Properties

Label 575.2.p.a.399.2
Level $575$
Weight $2$
Character 575.399
Analytic conductor $4.591$
Analytic rank $0$
Dimension $20$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [575,2,Mod(49,575)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(575, base_ring=CyclotomicField(22))
 
chi = DirichletCharacter(H, H._module([11, 16]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("575.49");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 575 = 5^{2} \cdot 23 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 575.p (of order \(22\), degree \(10\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(4.59139811622\)
Analytic rank: \(0\)
Dimension: \(20\)
Relative dimension: \(2\) over \(\Q(\zeta_{22})\)
Coefficient field: \(\Q(\zeta_{44})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{20} - x^{18} + x^{16} - x^{14} + x^{12} - x^{10} + x^{8} - x^{6} + x^{4} - x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 115)
Sato-Tate group: $\mathrm{SU}(2)[C_{22}]$

Embedding invariants

Embedding label 399.2
Root \(-0.755750 - 0.654861i\) of defining polynomial
Character \(\chi\) \(=\) 575.399
Dual form 575.2.p.a.49.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.0872586 + 0.0125459i) q^{2} +(0.909632 - 0.415415i) q^{3} +(-1.91153 - 0.561276i) q^{4} +(0.0845850 - 0.0248364i) q^{6} +(-0.835939 + 1.30075i) q^{7} +(-0.320135 - 0.146201i) q^{8} +(-1.30972 + 1.51150i) q^{9} +(0.289532 + 2.01374i) q^{11} +(-1.97195 + 0.283524i) q^{12} +(1.15727 + 1.80075i) q^{13} +(-0.0892619 + 0.103014i) q^{14} +(3.32584 + 2.13739i) q^{16} +(1.22809 + 4.18251i) q^{17} +(-0.133248 + 0.115460i) q^{18} +(7.12381 + 2.09174i) q^{19} +(-0.220047 + 1.53046i) q^{21} +0.179348i q^{22} +(-3.89854 - 2.79310i) q^{23} -0.351939 q^{24} +(0.0783898 + 0.171650i) q^{26} +(-1.40866 + 4.79746i) q^{27} +(2.32800 - 2.01722i) q^{28} +(4.30111 - 1.26292i) q^{29} +(-0.376329 + 0.824045i) q^{31} +(0.795348 + 0.689173i) q^{32} +(1.09990 + 1.71148i) q^{33} +(0.0546886 + 0.380367i) q^{34} +(3.35194 - 2.15416i) q^{36} +(-8.38507 - 7.26571i) q^{37} +(0.595371 + 0.271897i) q^{38} +(1.80075 + 1.15727i) q^{39} +(3.95750 + 4.56720i) q^{41} +(-0.0384020 + 0.130785i) q^{42} +(-4.90745 + 2.24116i) q^{43} +(0.576814 - 4.01183i) q^{44} +(-0.305139 - 0.292633i) q^{46} +2.72825i q^{47} +(3.91319 + 0.562632i) q^{48} +(1.91476 + 4.19273i) q^{49} +(2.85459 + 3.29437i) q^{51} +(-1.20144 - 4.09173i) q^{52} +(0.148283 - 0.230732i) q^{53} +(-0.183106 + 0.400947i) q^{54} +(0.457783 - 0.294199i) q^{56} +(7.34898 - 1.05662i) q^{57} +(0.391153 - 0.0562393i) q^{58} +(-6.74757 + 4.33640i) q^{59} +(-1.33718 + 2.92802i) q^{61} +(-0.0431763 + 0.0671837i) q^{62} +(-0.871230 - 2.96714i) q^{63} +(-5.11714 - 5.90549i) q^{64} +(0.0745040 + 0.163141i) q^{66} +(-1.94473 - 0.279610i) q^{67} -8.68428i q^{68} +(-4.70653 - 0.921186i) q^{69} +(1.58700 - 11.0378i) q^{71} +(0.640269 - 0.292401i) q^{72} +(-2.92170 + 9.95039i) q^{73} +(-0.640515 - 0.739194i) q^{74} +(-12.4433 - 7.99684i) q^{76} +(-2.86139 - 1.30675i) q^{77} +(0.142612 + 0.123574i) q^{78} +(-2.70849 + 1.74064i) q^{79} +(-0.142315 - 0.989821i) q^{81} +(0.288027 + 0.448178i) q^{82} +(3.29557 + 2.85563i) q^{83} +(1.27964 - 2.80202i) q^{84} +(-0.456334 + 0.133992i) q^{86} +(3.38779 - 2.93553i) q^{87} +(0.201720 - 0.686997i) q^{88} +(-0.266861 - 0.584343i) q^{89} -3.30972 q^{91} +(5.88446 + 7.52725i) q^{92} +0.905910i q^{93} +(-0.0342284 + 0.238063i) q^{94} +(1.00977 + 0.296494i) q^{96} +(4.18748 - 3.62848i) q^{97} +(0.114478 + 0.389875i) q^{98} +(-3.42297 - 2.19981i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 20 q + 2 q^{4} + 12 q^{6} - 4 q^{9} + 16 q^{11} + 6 q^{14} + 10 q^{16} + 26 q^{19} + 12 q^{21} + 12 q^{24} + 22 q^{26} - 4 q^{29} - 40 q^{31} - 32 q^{34} + 48 q^{36} - 10 q^{41} - 38 q^{44} - 32 q^{46}+ \cdots - 12 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/575\mathbb{Z}\right)^\times\).

