7408.00 −0.729360
\(470\) 0 0
\(471\) 3160.00 0.309140
\(472\) 9792.00 0.954901
\(473\) −2992.00 −0.290851
\(474\) −13220.0 −1.28104
\(475\) 0 0
\(476\) −2560.00 −0.246507
\(477\) −828.000 −0.0794791
\(478\) 5470.00 0.523414
\(479\) 11404.0 1.08781 0.543906 0.839146i \(-0.316945\pi\)
0.543906 + 0.839146i \(0.316945\pi\)
\(480\) 0 0
\(481\) 16986.0 1.61018
\(482\) −13420.0 −1.26818
\(483\) −920.000 −0.0866697
\(484\) 700.000 0.0657400
\(485\) 0 0
\(486\) 1120.00 0.104535
\(487\) 9267.00 0.862275 0.431137 0.902286i \(-0.358112\pi\)
0.431137 + 0.902286i \(0.358112\pi\)
\(488\) −19728.0 −1.83001
\(489\) 15215.0 1.40705
\(490\) 0 0
\(491\) −18191.0 −1.67199 −0.835996 0.548735i \(-0.815110\pi\)
−0.835996 + 0.548735i \(0.815110\pi\)
\(492\) −1900.00 −0.174103
\(493\) 19600.0 1.79055
\(494\) −7980.00 −0.726796
\(495\) 0 0
\(496\) −1648.00 −0.149188
\(497\) 2680.00 0.241880
\(498\) 360.000 0.0323935
\(499\) 19315.0 1.73278 0.866391 0.499366i \(-0.166434\pi\)
0.866391 + 0.499366i \(0.166434\pi\)
\(500\) 0 0
\(501\) 11120.0 0.991627
\(502\) −13896.0 −1.23548
\(503\) −8422.00 −0.746557 −0.373279 0.927719i \(-0.621766\pi\)
−0.373279 + 0.927719i \(0.621766\pi\)
\(504\) 384.000 0.0339379
\(505\) 0 0
\(506\) −1564.00 −0.137408
\(507\) 5260.00 0.460759
\(508\) 1044.00 0.0911811
\(509\) −863.000 −0.0751509 −0.0375754 0.999294i \(-0.511963\pi\)
−0.0375754 + 0.999294i \(0.511963\pi\)
\(510\) 0 0
\(511\) 7192.00 0.622613
\(512\) −5632.00 −0.486136
\(513\) 10150.0 0.873554
\(514\) 9858.00 0.845949
\(515\) 0 0
\(516\) 1760.00 0.150154
\(517\) 12138.0 1.03255
\(518\) 4768.00 0.404428
\(519\) −16150.0 −1.36591
\(520\) 0 0
\(521\) 19260.0 1.61957 0.809785 0.586727i \(-0.199584\pi\)
0.809785 + 0.586727i \(0.199584\pi\)
\(522\) −980.000 −0.0821713
\(523\) 11740.0 0.981557 0.490779 0.871284i \(-0.336712\pi\)
0.490779 + 0.871284i \(0.336712\pi\)
\(524\) 5764.00 0.480537
\(525\) 0 0
\(526\) −12276.0 −1.01760
\(527\) 8240.00 0.681101
\(528\) −2720.00 −0.224191
\(529\) 529.000 0.0434783
\(530\) 0 0
\(531\) 816.000 0.0666881
\(532\) 2240.00 0.182549
\(533\) 5415.00 0.440056
\(534\) −4600.00 −0.372774
\(535\) 0 0
\(536\) 22224.0 1.79092
\(537\) 1845.00 0.148264
\(538\) −4126.00 −0.330640
\(539\) −9486.00 −0.758054
\(540\) 0 0
\(541\) 17741.0 1.40988 0.704940 0.709267i \(-0.250974\pi\)
0.704940 + 0.709267i \(0.250974\pi\)
