Properties

Label 575.2.w
Level $575$
Weight $2$
Character orbit 575.w
Rep. character $\chi_{575}(17,\cdot)$
Character field $\Q(\zeta_{220})$
Dimension $4640$
Newform subspaces $1$
Sturm bound $120$
Trace bound $0$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 575 = 5^{2} \cdot 23 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 575.w (of order \(220\) and degree \(80\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 575 \)
Character field: \(\Q(\zeta_{220})\)
Newform subspaces: \( 1 \)
Sturm bound: \(120\)
Trace bound: \(0\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(575, [\chi])\).

Total New Old
Modular forms 4960 4960 0
Cusp forms 4640 4640 0
Eisenstein series 320 320 0

Trace form

\( 4640 q - 72 q^{2} - 76 q^{3} - 90 q^{4} - 88 q^{5} - 54 q^{6} - 88 q^{7} - 64 q^{8} - 90 q^{9} - 88 q^{10} - 66 q^{11} - 84 q^{12} - 64 q^{13} - 110 q^{14} - 88 q^{15} - 158 q^{16} - 88 q^{17} - 148 q^{18}+ \cdots - 220 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(575, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
575.2.w.a 575.w 575.w $4640$ $4.591$ None 575.2.w.a \(-72\) \(-76\) \(-88\) \(-88\) $\mathrm{SU}(2)[C_{220}]$