\(n\) \(51\) \(277\)
\(\chi(n)\) \(e\left(\frac{3}{11}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.0872586 + 0.0125459i 0.0617012 + 0.00887129i 0.173096 0.984905i \(-0.444623\pi\)
−0.111395 + 0.993776i \(0.535532\pi\)
\(3\) 0.909632 0.415415i 0.525176 0.239840i −0.135141 0.990826i \(-0.543149\pi\)
0.660318 + 0.750986i \(0.270422\pi\)
\(4\) −1.91153 0.561276i −0.955765 0.280638i
\(5\) 0 0
\(6\) 0.0845850 0.0248364i 0.0345317 0.0101394i
\(7\) −0.835939 + 1.30075i −0.315955 + 0.491636i −0.962515 0.271227i \(-0.912571\pi\)
0.646560 + 0.762863i \(0.276207\pi\)
\(8\) −0.320135 0.146201i −0.113185 0.0516897i
\(9\) −1.30972 + 1.51150i −0.436574 + 0.503833i
\(10\) 0 0
\(11\) 0.289532 + 2.01374i 0.0872971 + 0.607165i 0.985765 + 0.168126i \(0.0537717\pi\)
−0.898468 + 0.439038i \(0.855319\pi\)
\(12\) −1.97195 + 0.283524i −0.569253 + 0.0818462i
\(13\) 1.15727 + 1.80075i 0.320969 + 0.499437i 0.963820 0.266554i \(-0.0858850\pi\)
−0.642851 + 0.765991i \(0.722249\pi\)
\(14\) −0.0892619 + 0.103014i −0.0238563 + 0.0275316i
\(15\) 0 0
\(16\) 3.32584 + 2.13739i 0.831460 + 0.534347i
\(17\) 1.22809 + 4.18251i 0.297857 + 1.01441i 0.963405 + 0.268052i \(0.0863798\pi\)
−0.665548 + 0.746355i \(0.731802\pi\)
\(18\) −0.133248 + 0.115460i −0.0314068 + 0.0272141i
\(19\) 7.12381 + 2.09174i 1.63431 + 0.479878i 0.964814 0.262935i \(-0.0846905\pi\)
0.669499 + 0.742813i \(0.266509\pi\)
\(20\) 0 0
\(21\) −0.220047 + 1.53046i −0.0480182 + 0.333974i
\(22\) 0.179348i 0.0382372i
\(23\) −3.89854 2.79310i −0.812901 0.582402i
\(24\) −0.351939 −0.0718392
\(25\) 0 0
\(26\) 0.0783898 + 0.171650i 0.0153735 + 0.0336633i
\(27\) −1.40866 + 4.79746i −0.271097 + 0.923273i
\(28\) 2.32800 2.01722i 0.439951 0.381219i
\(29\) 4.30111 1.26292i 0.798695 0.234518i 0.143177 0.989697i \(-0.454268\pi\)
0.655519 + 0.755179i \(0.272450\pi\)
\(30\) 0 0
\(31\) −0.376329 + 0.824045i −0.0675906 + 0.148003i −0.940412 0.340037i \(-0.889561\pi\)
0.872822 + 0.488039i \(0.162288\pi\)
\(32\) 0.795348 + 0.689173i 0.140599 + 0.121830i
\(33\) 1.09990 + 1.71148i 0.191469 + 0.297931i
\(34\) 0.0546886 + 0.380367i 0.00937901 + 0.0652325i
\(35\) 0 0
\(36\) 3.35194 2.15416i 0.558656 0.359027i
\(37\) −8.38507 7.26571i −1.37850 1.19447i −0.957856 0.287248i \(-0.907260\pi\)
−0.420641 0.907227i \(-0.638195\pi\)
\(38\) 0.595371 + 0.271897i 0.0965819 + 0.0441075i
\(39\) 1.80075 + 1.15727i 0.288350 + 0.185311i
\(40\) 0 0
\(41\) 3.95750 + 4.56720i 0.618058 + 0.713277i 0.975337 0.220720i \(-0.0708408\pi\)
−0.357279 + 0.933998i \(0.616295\pi\)
\(42\) −0.0384020 + 0.130785i −0.00592556 + 0.0201806i
\(43\) −4.90745 + 2.24116i −0.748379 + 0.341773i −0.752828 0.658217i \(-0.771311\pi\)
0.00444961 + 0.999990i \(0.498584\pi\)
\(44\) 0.576814 4.01183i 0.0869579 0.604806i
\(45\) 0 0
\(46\) −0.305139 0.292633i −0.0449903 0.0431464i
\(47\) 2.72825i 0.397956i 0.980004 + 0.198978i \(0.0637623\pi\)
−0.980004 + 0.198978i \(0.936238\pi\)
\(48\) 3.91319 + 0.562632i 0.564821 + 0.0812089i
\(49\) 1.91476 + 4.19273i 0.273537 + 0.598962i
\(50\) 0 0
\(51\) 2.85459 + 3.29437i 0.399723 + 0.461305i
\(52\) −1.20144 4.09173i −0.166610 0.567420i
\(53\) 0.148283 0.230732i 0.0203682 0.0316935i −0.830920 0.556392i \(-0.812185\pi\)
0.851288 + 0.524698i \(0.175822\pi\)
\(54\) −0.183106 + 0.400947i −0.0249176 + 0.0545620i
\(55\) 0 0
\(56\) 0.457783 0.294199i 0.0611738 0.0393140i
\(57\) 7.34898 1.05662i 0.973396 0.139953i
\(58\) 0.391153 0.0562393i 0.0513609 0.00738458i
\(59\) −6.74757 + 4.33640i −0.878458 + 0.564551i −0.900329 0.435210i \(-0.856674\pi\)
0.0218707 + 0.999761i \(0.493038\pi\)
\(60\) 0 0
\(61\) −1.33718 + 2.92802i −0.171208 + 0.374894i −0.975713 0.219052i \(-0.929704\pi\)
0.804505 + 0.593946i \(0.202431\pi\)
\(62\) −0.0431763 + 0.0671837i −0.00548340 + 0.00853233i
\(63\) −0.871230 2.96714i −0.109765 0.373824i
\(64\) −5.11714 5.90549i −0.639642 0.738187i
\(65\) 0 0
\(66\) 0.0745040 + 0.163141i 0.00917081 + 0.0200813i
\(67\) −1.94473 0.279610i −0.237587 0.0341598i 0.0224928 0.999747i \(-0.492840\pi\)
−0.260080 + 0.965587i \(0.583749\pi\)