\(542\) −2128.00 −0.168645
\(543\) −6850.00 −0.541366
\(544\) 12800.0 1.00882
\(545\) 0 0
\(546\) 4560.00 0.357418
\(547\) 6571.00 0.513630 0.256815 0.966461i \(-0.417327\pi\)
0.256815 + 0.966461i \(0.417327\pi\)
\(548\) 6224.00 0.485175
\(549\) −1644.00 −0.127804
\(550\) 0 0
\(551\) −17150.0 −1.32598
\(552\) 2760.00 0.212814
\(553\) −10576.0 −0.813268
\(554\) −11458.0 −0.878707
\(555\) 0 0
\(556\) −100.000 −0.00762760
\(557\) 1372.00 0.104369 0.0521845 0.998637i \(-0.483382\pi\)
0.0521845 + 0.998637i \(0.483382\pi\)
\(558\) −412.000 −0.0312569
\(559\) −5016.00 −0.379524
\(560\) 0 0
\(561\) 13600.0 1.02352
\(562\) −1920.00 −0.144111
\(563\) −4332.00 −0.324284 −0.162142 0.986767i \(-0.551840\pi\)
−0.162142 + 0.986767i \(0.551840\pi\)
\(564\) −7140.00 −0.533064
\(565\) 0 0
\(566\) 228.000 0.0169321
\(567\) −5368.00 −0.397592
\(568\) −8040.00 −0.593928
\(569\) −3546.00 −0.261258 −0.130629 0.991431i \(-0.541700\pi\)
−0.130629 + 0.991431i \(0.541700\pi\)
\(570\) 0 0
\(571\) −6160.00 −0.451468 −0.225734 0.974189i \(-0.572478\pi\)
−0.225734 + 0.974189i \(0.572478\pi\)
\(572\) −7752.00 −0.566656
\(573\) 22050.0 1.60760
\(574\) 1520.00 0.110529
\(575\) 0 0
\(576\) −896.000 −0.0648148
\(577\) −2953.00 −0.213059 −0.106529 0.994310i \(-0.533974\pi\)
−0.106529 + 0.994310i \(0.533974\pi\)
\(578\) 2974.00 0.214017
\(579\) 675.000 0.0484491
\(580\) 0 0
\(581\) 288.000 0.0205650
\(582\) 9640.00 0.686582
\(583\) 14076.0 0.999946
\(584\) −21576.0 −1.52880
\(585\) 0 0
\(586\) 14096.0 0.993687
\(587\) 2949.00 0.207356 0.103678 0.994611i \(-0.466939\pi\)
0.103678 + 0.994611i \(0.466939\pi\)
\(588\) 5580.00 0.391353
\(589\) −7210.00 −0.504385
\(590\) 0 0
\(591\) −6105.00 −0.424917
\(592\) −4768.00 −0.331020
\(593\) −16390.0 −1.13500 −0.567501 0.823372i \(-0.692090\pi\)
−0.567501 + 0.823372i \(0.692090\pi\)
\(594\) −9860.00 −0.681079
\(595\) 0 0
\(596\) −3288.00 −0.225976
\(597\) −5490.00 −0.376366
\(598\) −2622.00 −0.179300
\(599\) −12920.0 −0.881297 −0.440648 0.897680i \(-0.645251\pi\)
−0.440648 + 0.897680i \(0.645251\pi\)
\(600\) 0 0
\(601\) −13835.0 −0.939004 −0.469502 0.882931i \(-0.655567\pi\)
−0.469502 + 0.882931i \(0.655567\pi\)
\(602\) −1408.00 −0.0953252
\(603\) 1852.00 0.125073
\(604\) 5956.00 0.401235
\(605\) 0 0
\(606\) −3100.00 −0.207803
\(607\) −6004.00 −0.401474 −0.200737 0.979645i \(-0.564334\pi\)
−0.200737 + 0.979645i \(0.564334\pi\)
