Properties

Label 575.2.s
Level $575$
Weight $2$
Character orbit 575.s
Rep. character $\chi_{575}(6,\cdot)$
Character field $\Q(\zeta_{55})$
Dimension $2320$
Newform subspaces $1$
Sturm bound $120$
Trace bound $0$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 575 = 5^{2} \cdot 23 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 575.s (of order \(55\) and degree \(40\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 575 \)
Character field: \(\Q(\zeta_{55})\)
Newform subspaces: \( 1 \)
Sturm bound: \(120\)
Trace bound: \(0\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(575, [\chi])\).

Total New Old
Modular forms 2480 2480 0
Cusp forms 2320 2320 0
Eisenstein series 160 160 0

Trace form

\( 2320 q - 27 q^{2} - 31 q^{3} + 29 q^{4} - 30 q^{5} - 35 q^{6} - 76 q^{7} - 35 q^{8} + 23 q^{9} - 40 q^{10} - 29 q^{11} - 23 q^{12} - 35 q^{13} - 23 q^{14} - 13 q^{15} + 17 q^{16} - 21 q^{17} - 20 q^{18}+ \cdots + 6 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(575, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
575.2.s.a 575.s 575.s $2320$ $4.591$ None 575.2.s.a \(-27\) \(-31\) \(-30\) \(-76\) $\mathrm{SU}(2)[C_{55}]$