\(68\) 8.68428i 1.05312i
\(69\) −4.70653 0.921186i −0.566600 0.110898i
\(70\) 0 0
\(71\) 1.58700 11.0378i 0.188342 1.30995i −0.647959 0.761675i \(-0.724377\pi\)
0.836301 0.548271i \(-0.184714\pi\)
\(72\) 0.640269 0.292401i 0.0754564 0.0344598i
\(73\) −2.92170 + 9.95039i −0.341959 + 1.16461i 0.591615 + 0.806221i \(0.298491\pi\)
−0.933574 + 0.358385i \(0.883328\pi\)
\(74\) −0.640515 0.739194i −0.0744584 0.0859295i
\(75\) 0 0
\(76\) −12.4433 7.99684i −1.42735 0.917300i
\(77\) −2.86139 1.30675i −0.326086 0.148919i
\(78\) 0.142612 + 0.123574i 0.0161476 + 0.0139920i
\(79\) −2.70849 + 1.74064i −0.304729 + 0.195837i −0.684064 0.729422i \(-0.739789\pi\)
0.379335 + 0.925259i \(0.376153\pi\)
\(80\) 0 0
\(81\) −0.142315 0.989821i −0.0158128 0.109980i
\(82\) 0.288027 + 0.448178i 0.0318072 + 0.0494930i
\(83\) 3.29557 + 2.85563i 0.361736 + 0.313446i 0.816698 0.577065i \(-0.195802\pi\)
−0.454963 + 0.890510i \(0.650347\pi\)
\(84\) 1.27964 2.80202i 0.139620 0.305725i
\(85\) 0 0
\(86\) −0.456334 + 0.133992i −0.0492078 + 0.0144487i
\(87\) 3.38779 2.93553i 0.363209 0.314722i
\(88\) 0.201720 0.686997i 0.0215035 0.0732341i
\(89\) −0.266861 0.584343i −0.0282872 0.0619403i 0.894961 0.446144i \(-0.147203\pi\)
−0.923248 + 0.384204i \(0.874476\pi\)
\(90\) 0 0
\(91\) −3.30972 −0.346953
\(92\) 5.88446 + 7.52725i 0.613498 + 0.784770i
\(93\) 0.905910i 0.0939385i
\(94\) −0.0342284 + 0.238063i −0.00353038 + 0.0245544i
\(95\) 0 0
\(96\) 1.00977 + 0.296494i 0.103059 + 0.0302608i
\(97\) 4.18748 3.62848i 0.425175 0.368416i −0.415831 0.909442i \(-0.636509\pi\)
0.841006 + 0.541026i \(0.181964\pi\)
\(98\) 0.114478 + 0.389875i 0.0115640 + 0.0393833i
\(99\) −3.42297 2.19981i −0.344021 0.221089i
\(100\) 0 0
\(101\) −2.94535 + 3.39912i −0.293073 + 0.338225i −0.883122 0.469143i \(-0.844563\pi\)
0.590049 + 0.807367i \(0.299108\pi\)
\(102\) 0.207757 + 0.323276i 0.0205710 + 0.0320091i
\(103\) 9.63380 1.38513i 0.949247 0.136481i 0.349737 0.936848i \(-0.386271\pi\)
0.599510 + 0.800367i \(0.295362\pi\)
\(104\) −0.107212 0.745675i −0.0105130 0.0731194i
\(105\) 0 0
\(106\) 0.0158337 0.0182730i 0.00153790 0.00177483i
\(107\) 6.72833 + 3.07272i 0.650452 + 0.297051i 0.713182 0.700979i \(-0.247253\pi\)
−0.0627299 + 0.998031i \(0.519981\pi\)
\(108\) 5.38540 8.37985i 0.518210 0.806351i
\(109\) 9.99029 2.93341i 0.956897 0.280970i 0.234241 0.972179i \(-0.424740\pi\)
0.722656 + 0.691208i \(0.242921\pi\)
\(110\) 0 0
\(111\) −10.6456 3.12583i −1.01044 0.296691i
\(112\) −5.56040 + 2.53935i −0.525408 + 0.239946i
\(113\) −19.3927 2.78825i −1.82431 0.262297i −0.856898 0.515486i \(-0.827611\pi\)
−0.967417 + 0.253189i \(0.918520\pi\)
\(114\) 0.654518 0.0613012
\(115\) 0 0
\(116\) −8.93053 −0.829179
\(117\) −4.23753 0.609264i −0.391760 0.0563265i
\(118\) −0.643187 + 0.293734i −0.0592102 + 0.0270404i
\(119\) −6.46699 1.89888i −0.592828 0.174070i
\(120\) 0 0
\(121\) 6.58311 1.93298i 0.598465 0.175725i
\(122\) −0.153415 + 0.238719i −0.0138896 + 0.0216126i
\(123\) 5.49716 + 2.51047i 0.495662 + 0.226361i
\(124\) 1.18188 1.36396i 0.106136 0.122487i
\(125\) 0 0
\(126\) −0.0387969 0.269839i −0.00345631 0.0240391i
\(127\) 17.3667 2.49696i 1.54105 0.221569i 0.681192 0.732105i \(-0.261462\pi\)
0.859856 + 0.510536i \(0.170553\pi\)
\(128\) −1.51036 2.35017i −0.133498 0.207727i
\(129\) −3.53296 + 4.07725i −0.311060 + 0.358982i
\(130\) 0 0
\(131\) −10.9767 7.05427i −0.959035 0.616334i −0.0353039 0.999377i \(-0.511240\pi\)
−0.923731 + 0.383043i \(0.874876\pi\)
\(132\) −1.14188 3.88890i −0.0993883 0.338486i
\(133\) −8.67589 + 7.51770i −0.752295 + 0.651867i
\(134\) −0.166187 0.0487968i −0.0143563 0.00421540i
\(135\) 0 0
\(136\) 0.218329 1.51851i 0.0187216 0.130211i
\(137\) 21.5268i 1.83916i −0.392903 0.919580i \(-0.628529\pi\)
0.392903 0.919580i \(-0.371471\pi\)
\(138\) −0.399128 0.139429i −0.0339760 0.0118690i
\(139\) 16.3719 1.38864 0.694322 0.719665i \(-0.255705\pi\)
0.694322 + 0.719665i \(0.255705\pi\)
\(140\) 0 0
\(141\) 1.13336 + 2.48170i 0.0954458 + 0.208997i
\(142\) 0.276958 0.943233i 0.0232418 0.0791544i
\(143\) −3.29117 + 2.85181i −0.275221 + 0.238480i