\(608\) −11200.0 −0.747072
\(609\) 9800.00 0.652079
\(610\) 0 0
\(611\) 20349.0 1.34735
\(612\) 640.000 0.0422720
\(613\) 16416.0 1.08162 0.540812 0.841143i \(-0.318117\pi\)
0.540812 + 0.841143i \(0.318117\pi\)
\(614\) −7744.00 −0.508994
\(615\) 0 0
\(616\) −6528.00 −0.426982
\(617\) −3786.00 −0.247032 −0.123516 0.992343i \(-0.539417\pi\)
−0.123516 + 0.992343i \(0.539417\pi\)
\(618\) −10440.0 −0.679544
\(619\) 15824.0 1.02750 0.513748 0.857941i \(-0.328257\pi\)
0.513748 + 0.857941i \(0.328257\pi\)
\(620\) 0 0
\(621\) 3335.00 0.215506
\(622\) −9954.00 −0.641670
\(623\) −3680.00 −0.236655
\(624\) −4560.00 −0.292542
\(625\) 0 0
\(626\) 5072.00 0.323830
\(627\) −11900.0 −0.757959
\(628\) −2528.00 −0.160634
\(629\) 23840.0 1.51123
\(630\) 0 0
\(631\) 17852.0 1.12627 0.563135 0.826365i \(-0.309595\pi\)
0.563135 + 0.826365i \(0.309595\pi\)
\(632\) 31728.0 1.99695
\(633\) −18380.0 −1.15409
\(634\) −2868.00 −0.179657
\(635\) 0 0
\(636\) −8280.00 −0.516232
\(637\) −15903.0 −0.989168
\(638\) 16660.0 1.03382
\(639\) −670.000 −0.0414785
\(640\) 0 0
\(641\) 10324.0 0.636152 0.318076 0.948065i \(-0.396963\pi\)
0.318076 + 0.948065i \(0.396963\pi\)
\(642\) −4140.00 −0.254506
\(643\) 14702.0 0.901696 0.450848 0.892601i \(-0.351122\pi\)
0.450848 + 0.892601i \(0.351122\pi\)
\(644\) 736.000 0.0450349
\(645\) 0 0
\(646\) −11200.0 −0.682133
\(647\) −11939.0 −0.725457 −0.362728 0.931895i \(-0.618155\pi\)
−0.362728 + 0.931895i \(0.618155\pi\)
\(648\) 16104.0 0.976273
\(649\) −13872.0 −0.839019
\(650\) 0 0
\(651\) 4120.00 0.248042
\(652\) −12172.0 −0.731123
\(653\) −6159.00 −0.369097 −0.184548 0.982823i \(-0.559082\pi\)
−0.184548 + 0.982823i \(0.559082\pi\)
\(654\) 7040.00 0.420926
\(655\) 0 0
\(656\) −1520.00 −0.0904665
\(657\) −1798.00 −0.106768
\(658\) 5712.00 0.338415
\(659\) −21692.0 −1.28225 −0.641123 0.767438i \(-0.721531\pi\)
−0.641123 + 0.767438i \(0.721531\pi\)
\(660\) 0 0
\(661\) 16502.0 0.971034 0.485517 0.874227i \(-0.338631\pi\)
0.485517 + 0.874227i \(0.338631\pi\)
\(662\) 10938.0 0.642171
\(663\) 22800.0 1.33556
\(664\) −864.000 −0.0504965
\(665\) 0 0
\(666\) −1192.00 −0.0693529
\(667\) −5635.00 −0.327119
\(668\) −8896.00 −0.515264
\(669\) −8280.00 −0.478510
\(670\) 0 0
\(671\) 27948.0 1.60793
\(672\) 6400.00 0.367389
\(673\) 27733.0 1.58845 0.794226 0.607622i \(-0.207876\pi\)
