Properties

Label 575.4
Level 575
Weight 4
Dimension 35929
Nonzero newspaces 12
Sturm bound 105600
Trace bound 2

Downloads

Learn more

Defining parameters

Level: \( N \) = \( 575 = 5^{2} \cdot 23 \)
Weight: \( k \) = \( 4 \)
Nonzero newspaces: \( 12 \)
Sturm bound: \(105600\)
Trace bound: \(2\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{4}(\Gamma_1(575))\).

Total New Old
Modular forms 40216 36789 3427
Cusp forms 38984 35929 3055
Eisenstein series 1232 860 372

Trace form

\( 35929 q - 139 q^{2} - 115 q^{3} - 91 q^{4} - 166 q^{5} - 227 q^{6} - 99 q^{7} - 123 q^{8} - 215 q^{9} - 116 q^{10} - 67 q^{11} - 59 q^{12} - 275 q^{13} - 219 q^{14} - 176 q^{15} - 379 q^{16} + 533 q^{17}+ \cdots + 26323 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{4}^{\mathrm{new}}(\Gamma_1(575))\)

We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.

Label \(\chi\) Newforms Dimension \(\chi\) degree
575.4.a \(\chi_{575}(1, \cdot)\) 575.4.a.a 1 1
575.4.a.b 1
575.4.a.c 1
575.4.a.d 1
575.4.a.e 1
575.4.a.f 1
575.4.a.g 1
575.4.a.h 2
575.4.a.i 4
575.4.a.j 5
575.4.a.k 5
575.4.a.l 7
575.4.a.m 7
575.4.a.n 8
575.4.a.o 13
575.4.a.p 13
575.4.a.q 17
575.4.a.r 17
575.4.b \(\chi_{575}(24, \cdot)\) 575.4.b.a 2 1
575.4.b.b 2
575.4.b.c 2
575.4.b.d 2
575.4.b.e 2
575.4.b.f 4
575.4.b.g 8
575.4.b.h 10
575.4.b.i 10
575.4.b.j 14
575.4.b.k 16
575.4.b.l 26
575.4.e \(\chi_{575}(68, \cdot)\) n/a 212 2
575.4.g \(\chi_{575}(116, \cdot)\) n/a 656 4
575.4.i \(\chi_{575}(139, \cdot)\) n/a 664 4
575.4.k \(\chi_{575}(26, \cdot)\) n/a 1110 10
575.4.m \(\chi_{575}(22, \cdot)\) n/a 1424 8
575.4.p \(\chi_{575}(49, \cdot)\) n/a 1060 10
575.4.r \(\chi_{575}(7, \cdot)\) n/a 2120 20
575.4.s \(\chi_{575}(6, \cdot)\) n/a 7120 40
575.4.u \(\chi_{575}(4, \cdot)\) n/a 7120 40
575.4.w \(\chi_{575}(17, \cdot)\) n/a 14240 80

"n/a" means that newforms for that character have not been added to the database yet

Decomposition of \(S_{4}^{\mathrm{old}}(\Gamma_1(575))\) into lower level spaces

\( S_{4}^{\mathrm{old}}(\Gamma_1(575)) \cong \) \(S_{4}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 6}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(5))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(23))\)\(^{\oplus 3}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(25))\)\(^{\oplus 2}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(115))\)\(^{\oplus 2}\)