Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [575,2,Mod(17,575)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(575, base_ring=CyclotomicField(220))
chi = DirichletCharacter(H, H._module([143, 70]))
N = Newforms(chi, 2, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("575.17");
S:= CuspForms(chi, 2);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 575 = 5^{2} \cdot 23 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 575.w (of order \(220\), degree \(80\), minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | \(4.59139811622\) |
Analytic rank: | \(0\) |
Dimension: | \(4640\) |
Relative dimension: | \(58\) over \(\Q(\zeta_{220})\) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{220}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
17.1 | −1.72233 | − | 2.16880i | −0.557434 | + | 1.17588i | −1.28426 | + | 5.52274i | −1.03105 | − | 1.98417i | 3.51033 | − | 0.816292i | −2.16856 | − | 2.89686i | 9.18455 | − | 4.35400i | 0.827079 | + | 1.01147i | −2.52745 | + | 5.65354i |
17.2 | −1.69106 | − | 2.12942i | 1.18536 | − | 2.50045i | −1.22175 | + | 5.25394i | 2.21064 | − | 0.336251i | −7.32902 | + | 1.70429i | 0.803482 | + | 1.07333i | 8.33972 | − | 3.95350i | −2.94813 | − | 3.60541i | −4.45435 | − | 4.13877i |
17.3 | −1.62093 | − | 2.04112i | −0.918010 | + | 1.93649i | −1.08573 | + | 4.66900i | 2.22562 | + | 0.215954i | 5.44064 | − | 1.26517i | 1.18098 | + | 1.57760i | 6.57946 | − | 3.11904i | −1.00823 | − | 1.23302i | −3.16679 | − | 4.89279i |
17.4 | −1.49183 | − | 1.87855i | 0.872559 | − | 1.84062i | −0.850386 | + | 3.65694i | −1.59538 | + | 1.56676i | −4.75940 | + | 1.10675i | 0.0413971 | + | 0.0553000i | 3.80313 | − | 1.80290i | −0.727479 | − | 0.889670i | 5.32329 | + | 0.659658i |
17.5 | −1.46639 | − | 1.84651i | 0.0619289 | − | 0.130636i | −0.806304 | + | 3.46738i | 1.66760 | + | 1.48966i | −0.332032 | + | 0.0772108i | −2.45024 | − | 3.27314i | 3.32359 | − | 1.57557i | 1.88581 | + | 2.30624i | 0.305322 | − | 5.26367i |
17.6 | −1.46526 | − | 1.84508i | −0.0116097 | + | 0.0244901i | −0.804358 | + | 3.45901i | 0.497564 | − | 2.18001i | 0.0621973 | − | 0.0144634i | 1.43541 | + | 1.91749i | 3.30273 | − | 1.56568i | 1.89857 | + | 2.32186i | −4.75135 | + | 2.27622i |
17.7 | −1.40928 | − | 1.77459i | −0.264530 | + | 0.558012i | −0.710119 | + | 3.05375i | −1.78233 | + | 1.35030i | 1.36304 | − | 0.316961i | −0.738552 | − | 0.986589i | 2.32457 | − | 1.10198i | 1.65764 | + | 2.02720i | 4.90802 | + | 1.25995i |
17.8 | −1.29748 | − | 1.63382i | −1.16883 | + | 2.46559i | −0.532904 | + | 2.29166i | −2.21265 | − | 0.322771i | 5.54485 | − | 1.28940i | 0.266366 | + | 0.355823i | 0.665125 | − | 0.315308i | −2.81393 | − | 3.44129i | 2.34352 | + | 4.03385i |
17.9 | −1.28999 | − | 1.62438i | 0.928097 | − | 1.95777i | −0.521552 | + | 2.24285i | 0.934173 | − | 2.03158i | −4.37741 | + | 1.01792i | −2.10297 | − | 2.80924i | 0.567350 | − | 0.268956i | −1.07247 | − | 1.31158i | −4.50514 | + | 1.10326i |
17.10 | −1.28465 | − | 1.61765i | 0.394172 | − | 0.831485i | −0.513494 | + | 2.20820i | −1.76135 | − | 1.37755i | −1.85143 | + | 0.430531i | 2.63389 | + | 3.51846i | 0.498590 | − | 0.236360i | 1.36304 | + | 1.66693i | 0.0343172 | + | 4.61892i |