0.794226 + 0.607622i \(0.207876\pi\)
\(674\) 15592.0 0.891070
\(675\) 0 0
\(676\) −4208.00 −0.239417
\(677\) 8814.00 0.500369 0.250184 0.968198i \(-0.419509\pi\)
0.250184 + 0.968198i \(0.419509\pi\)
\(678\) −9520.00 −0.539253
\(679\) 7712.00 0.435875
\(680\) 0 0
\(681\) −14700.0 −0.827174
\(682\) 7004.00 0.393251
\(683\) 22999.0 1.28848 0.644240 0.764823i \(-0.277174\pi\)
0.644240 + 0.764823i \(0.277174\pi\)
\(684\) −560.000 −0.0313043
\(685\) 0 0
\(686\) −9952.00 −0.553891
\(687\) 18060.0 1.00296
\(688\) 1408.00 0.0780225
\(689\) 23598.0 1.30481
\(690\) 0 0
\(691\) −12140.0 −0.668346 −0.334173 0.942512i \(-0.608457\pi\)
−0.334173 + 0.942512i \(0.608457\pi\)
\(692\) 12920.0 0.709747
\(693\) −544.000 −0.0298194
\(694\) 20136.0 1.10137
\(695\) 0 0
\(696\) −29400.0 −1.60116
\(697\) 7600.00 0.413014
\(698\) −14990.0 −0.812865
\(699\) 21625.0 1.17015
\(700\) 0 0
\(701\) −20024.0 −1.07888 −0.539441 0.842024i \(-0.681364\pi\)
−0.539441 + 0.842024i \(0.681364\pi\)
\(702\) −16530.0 −0.888725
\(703\) −20860.0 −1.11913
\(704\) 15232.0 0.815451
\(705\) 0 0
\(706\) −21234.0 −1.13194
\(707\) −2480.00 −0.131924
\(708\) 8160.00 0.433152
\(709\) −4956.00 −0.262520 −0.131260 0.991348i \(-0.541902\pi\)
−0.131260 + 0.991348i \(0.541902\pi\)
\(710\) 0 0
\(711\) 2644.00 0.139462
\(712\) 11040.0 0.581098
\(713\) −2369.00 −0.124432
\(714\) 6400.00 0.335454
\(715\) 0 0
\(716\) −1476.00 −0.0770401
\(717\) 13675.0 0.712276
\(718\) 5044.00 0.262173
\(719\) 2760.00 0.143158 0.0715790 0.997435i \(-0.477196\pi\)
0.0715790 + 0.997435i \(0.477196\pi\)
\(720\) 0 0
\(721\) −8352.00 −0.431407
\(722\) −3918.00 −0.201957
\(723\) −33550.0 −1.72578
\(724\) 5480.00 0.281302
\(725\) 0 0
\(726\) −1750.00 −0.0894609
\(727\) −7746.00 −0.395163 −0.197581 0.980287i \(-0.563309\pi\)
−0.197581 + 0.980287i \(0.563309\pi\)
\(728\) −10944.0 −0.557159
\(729\) 20917.0 1.06269
\(730\) 0 0
\(731\) −7040.00 −0.356202
\(732\) −16440.0 −0.830109
\(733\) 11976.0 0.603470 0.301735 0.953392i \(-0.402434\pi\)
0.301735 + 0.953392i \(0.402434\pi\)
\(734\) −14408.0 −0.724535
\(735\) 0 0
\(736\) −3680.00 −0.184302
\(737\) −31484.0 −1.57358
\(738\) −380.000 −0.0189539
\(739\) 15057.0 0.749500 0.374750 0.927126i \(-0.377728\pi\)
0.374750 + 0.927126i \(0.377728\pi\)
\(740\) 0 0
\(741\) −19950.0 −0.989044
\(742\) 6624.00 0.327729
\(743\) −18532.0 −0.915038 −0.457519 0.889200i \(-0.651262\pi\)