\(144\) −7.58658 + 2.22762i −0.632215 + 0.185635i
\(145\) 0 0
\(146\) −0.379780 + 0.831602i −0.0314308 + 0.0688239i
\(147\) 3.48345 + 3.01843i 0.287310 + 0.248956i
\(148\) 11.9502 + 18.5950i 0.982304 + 1.52850i
\(149\) 2.74972 + 19.1247i 0.225266 + 1.56676i 0.717665 + 0.696389i \(0.245211\pi\)
−0.492399 + 0.870370i \(0.663880\pi\)
\(150\) 0 0
\(151\) 16.8366 10.8202i 1.37015 0.880539i 0.371297 0.928514i \(-0.378913\pi\)
0.998849 + 0.0479750i \(0.0152768\pi\)
\(152\) −1.97476 1.71114i −0.160174 0.138792i
\(153\) −7.93032 3.62165i −0.641128 0.292793i
\(154\) −0.233287 0.149924i −0.0187988 0.0120812i
\(155\) 0 0
\(156\) −2.79263 3.22287i −0.223590 0.258036i
\(157\) −1.62683 + 5.54048i −0.129835 + 0.442179i −0.998591 0.0530620i \(-0.983102\pi\)
0.868756 + 0.495241i \(0.164920\pi\)
\(158\) −0.258177 + 0.117905i −0.0205395 + 0.00938006i
\(159\) 0.0390330 0.271480i 0.00309552 0.0215298i
\(160\) 0 0
\(161\) 6.89206 2.73614i 0.543170 0.215638i
\(162\) 0.0881559i 0.00692618i
\(163\) −8.71401 1.25289i −0.682534 0.0981335i −0.207678 0.978197i \(-0.566591\pi\)
−0.474856 + 0.880064i \(0.657500\pi\)
\(164\) −5.00143 10.9516i −0.390546 0.855176i
\(165\) 0 0
\(166\) 0.251740 + 0.290524i 0.0195388 + 0.0225490i
\(167\) −5.50159 18.7367i −0.425726 1.44989i −0.841418 0.540384i \(-0.818279\pi\)
0.415692 0.909505i \(-0.363539\pi\)
\(168\) 0.294199 0.457783i 0.0226980 0.0353187i
\(169\) 3.49698 7.65732i 0.268998 0.589024i
\(170\) 0 0
\(171\) −12.4919 + 8.02803i −0.955276 + 0.613919i
\(172\) 10.6386 1.52960i 0.811188 0.116631i
\(173\) 21.3627 3.07149i 1.62417 0.233521i 0.730721 0.682676i \(-0.239184\pi\)
0.893454 + 0.449155i \(0.148275\pi\)
\(174\) 0.332443 0.213648i 0.0252024 0.0161966i
\(175\) 0 0
\(176\) −3.34120 + 7.31621i −0.251852 + 0.551480i
\(177\) −4.33640 + 6.74757i −0.325944 + 0.507178i
\(178\) −0.0159548 0.0543370i −0.00119586 0.00407273i
\(179\) −10.0553 11.6044i −0.751567 0.867354i 0.243152 0.969988i \(-0.421818\pi\)
−0.994719 + 0.102634i \(0.967273\pi\)
\(180\) 0 0
\(181\) 0.340209 + 0.744955i 0.0252876 + 0.0553720i 0.921854 0.387537i \(-0.126674\pi\)
−0.896567 + 0.442909i \(0.853947\pi\)
\(182\) −0.288802 0.0415234i −0.0214074 0.00307792i
\(183\) 3.21890i 0.237948i
\(184\) 0.839703 + 1.46414i 0.0619037 + 0.107938i
\(185\) 0 0
\(186\) −0.0113655 + 0.0790485i −0.000833356 + 0.00579612i
\(187\) −8.06690 + 3.68403i −0.589910 + 0.269403i
\(188\) 1.53130 5.21513i 0.111682 0.380353i
\(189\) −5.06273 5.84270i −0.368259 0.424994i
\(190\) 0 0
\(191\) −3.58868 2.30630i −0.259668 0.166878i 0.404329 0.914613i \(-0.367505\pi\)
−0.663997 + 0.747735i \(0.731141\pi\)
\(192\) −7.10794 3.24609i −0.512972 0.234266i
\(193\) −3.65352 3.16580i −0.262986 0.227879i 0.513379 0.858162i \(-0.328393\pi\)
−0.776366 + 0.630283i \(0.782939\pi\)
\(194\) 0.410917 0.264080i 0.0295021 0.0189598i
\(195\) 0 0
\(196\) −1.30684 9.08924i −0.0933454 0.649232i
\(197\) 0.141980 + 0.220925i 0.0101157 + 0.0157403i 0.846275 0.532747i \(-0.178840\pi\)
−0.836159 + 0.548487i \(0.815204\pi\)
\(198\) −0.271085 0.234896i −0.0192652 0.0166934i
\(199\) 1.79719 3.93530i 0.127399 0.278966i −0.835175 0.549985i \(-0.814633\pi\)
0.962574 + 0.271019i \(0.0873607\pi\)
\(200\) 0 0
\(201\) −1.88514 + 0.553528i −0.132968 + 0.0390429i
\(202\) −0.299652 + 0.259650i −0.0210835 + 0.0182689i
\(203\) −1.95273 + 6.65037i −0.137054 + 0.466765i
\(204\) −3.60758 7.89950i −0.252581 0.553076i
\(205\) 0 0
\(206\) 0.858010 0.0597804
\(207\) 9.32777 2.23445i 0.648325 0.155305i
\(208\) 8.46252i 0.586770i
\(209\) −2.14964 + 14.9511i −0.148694 + 1.03419i
\(210\) 0 0
\(211\) 6.30147 + 1.85028i 0.433811 + 0.127378i 0.491345 0.870965i \(-0.336506\pi\)
−0.0575338 + 0.998344i \(0.518324\pi\)
\(212\) −0.412951 + 0.357824i −0.0283616 + 0.0245755i
\(213\) −3.14169 10.6996i −0.215265 0.733125i
\(214\) 0.548554 + 0.352535i 0.0374984 + 0.0240988i
\(215\) 0 0
\(216\) 1.15235 1.32989i 0.0784077 0.0904874i
\(217\) −0.757286 1.17836i −0.0514079 0.0799923i
\(218\) 0.908542 0.130629i 0.0615342 0.00884728i
\(219\) 1.47587 + 10.2649i 0.0997301 + 0.693638i