17.11 | −1.27308 | − | 1.60309i | −1.31201 | + | 2.76761i | −0.496174 | + | 2.13371i | 0.864114 | − | 2.06235i | 6.10703 | − | 1.42013i | −0.123455 | − | 0.164916i | 0.352652 | − | 0.167177i | −4.03927 | − | 4.93982i | −4.40623 | + | 1.24029i |
17.12 | −1.19630 | − | 1.50640i | −0.939334 | + | 1.98148i | −0.385130 | + | 1.65619i | 0.808350 | + | 2.08484i | 4.10863 | − | 0.955421i | 1.05957 | + | 1.41542i | −0.520807 | + | 0.246892i | −1.14487 | − | 1.40012i | 2.17359 | − | 3.71179i |
17.13 | −1.11932 | − | 1.40948i | 0.881394 | − | 1.85926i | −0.280746 | + | 1.20730i | 1.44251 | + | 1.70856i | −3.60715 | + | 0.838806i | 3.08527 | + | 4.12144i | −1.23683 | + | 0.586328i | −0.780941 | − | 0.955051i | 0.793546 | − | 3.94561i |
17.14 | −1.10873 | − | 1.39613i | 1.35863 | − | 2.86596i | −0.266918 | + | 1.14784i | −0.900694 | + | 2.04664i | −5.50760 | + | 1.28074i | −0.826618 | − | 1.10423i | −1.32348 | + | 0.627403i | −4.46880 | − | 5.46511i | 3.85601 | − | 1.01168i |
17.15 | −1.03807 | − | 1.30717i | 0.199600 | − | 0.421046i | −0.178090 | + | 0.765846i | 2.14613 | − | 0.627786i | −0.757576 | + | 0.176167i | 0.568703 | + | 0.759699i | −1.83067 | + | 0.867844i | 1.76160 | + | 2.15434i | −3.04847 | − | 2.15366i |
17.16 | −0.806914 | − | 1.01608i | 0.273200 | − | 0.576301i | 0.0716782 | − | 0.308240i | −2.23315 | − | 0.114207i | −0.806019 | + | 0.187432i | −0.252593 | − | 0.337424i | −2.71592 | + | 1.28750i | 1.64155 | + | 2.00753i | 1.68592 | + | 2.36122i |
17.17 | −0.759470 | − | 0.956341i | −0.595177 | + | 1.25550i | 0.115200 | − | 0.495400i | −0.258974 | − | 2.22102i | 1.65270 | − | 0.384319i | 0.786010 | + | 1.04999i | −2.76827 | + | 1.31232i | 0.677004 | + | 0.827941i | −1.92737 | + | 1.93447i |
17.18 | −0.749177 | − | 0.943380i | 0.802958 | − | 1.69380i | 0.124294 | − | 0.534506i | −1.84483 | − | 1.26356i | −2.19946 | + | 0.511461i | −1.95000 | − | 2.60490i | −2.77446 | + | 1.31525i | −0.325178 | − | 0.397676i | 0.190088 | + | 2.68701i |
17.19 | −0.696510 | − | 0.877060i | −0.936582 | + | 1.97567i | 0.168885 | − | 0.726261i | 2.23429 | + | 0.0891024i | 2.38512 | − | 0.554636i | −2.70093 | − | 3.60801i | −2.77865 | + | 1.31724i | −1.12706 | − | 1.37833i | −1.47806 | − | 2.02167i |
17.20 | −0.658728 | − | 0.829484i | −1.09704 | + | 2.31415i | 0.198872 | − | 0.855215i | −2.01388 | + | 0.971754i | 2.64220 | − | 0.614418i | −2.82386 | − | 3.77224i | −2.75464 | + | 1.30586i | −2.25276 | − | 2.75500i | 2.13265 | + | 1.03036i |
See next 80 embeddings (of 4640 total) |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
23.d | odd | 22 | 1 | inner |
25.f | odd | 20 | 1 | inner |
575.w | even | 220 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 575.2.w.a | ✓ | 4640 |
23.d | odd | 22 | 1 | inner | 575.2.w.a | ✓ | 4640 |
25.f | odd | 20 | 1 | inner | 575.2.w.a | ✓ | 4640 |
575.w | even | 220 | 1 | inner | 575.2.w.a | ✓ | 4640 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
575.2.w.a | ✓ | 4640 | 1.a | even | 1 | 1 | trivial |
575.2.w.a | ✓ | 4640 | 23.d | odd | 22 | 1 | inner |
575.2.w.a | ✓ | 4640 | 25.f | odd | 20 | 1 | inner |
575.2.w.a | ✓ | 4640 | 575.w | even | 220 | 1 | inner |
Hecke kernels
This newform subspace is the entire newspace \(S_{2}^{\mathrm{new}}(575, [\chi])\).