−0.457519 + 0.889200i \(0.651262\pi\)
\(744\) −12360.0 −0.609059
\(745\) 0 0
\(746\) 26620.0 1.30647
\(747\) −72.0000 −0.00352656
\(748\) −10880.0 −0.531834
\(749\) −3312.00 −0.161573
\(750\) 0 0
\(751\) −192.000 −0.00932913 −0.00466457 0.999989i \(-0.501485\pi\)
−0.00466457 + 0.999989i \(0.501485\pi\)
\(752\) −5712.00 −0.276988
\(753\) −34740.0 −1.68127
\(754\) 27930.0 1.34901
\(755\) 0 0
\(756\) 4640.00 0.223221
\(757\) 9830.00 0.471965 0.235982 0.971757i \(-0.424169\pi\)
0.235982 + 0.971757i \(0.424169\pi\)
\(758\) 25904.0 1.24126
\(759\) −3910.00 −0.186988
\(760\) 0 0
\(761\) −30219.0 −1.43947 −0.719736 0.694248i \(-0.755737\pi\)
−0.719736 + 0.694248i \(0.755737\pi\)
\(762\) −2610.00 −0.124082
\(763\) 5632.00 0.267224
\(764\) −17640.0 −0.835331
\(765\) 0 0
\(766\) 5624.00 0.265279
\(767\) −23256.0 −1.09482
\(768\) −21760.0 −1.02239
\(769\) 1122.00 0.0526142 0.0263071 0.999654i \(-0.491625\pi\)
0.0263071 + 0.999654i \(0.491625\pi\)
\(770\) 0 0
\(771\) 24645.0 1.15119
\(772\) −540.000 −0.0251749
\(773\) −19300.0 −0.898024 −0.449012 0.893526i \(-0.648224\pi\)
−0.449012 + 0.893526i \(0.648224\pi\)
\(774\) 352.000 0.0163467
\(775\) 0 0
\(776\) −23136.0 −1.07028
\(777\) 11920.0 0.550357
\(778\) 2528.00 0.116495
\(779\) −6650.00 −0.305855
\(780\) 0 0
\(781\) 11390.0 0.521852
\(782\) −3680.00 −0.168282
\(783\) −35525.0 −1.62140
\(784\) 4464.00 0.203353
\(785\) 0 0
\(786\) −14410.0 −0.653928
\(787\) 19396.0 0.878517 0.439258 0.898361i \(-0.355241\pi\)
0.439258 + 0.898361i \(0.355241\pi\)
\(788\) 4884.00 0.220794
\(789\) −30690.0 −1.38478
\(790\) 0 0
\(791\) −7616.00 −0.342344
\(792\) 1632.00 0.0732204
\(793\) 46854.0 2.09815
\(794\) −14238.0 −0.636383
\(795\) 0 0
\(796\) 4392.00 0.195566
\(797\) 39034.0 1.73482 0.867412 0.497590i \(-0.165782\pi\)
0.867412 + 0.497590i \(0.165782\pi\)
\(798\) −5600.00 −0.248418
\(799\) 28560.0 1.26456
\(800\) 0 0
\(801\) 920.000 0.0405825
\(802\) 8524.00 0.375303
\(803\) 30566.0 1.34328
\(804\) 18520.0 0.812376
\(805\) 0 0
\(806\) 11742.0 0.513144
\(807\) −10315.0 −0.449944
\(808\) 7440.00 0.323934
\(809\) −10310.0 −0.448060 −0.224030 0.974582i \(-0.571921\pi\)
−0.224030 + 0.974582i \(0.571921\pi\)
\(810\) 0 0
\(811\) −40693.0 −1.76193 −0.880965 0.473182i \(-0.843105\pi\)
−0.880965 + 0.473182i \(0.843105\pi\)
\(812\) −7840.00 −0.338830
\(813\) −5320.00 −0.229496