\(220\) 0 0
\(221\) −6.11040 + 7.05178i −0.411030 + 0.474354i
\(222\) −0.889705 0.406315i −0.0597131 0.0272701i
\(223\) 4.97783 7.74566i 0.333340 0.518688i −0.633610 0.773653i \(-0.718428\pi\)
0.966950 + 0.254965i \(0.0820639\pi\)
\(224\) −1.56130 + 0.458439i −0.104319 + 0.0306308i
\(225\) 0 0
\(226\) −1.65720 0.486598i −0.110235 0.0323680i
\(227\) −8.06985 + 3.68538i −0.535615 + 0.244607i −0.664810 0.747012i \(-0.731488\pi\)
0.129196 + 0.991619i \(0.458760\pi\)
\(228\) −14.6408 2.10504i −0.969614 0.139409i
\(229\) 8.38484 0.554086 0.277043 0.960858i \(-0.410646\pi\)
0.277043 + 0.960858i \(0.410646\pi\)
\(230\) 0 0
\(231\) −3.14566 −0.206969
\(232\) −1.56157 0.224520i −0.102522 0.0147405i
\(233\) 21.8435 9.97561i 1.43102 0.653524i 0.459002 0.888435i \(-0.348207\pi\)
0.972017 + 0.234911i \(0.0754799\pi\)
\(234\) −0.362117 0.106327i −0.0236723 0.00695082i
\(235\) 0 0
\(236\) 15.3321 4.50191i 0.998034 0.293049i
\(237\) −1.74064 + 2.70849i −0.113067 + 0.175935i
\(238\) −0.540478 0.246828i −0.0350340 0.0159995i
\(239\) −7.35914 + 8.49290i −0.476023 + 0.549360i −0.942077 0.335396i \(-0.891130\pi\)
0.466054 + 0.884756i \(0.345675\pi\)
\(240\) 0 0
\(241\) 4.00004 + 27.8209i 0.257665 + 1.79210i 0.549355 + 0.835589i \(0.314874\pi\)
−0.291689 + 0.956513i \(0.594217\pi\)
\(242\) 0.598684 0.0860778i 0.0384849 0.00553329i
\(243\) −8.65025 13.4601i −0.554914 0.863463i
\(244\) 4.19948 4.84646i 0.268844 0.310263i
\(245\) 0 0
\(246\) 0.448178 + 0.288027i 0.0285748 + 0.0183639i
\(247\) 4.47747 + 15.2489i 0.284895 + 0.970262i
\(248\) 0.240952 0.208786i 0.0153004 0.0132579i
\(249\) 4.18403 + 1.22854i 0.265152 + 0.0778556i
\(250\) 0 0
\(251\) 3.91272 27.2135i 0.246969 1.71770i −0.368572 0.929599i \(-0.620153\pi\)
0.615541 0.788105i \(-0.288938\pi\)
\(252\) 6.16077i 0.388092i
\(253\) 4.49583 8.65932i 0.282650 0.544407i
\(254\) 1.54672 0.0970501
\(255\) 0 0
\(256\) 6.38987 + 13.9919i 0.399367 + 0.874492i
\(257\) −5.00435 + 17.0432i −0.312163 + 1.06313i 0.642709 + 0.766110i \(0.277810\pi\)
−0.954872 + 0.297018i \(0.904008\pi\)
\(258\) −0.359434 + 0.311451i −0.0223774 + 0.0193901i
\(259\) 16.4603 4.83317i 1.02279 0.300318i
\(260\) 0 0
\(261\) −3.72435 + 8.15519i −0.230531 + 0.504794i
\(262\) −0.869305 0.753257i −0.0537059 0.0465364i
\(263\) −4.72561 7.35320i −0.291394 0.453417i 0.664433 0.747348i \(-0.268673\pi\)
−0.955827 + 0.293930i \(0.905037\pi\)
\(264\) −0.101897 0.708712i −0.00627135 0.0436182i
\(265\) 0 0
\(266\) −0.851362 + 0.547137i −0.0522004 + 0.0335471i
\(267\) −0.485490 0.420680i −0.0297115 0.0257452i
\(268\) 3.56047 + 1.62601i 0.217491 + 0.0993246i
\(269\) −2.46553 1.58450i −0.150326 0.0966086i 0.463316 0.886193i \(-0.346660\pi\)
−0.613642 + 0.789585i \(0.710296\pi\)
\(270\) 0 0
\(271\) 4.29616 + 4.95803i 0.260973 + 0.301179i 0.871081 0.491139i \(-0.163419\pi\)
−0.610108 + 0.792318i \(0.708874\pi\)
\(272\) −4.85519 + 16.5353i −0.294389 + 1.00260i
\(273\) −3.01063 + 1.37491i −0.182212 + 0.0832132i
\(274\) 0.270073 1.87840i 0.0163157 0.113478i
\(275\) 0 0
\(276\) 8.47963 + 4.40253i 0.510414 + 0.265001i
\(277\) 22.7888i 1.36924i 0.728898 + 0.684622i \(0.240033\pi\)
−0.728898 + 0.684622i \(0.759967\pi\)
\(278\) 1.42859 + 0.205400i 0.0856809 + 0.0123191i
\(279\) −0.752658 1.64809i −0.0450604 0.0986686i
\(280\) 0 0
\(281\) 9.32744 + 10.7644i 0.556429 + 0.642153i 0.962369 0.271747i \(-0.0876013\pi\)
−0.405940 + 0.913900i \(0.633056\pi\)
\(282\) 0.0677599 + 0.230769i 0.00403504 + 0.0137421i
\(283\) −12.8173 + 19.9441i −0.761910 + 1.18555i 0.215973 + 0.976399i \(0.430708\pi\)
−0.977882 + 0.209155i \(0.932929\pi\)
\(284\) −9.22884 + 20.2083i −0.547631 + 1.19914i
\(285\) 0 0
\(286\) −0.322961 + 0.207554i −0.0190971 + 0.0122730i
\(287\) −9.24901 + 1.32981i −0.545952 + 0.0784960i
\(288\) −2.08337 + 0.299543i −0.122764 + 0.0176507i
\(289\) −1.68384 + 1.08214i −0.0990493 + 0.0636551i
\(290\) 0 0
\(291\) 2.30175 5.04012i 0.134931 0.295457i
\(292\) 11.1698 17.3806i 0.653664 1.01712i
\(293\) 1.20419 + 4.10110i 0.0703497 + 0.239589i 0.987160 0.159734i \(-0.0510635\pi\)
