Properties

Label 575.2.r
Level $575$
Weight $2$
Character orbit 575.r
Rep. character $\chi_{575}(7,\cdot)$
Character field $\Q(\zeta_{44})$
Dimension $680$
Newform subspaces $3$
Sturm bound $120$
Trace bound $1$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 575 = 5^{2} \cdot 23 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 575.r (of order \(44\) and degree \(20\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 115 \)
Character field: \(\Q(\zeta_{44})\)
Newform subspaces: \( 3 \)
Sturm bound: \(120\)
Trace bound: \(1\)
Distinguishing \(T_p\): \(2\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(575, [\chi])\).

Total New Old
Modular forms 1320 760 560
Cusp forms 1080 680 400
Eisenstein series 240 80 160

Trace form

\( 680 q + 18 q^{2} + 14 q^{3} - 36 q^{6} + 22 q^{7} + 26 q^{8} - 44 q^{11} + 6 q^{12} + 26 q^{13} + 68 q^{16} + 22 q^{17} - 58 q^{18} - 44 q^{21} - 22 q^{23} - 52 q^{26} + 26 q^{27} - 66 q^{28} - 28 q^{31}+ \cdots + 50 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(575, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
575.2.r.a 575.r 115.l $160$ $4.591$ None 575.2.r.a \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{44}]$
575.2.r.b 575.r 115.l $200$ $4.591$ None 115.2.l.a \(18\) \(14\) \(0\) \(22\) $\mathrm{SU}(2)[C_{44}]$
575.2.r.c 575.r 115.l $320$ $4.591$ None 575.2.r.c \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{44}]$

Decomposition of \(S_{2}^{\mathrm{old}}(575, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(575, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(115, [\chi])\)\(^{\oplus 2}\)