\(814\) 20264.0 0.872546
\(815\) 0 0
\(816\) −6400.00 −0.274565
\(817\) 6160.00 0.263784
\(818\) 458.000 0.0195765
\(819\) −912.000 −0.0389107
\(820\) 0 0
\(821\) −13934.0 −0.592326 −0.296163 0.955137i \(-0.595707\pi\)
−0.296163 + 0.955137i \(0.595707\pi\)
\(822\) −15560.0 −0.660240
\(823\) −6175.00 −0.261539 −0.130770 0.991413i \(-0.541745\pi\)
−0.130770 + 0.991413i \(0.541745\pi\)
\(824\) 25056.0 1.05930
\(825\) 0 0
\(826\) −6528.00 −0.274986
\(827\) −28664.0 −1.20525 −0.602627 0.798023i \(-0.705879\pi\)
−0.602627 + 0.798023i \(0.705879\pi\)
\(828\) −184.000 −0.00772276
\(829\) −39590.0 −1.65865 −0.829323 0.558770i \(-0.811274\pi\)
−0.829323 + 0.558770i \(0.811274\pi\)
\(830\) 0 0
\(831\) −28645.0 −1.19577
\(832\) 25536.0 1.06406
\(833\) −22320.0 −0.928382
\(834\) 250.000 0.0103798
\(835\) 0 0
\(836\) 9520.00 0.393847
\(837\) −14935.0 −0.616761
\(838\) 31552.0 1.30065
\(839\) −14316.0 −0.589086 −0.294543 0.955638i \(-0.595167\pi\)
−0.294543 + 0.955638i \(0.595167\pi\)
\(840\) 0 0
\(841\) 35636.0 1.46115
\(842\) −17456.0 −0.714458
\(843\) −4800.00 −0.196110
\(844\) 14704.0 0.599683
\(845\) 0 0
\(846\) −1428.00 −0.0580327
\(847\) −1400.00 −0.0567941
\(848\) −6624.00 −0.268242
\(849\) 570.000 0.0230416
\(850\) 0 0
\(851\) −6854.00 −0.276089
\(852\) −6700.00 −0.269411
\(853\) −28366.0 −1.13861 −0.569304 0.822127i \(-0.692787\pi\)
−0.569304 + 0.822127i \(0.692787\pi\)
\(854\) 13152.0 0.526993
\(855\) 0 0
\(856\) 9936.00 0.396735
\(857\) −19283.0 −0.768605 −0.384303 0.923207i \(-0.625558\pi\)
−0.384303 + 0.923207i \(0.625558\pi\)
\(858\) 19380.0 0.771122
\(859\) −26101.0 −1.03673 −0.518367 0.855158i \(-0.673460\pi\)
−0.518367 + 0.855158i \(0.673460\pi\)
\(860\) 0 0
\(861\) 3800.00 0.150411
\(862\) −5856.00 −0.231388
\(863\) −973.000 −0.0383793 −0.0191896 0.999816i \(-0.506109\pi\)
−0.0191896 + 0.999816i \(0.506109\pi\)
\(864\) −23200.0 −0.913519
\(865\) 0 0
\(866\) 10628.0 0.417037
\(867\) 7435.00 0.291241
\(868\) −3296.00 −0.128887
\(869\) −44948.0 −1.75461
\(870\) 0 0
\(871\) −52782.0 −2.05333
\(872\) −16896.0 −0.656159
\(873\) −1928.00 −0.0747456
\(874\) 3220.00 0.124620
\(875\) 0 0
\(876\) −17980.0 −0.693479
\(877\) −5694.00 −0.219239 −0.109620 0.993974i \(-0.534963\pi\)
−0.109620 + 0.993974i \(0.534963\pi\)
\(878\) 5170.00 0.198723
\(879\) 35240.0 1.35224
\(880\) 0 0
\(881\) 45960.0 1.75758 0.878792 0.477205i \(-0.158350\pi\)