−0.916810 + 0.399323i \(0.869245\pi\)
\(294\) 0.266092 + 0.307087i 0.0155188 + 0.0179097i
\(295\) 0 0
\(296\) 1.62210 + 3.55191i 0.0942827 + 0.206450i
\(297\) −10.0687 1.44766i −0.584245 0.0840017i
\(298\) 1.70330i 0.0986692i
\(299\) 0.518014 10.2526i 0.0299575 0.592926i
\(300\) 0 0
\(301\) 1.18715 8.25681i 0.0684262 0.475915i
\(302\) 1.60489 0.732929i 0.0923511 0.0421753i
\(303\) −1.26714 + 4.31549i −0.0727954 + 0.247918i
\(304\) 19.2218 + 22.1831i 1.10244 + 1.27229i
\(305\) 0 0
\(306\) −0.646552 0.415514i −0.0369609 0.0237533i
\(307\) 8.13661 + 3.71586i 0.464381 + 0.212076i 0.633844 0.773461i \(-0.281476\pi\)
−0.169463 + 0.985536i \(0.554203\pi\)
\(308\) 4.73619 + 4.10393i 0.269869 + 0.233843i
\(309\) 8.18781 5.26199i 0.465788 0.299344i
\(310\) 0 0
\(311\) 3.32224 + 23.1067i 0.188387 + 1.31026i 0.836185 + 0.548447i \(0.184781\pi\)
−0.647798 + 0.761812i \(0.724310\pi\)
\(312\) −0.407288 0.633752i −0.0230581 0.0358792i
\(313\) 17.0127 + 14.7416i 0.961615 + 0.833244i 0.986049 0.166457i \(-0.0532328\pi\)
−0.0244337 + 0.999701i \(0.507778\pi\)
\(314\) −0.211465 + 0.463045i −0.0119337 + 0.0261311i
\(315\) 0 0
\(316\) 6.15434 1.80708i 0.346209 0.101656i
\(317\) −9.63606 + 8.34970i −0.541215 + 0.468966i −0.882049 0.471158i \(-0.843836\pi\)
0.340834 + 0.940124i \(0.389291\pi\)
\(318\) 0.00681193 0.0231993i 0.000381994 0.00130095i
\(319\) 3.78849 + 8.29564i 0.212115 + 0.464467i
\(320\) 0 0
\(321\) 7.39676 0.412847
\(322\) 0.635719 0.152285i 0.0354272 0.00848651i
\(323\) 32.3642i 1.80079i
\(324\) −0.283524 + 1.97195i −0.0157513 + 0.109553i
\(325\) 0 0
\(326\) −0.744654 0.218650i −0.0412426 0.0121099i
\(327\) 7.86891 6.81845i 0.435151 0.377061i
\(328\) −0.599206 2.04071i −0.0330856 0.112679i
\(329\) −3.54876 2.28065i −0.195650 0.125736i
\(330\) 0 0
\(331\) 10.7382 12.3926i 0.590227 0.681158i −0.379545 0.925173i \(-0.623919\pi\)
0.969771 + 0.244015i \(0.0784647\pi\)
\(332\) −4.69678 7.30834i −0.257769 0.401097i
\(333\) 21.9642 3.15798i 1.20363 0.173056i
\(334\) −0.244993 1.70396i −0.0134054 0.0932366i
\(335\) 0 0
\(336\) −4.00303 + 4.61974i −0.218383 + 0.252028i
\(337\) −24.9589 11.3983i −1.35960 0.620907i −0.403776 0.914858i \(-0.632303\pi\)
−0.955821 + 0.293951i \(0.905030\pi\)
\(338\) 0.401210 0.624294i 0.0218229 0.0339571i
\(339\) −18.7985 + 5.51975i −1.02100 + 0.299792i
\(340\) 0 0
\(341\) −1.76837 0.519240i −0.0957626 0.0281184i
\(342\) −1.19074 + 0.543793i −0.0643879 + 0.0294050i
\(343\) −17.7675 2.55459i −0.959357 0.137935i
\(344\) 1.89870 0.102371
\(345\) 0 0
\(346\) 1.90261 0.102285
\(347\) 5.97415 + 0.858953i 0.320709 + 0.0461110i 0.300789 0.953691i \(-0.402750\pi\)
0.0199196 + 0.999802i \(0.493659\pi\)
\(348\) −8.12350 + 3.70988i −0.435465 + 0.198870i
\(349\) 8.00915 + 2.35170i 0.428720 + 0.125883i 0.488972 0.872300i \(-0.337372\pi\)
−0.0602518 + 0.998183i \(0.519190\pi\)
\(350\) 0 0
\(351\) −10.2692 + 3.01532i −0.548130 + 0.160946i
\(352\) −1.15753 + 1.80116i −0.0616968 + 0.0960021i
\(353\) −23.7892 10.8642i −1.26617 0.578242i −0.334794 0.942291i \(-0.608667\pi\)
−0.931380 + 0.364049i \(0.881394\pi\)
\(354\) −0.463042 + 0.534379i −0.0246104 + 0.0284019i
\(355\) 0 0
\(356\) 0.182134 + 1.26677i 0.00965310 + 0.0671388i
\(357\) −6.67141 + 0.959204i −0.353088 + 0.0507664i
\(358\) −0.731822 1.13874i −0.0386780 0.0601841i
\(359\) 3.70672 4.27779i 0.195633 0.225773i −0.649454 0.760401i \(-0.725003\pi\)
0.845088 + 0.534628i \(0.179548\pi\)
\(360\) 0 0
\(361\) 30.3894 + 19.5301i 1.59944 + 1.02790i
\(362\) 0.0203401 + 0.0692719i 0.00106905 + 0.00364085i
\(363\) 5.18522 4.49302i 0.272154 0.235822i
\(364\) 6.32663 + 1.85767i 0.331605 + 0.0973682i
\(365\) 0 0
\(366\) −0.0403840 + 0.280877i −0.00211091 + 0.0146817i
\(367\) 12.3147i 0.642822i 0.946940 + 0.321411i \(0.104157\pi\)
−0.946940 + 0.321411i \(0.895843\pi\)
\(368\) −6.99596 17.6221i −0.364690 0.918615i
\(369\) −12.0866 −0.629201
\(370\) 0 0
\(371\) 0.176169 + 0.385756i 0.00914624 + 0.0200275i
\(372\) 0.508465 1.73167i 0.0263627 0.0897831i
\(373\) 22.0119 19.0734i 1.13973 0.987585i 0.139737 0.990189i \(-0.455374\pi\)
0.999997 + 0.00260397i \(0.000828872\pi\)
\(374\) −0.750126 + 0.220257i −0.0387881 + 0.0113892i
\(375\) 0 0
\(376\) 0.398872 0.873407i 0.0205702 0.0450426i
\(377\) 7.25173 + 6.28366i 0.373483 + 0.323625i
\(378\) −0.368465 0.573343i −0.0189518 0.0294896i
\(379\) −4.74698 33.0160i −0.243836 1.69592i −0.632519 0.774545i \(-0.717979\pi\)
0.388683 0.921372i \(-0.372930\pi\)
\(380\) 0 0
\(381\) 14.7601 9.48571i 0.756181 0.485968i
\(382\) −0.284209 0.246268i −0.0145414 0.0126002i
\(383\) 28.2775 + 12.9139i 1.44491 + 0.659870i 0.974870 0.222773i \(-0.0715108\pi\)
0.470044 + 0.882643i \(0.344238\pi\)
\(384\) −2.35017 1.51036i −0.119931 0.0770753i
\(385\) 0 0
\(386\) −0.279084 0.322080i −0.0142050 0.0163934i
\(387\) 3.03988 10.3529i 0.154526 0.526267i
\(388\) −10.0411 + 4.58560i −0.509758 + 0.232799i
\(389\) −1.80544 + 12.5571i −0.0915394 + 0.636670i 0.891465 + 0.453089i \(0.149678\pi\)
−0.983005 + 0.183581i \(0.941231\pi\)
\(390\) 0 0
\(391\) 6.89440 19.7358i 0.348665 0.998085i
\(392\) 1.62218i 0.0819324i
\(393\) −12.9152 1.85692i −0.651484 0.0936692i
\(394\) 0.00961727 + 0.0210589i 0.000484511 + 0.00106093i
\(395\) 0 0
\(396\) 5.30841 + 6.12623i 0.266757 + 0.307855i
\(397\) 3.47123 + 11.8219i 0.174216 + 0.593325i 0.999587 + 0.0287344i \(0.00914770\pi\)
−0.825371 + 0.564590i \(0.809034\pi\)
\(398\) 0.206192 0.320841i 0.0103355 0.0160823i
\(399\) −4.76890 + 10.4424i −0.238744 + 0.522776i
\(400\) 0 0
\(401\) −28.3895 + 18.2448i −1.41770 + 0.911102i −0.417705 + 0.908583i \(0.637166\pi\)
−0.999997 + 0.00251937i \(0.999198\pi\)
\(402\) −0.171440 + 0.0246493i −0.00855063 + 0.00122940i
\(403\) −1.91941 + 0.275970i −0.0956126 + 0.0137470i
\(404\) 7.53797 4.84436i 0.375028 0.241016i
\(405\) 0 0
\(406\) −0.253827 + 0.555804i −0.0125972 + 0.0275841i
\(407\) 12.2035 18.9890i 0.604904 0.941249i
\(408\) −0.432214 1.47199i −0.0213978 0.0728741i
\(409\) 10.6316 + 12.2695i 0.525698 + 0.606688i 0.955048 0.296450i \(-0.0958028\pi\)
−0.429350 + 0.903138i \(0.641257\pi\)
\(410\) 0 0
\(411\) −8.94256 19.5815i −0.441104 0.965883i
\(412\) −19.1927 2.75950i −0.945558 0.135951i
\(413\) 12.4018i 0.610254i
\(414\) 0.841961 0.0779495i 0.0413801 0.00383101i
\(415\) 0 0
\(416\) −0.320594 + 2.22978i −0.0157184 + 0.109324i
\(417\) 14.8924 6.80112i 0.729282 0.333052i
\(418\) −0.375150 + 1.27764i −0.0183492 + 0.0624916i
\(419\) −8.76692 10.1176i −0.428292 0.494275i 0.500053 0.865995i \(-0.333314\pi\)
−0.928345 + 0.371719i \(0.878768\pi\)
\(420\) 0 0
\(421\) −10.9478 7.03572i −0.533563 0.342900i 0.245954 0.969282i \(-0.420899\pi\)
−0.779517 + 0.626382i \(0.784535\pi\)
\(422\) 0.526644 + 0.240510i 0.0256366 + 0.0117079i
\(423\) −4.12375 3.57325i −0.200504 0.173737i
\(424\) −0.0812036 + 0.0521864i −0.00394360 + 0.00253439i
\(425\) 0 0
\(426\) −0.139903 0.973048i −0.00677833 0.0471443i
\(427\) −2.69081 4.18698i −0.130217 0.202622i
\(428\) −11.1367 9.65005i −0.538315 0.466453i
\(429\) −1.80906 + 3.96130i −0.0873424 + 0.191253i
\(430\) 0 0
\(431\) −8.97982 + 2.63671i −0.432543 + 0.127006i −0.490754 0.871298i \(-0.663279\pi\)
0.0582112 + 0.998304i \(0.481460\pi\)
\(432\) −14.9390 + 12.9447i −0.718754 + 0.622804i
\(433\) −9.56922 + 32.5898i −0.459867 + 1.56616i 0.324511 + 0.945882i \(0.394800\pi\)
−0.784378 + 0.620283i \(0.787018\pi\)
\(434\) −0.0512961 0.112323i −0.00246229 0.00539167i
\(435\) 0 0
\(436\) −20.7432 −0.993419
\(437\) −21.9300 28.0522i −1.04905 1.34192i
\(438\) 0.914218i 0.0436830i
\(439\) 4.53831 31.5646i 0.216602 1.50650i −0.533854 0.845577i \(-0.679257\pi\)
0.750456 0.660921i \(-0.229834\pi\)
\(440\) 0 0
\(441\) −8.84511 2.59716i −0.421196 0.123674i
\(442\) −0.621656 + 0.538668i −0.0295691 + 0.0256218i
\(443\) −8.62354 29.3691i −0.409717 1.39537i −0.863542 0.504277i \(-0.831759\pi\)
0.453825 0.891091i \(-0.350059\pi\)
\(444\) 18.5950 + 11.9502i 0.882477 + 0.567134i
\(445\) 0 0
\(446\) 0.531535 0.613424i 0.0251689 0.0290465i
\(447\) 10.4459 + 16.2542i 0.494076 + 0.768797i
\(448\) 11.9592 1.71947i 0.565018 0.0812373i