0.878792 + 0.477205i \(0.158350\pi\)
\(882\) 1116.00 0.0426051
\(883\) −17188.0 −0.655065 −0.327532 0.944840i \(-0.606217\pi\)
−0.327532 + 0.944840i \(0.606217\pi\)
\(884\) −18240.0 −0.693979
\(885\) 0 0
\(886\) 5994.00 0.227283
\(887\) −8451.00 −0.319906 −0.159953 0.987125i \(-0.551134\pi\)
−0.159953 + 0.987125i \(0.551134\pi\)
\(888\) −35760.0 −1.35138
\(889\) −2088.00 −0.0787731
\(890\) 0 0
\(891\) −22814.0 −0.857798
\(892\) 6624.00 0.248641
\(893\) −24990.0 −0.936460
\(894\) 8220.00 0.307514
\(895\) 0 0
\(896\) −3072.00 −0.114541
\(897\) −6555.00 −0.243997
\(898\) −33124.0 −1.23092
\(899\) 25235.0 0.936190
\(900\) 0 0
\(901\) 33120.0 1.22463
\(902\) 6460.00 0.238464
\(903\) −3520.00 −0.129721
\(904\) 22848.0 0.840612
\(905\) 0 0
\(906\) −14890.0 −0.546012
\(907\) −32774.0 −1.19983 −0.599913 0.800065i \(-0.704798\pi\)
−0.599913 + 0.800065i \(0.704798\pi\)
\(908\) 11760.0 0.429812
\(909\) 620.000 0.0226228
\(910\) 0 0
\(911\) −23690.0 −0.861564 −0.430782 0.902456i \(-0.641762\pi\)
−0.430782 + 0.902456i \(0.641762\pi\)
\(912\) 5600.00 0.203327
\(913\) 1224.00 0.0443686
\(914\) −7848.00 −0.284014
\(915\) 0 0
\(916\) −14448.0 −0.521152
\(917\) −11528.0 −0.415145
\(918\) −23200.0 −0.834111
\(919\) −30044.0 −1.07841 −0.539206 0.842174i \(-0.681275\pi\)
−0.539206 + 0.842174i \(0.681275\pi\)
\(920\) 0 0
\(921\) −19360.0 −0.692653
\(922\) −9086.00 −0.324546
\(923\) 19095.0 0.680953
\(924\) −5440.00 −0.193683
\(925\) 0 0
\(926\) −19232.0 −0.682508
\(927\) 2088.00 0.0739794
\(928\) 39200.0 1.38664
\(929\) −39705.0 −1.40224 −0.701119 0.713044i \(-0.747316\pi\)
−0.701119 + 0.713044i \(0.747316\pi\)
\(930\) 0 0
\(931\) 19530.0 0.687508
\(932\) −17300.0 −0.608026
\(933\) −24885.0 −0.873203
\(934\) −15652.0 −0.548339
\(935\) 0 0
\(936\) 2736.00 0.0955438
\(937\) −17422.0 −0.607419 −0.303710 0.952765i \(-0.598225\pi\)
−0.303710 + 0.952765i \(0.598225\pi\)
\(938\) −14816.0 −0.515735
\(939\) 12680.0 0.440677
\(940\) 0 0
\(941\) −25292.0 −0.876191 −0.438095 0.898928i \(-0.644347\pi\)
−0.438095 + 0.898928i \(0.644347\pi\)
\(942\) 6320.00 0.218595
\(943\) −2185.00 −0.0754543
\(944\) 6528.00 0.225072
\(945\) 0 0
\(946\) −5984.00 −0.205662
\(947\) −33211.0 −1.13961 −0.569806 0.821779i \(-0.692982\pi\)
−0.569806 + 0.821779i \(0.692982\pi\)
\(948\) 26440.0 0.905835
\(949\) 51243.0 1.75281
\(950\) 0 0
\(951\) −7170.00 −0.244483
\(952\) −15360.0 −0.522921
\(953\) 14154.0 0.481105 0.240552 0.970636i \(-0.422671\pi\)
0.240552 + 0.970636i \(0.422671\pi\)
\(954\) −1656.00 −0.0562002
\(955\) 0 0
\(956\) −10940.0 −0.370110
\(957\) 41650.0 1.40685
\(958\) 22808.0 0.769199
\(959\) −12448.0 −0.419152
\(960\) 0 0
\(961\) −19182.0 −0.643886
\(962\) 33972.0 1.13857
\(963\) 828.000 0.0277071
\(964\) 26840.0 0.896741
\(965\) 0 0
\(966\) −1840.00 −0.0612847
\(967\) 46343.0 1.54115 0.770574 0.637350i \(-0.219970\pi\)
0.770574 + 0.637350i \(0.219970\pi\)
\(968\) 4200.00 0.139456
\(969\) −28000.0 −0.928266
\(970\) 0 0
\(971\) 11710.0 0.387015 0.193508 0.981099i \(-0.438014\pi\)
0.193508 + 0.981099i \(0.438014\pi\)
\(972\) −2240.00 −0.0739177
\(973\) 200.000 0.00658963
\(974\) 18534.0 0.609720
\(975\) 0 0
\(976\) −13152.0 −0.431337
\(977\) −47854.0 −1.56703 −0.783513 0.621375i \(-0.786574\pi\)
−0.783513 + 0.621375i \(0.786574\pi\)
\(978\) 30430.0 0.994933
\(979\) −15640.0 −0.510579
\(980\) 0 0
\(981\) −1408.00 −0.0458246
\(982\) −36382.0 −1.18228
\(983\) 22078.0 0.716357 0.358178 0.933653i \(-0.383398\pi\)
0.358178 + 0.933653i \(0.383398\pi\)
\(984\) −11400.0 −0.369328
\(985\) 0 0
\(986\) 39200.0 1.26611
\(987\) 14280.0 0.460524
\(988\) 15960.0 0.513922
\(989\) 2024.00 0.0650753
\(990\) 0 0
\(991\) −4288.00 −0.137450 −0.0687249 0.997636i \(-0.521893\pi\)
−0.0687249 + 0.997636i \(0.521893\pi\)
\(992\) 16480.0 0.527460
\(993\) 27345.0 0.873885
\(994\) 5360.00 0.171035
\(995\) 0 0
\(996\) −720.000 −0.0229057
\(997\) −28966.0 −0.920123 −0.460061 0.887887i \(-0.652173\pi\)
−0.460061 + 0.887887i \(0.652173\pi\)
\(998\) 38630.0 1.22526
\(999\) −43210.0 −1.36847
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 575.4.a.g.1.1 1
5.2 odd 4 575.4.b.b.24.2 2
5.3 odd 4 575.4.b.b.24.1 2
5.4 even 2 23.4.a.a.1.1 1
15.14 odd 2 207.4.a.a.1.1 1
20.19 odd 2 368.4.a.d.1.1 1
35.34 odd 2 1127.4.a.a.1.1 1
40.19 odd 2 1472.4.a.c.1.1 1
40.29 even 2 1472.4.a.h.1.1 1
115.114 odd 2 529.4.a.a.1.1 1
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
23.4.a.a.1.1 1 5.4 even 2
207.4.a.a.1.1 1 15.14 odd 2
368.4.a.d.1.1 1 20.19 odd 2
529.4.a.a.1.1 1 115.114 odd 2
575.4.a.g.1.1 1 1.1 even 1 trivial
575.4.b.b.24.1 2 5.3 odd 4
575.4.b.b.24.2 2 5.2 odd 4
1127.4.a.a.1.1 1 35.34 odd 2
1472.4.a.c.1.1 1 40.19 odd 2
1472.4.a.h.1.1 1 40.29 even 2