\(449\) −2.39840 16.6812i −0.113187 0.787236i −0.964785 0.263040i \(-0.915275\pi\)
0.851597 0.524196i \(-0.175634\pi\)
\(450\) 0 0
\(451\) −8.05133 + 9.29173i −0.379122 + 0.437530i
\(452\) 35.5048 + 16.2145i 1.67001 + 0.762666i
\(453\) 10.8202 16.8366i 0.508380 0.791054i
\(454\) −0.750400 + 0.220337i −0.0352180 + 0.0103409i
\(455\) 0 0
\(456\) −2.50714 0.736163i −0.117408 0.0344740i
\(457\) −2.47375 + 1.12972i −0.115717 + 0.0528463i −0.472432 0.881367i \(-0.656624\pi\)
0.356715 + 0.934213i \(0.383897\pi\)
\(458\) 0.731650 + 0.105195i 0.0341877 + 0.00491546i
\(459\) −21.7954 −1.01732
\(460\) 0 0
\(461\) −35.7457 −1.66484 −0.832421 0.554143i \(-0.813046\pi\)
−0.832421 + 0.554143i \(0.813046\pi\)
\(462\) −0.274486 0.0394651i −0.0127702 0.00183608i
\(463\) 37.8860 17.3020i 1.76071 0.804091i 0.775814 0.630961i \(-0.217339\pi\)
0.984899 0.173130i \(-0.0553880\pi\)
\(464\) 17.0041 + 4.99286i 0.789397 + 0.231788i
\(465\) 0 0
\(466\) 2.03119 0.596411i 0.0940931 0.0276282i
\(467\) 9.55519 14.8682i 0.442161 0.688017i −0.546621 0.837380i \(-0.684086\pi\)
0.988782 + 0.149364i \(0.0477225\pi\)
\(468\) 7.75819 + 3.54305i 0.358623 + 0.163777i
\(469\) 1.98938 2.29587i 0.0918610 0.106013i
\(470\) 0 0
\(471\) 0.821781 + 5.71561i 0.0378657 + 0.263361i
\(472\) 2.79411 0.401733i 0.128609 0.0184913i
\(473\) −5.93396 9.23343i −0.272844 0.424553i
\(474\) −0.185866 + 0.214501i −0.00853712 + 0.00985237i
\(475\) 0 0
\(476\) 11.2961 + 7.25953i 0.517754 + 0.332740i
\(477\) 0.154543 + 0.526324i 0.00707602 + 0.0240987i
\(478\) −0.748699 + 0.648752i −0.0342447 + 0.0296732i
\(479\) −11.4723 3.36858i −0.524184 0.153914i 0.00892633 0.999960i \(-0.497159\pi\)
−0.533110 + 0.846046i \(0.678977\pi\)
\(480\) 0 0
\(481\) 3.37991 23.5078i 0.154111 1.07186i
\(482\) 2.47780i 0.112861i
\(483\) 5.13260 5.35195i 0.233541 0.243522i
\(484\) −13.6687 −0.621306
\(485\) 0 0
\(486\) −0.585941 1.28303i −0.0265788 0.0581995i
\(487\) 5.31536 18.1024i 0.240862 0.820300i −0.746981 0.664845i \(-0.768497\pi\)
0.987843 0.155455i \(-0.0496843\pi\)
\(488\) 0.856156 0.741863i 0.0387563 0.0335826i
\(489\) −8.44701 + 2.48026i −0.381987 + 0.112161i
\(490\) 0 0
\(491\) 9.10363 19.9342i 0.410841 0.899616i −0.585214 0.810879i \(-0.698990\pi\)
0.996055 0.0887373i \(-0.0282832\pi\)
\(492\) −9.09891 7.88425i −0.410211 0.355450i
\(493\) 10.5643 + 16.4384i 0.475794 + 0.740349i
\(494\) 0.199387 + 1.38677i 0.00897086 + 0.0623937i
\(495\) 0 0
\(496\) −3.01291 + 1.93628i −0.135284 + 0.0869416i
\(497\) 13.0308 + 11.2912i 0.584509 + 0.506480i
\(498\) 0.349679 + 0.159693i 0.0156695 + 0.00715602i
\(499\) −8.48768 5.45470i −0.379961 0.244186i 0.336694 0.941614i \(-0.390691\pi\)
−0.716655 + 0.697428i \(0.754328\pi\)
\(500\) 0 0
\(501\) −12.7879 14.7581i −0.571323 0.659341i
\(502\) 0.682837 2.32553i 0.0304765 0.103793i
\(503\) −12.1941 + 5.56885i −0.543707 + 0.248303i −0.668283 0.743907i \(-0.732970\pi\)
0.124576 + 0.992210i \(0.460243\pi\)
\(504\) −0.154886 + 1.07726i −0.00689918 + 0.0479849i
\(505\) 0 0
\(506\) 0.500939 0.699196i 0.0222694 0.0310831i
\(507\) 8.41804i 0.373858i
\(508\) −34.5985 4.97451i −1.53506 0.220708i
\(509\) −8.03460 17.5933i −0.356127 0.779810i −0.999894 0.0145879i \(-0.995356\pi\)
0.643766 0.765222i \(-0.277371\pi\)
\(510\) 0 0
\(511\) −10.5006 12.1183i −0.464518 0.536082i
\(512\) 1.95615 + 6.66205i 0.0864506 + 0.294424i
\(513\) −20.0701 + 31.2297i −0.886116 + 1.37882i
\(514\) −0.650495 + 1.42439i −0.0286921 + 0.0628270i
\(515\) 0 0
\(516\) 9.04182 5.81083i 0.398044 0.255807i
\(517\) −5.49398 + 0.789915i −0.241625 + 0.0347404i
\(518\) 1.49694 0.215227i 0.0657716 0.00945652i
\(519\) 18.1562 11.6683i 0.796970 0.512182i
\(520\) 0 0
\(521\) −4.67119 + 10.2285i −0.204648 + 0.448117i −0.983930 0.178557i \(-0.942857\pi\)
0.779281 + 0.626674i \(0.215584\pi\)
\(522\) −0.427296 + 0.664885i −0.0187022 + 0.0291012i
\(523\) 5.09404 + 17.3487i 0.222747 + 0.758605i 0.992711 + 0.120519i \(0.0384558\pi\)
−0.769964 + 0.638087i \(0.779726\pi\)
\(524\) 17.0228 + 19.6454i 0.743645 + 0.858212i
\(525\) 0 0
\(526\) −0.320098 0.700917i −0.0139569 0.0305614i
\(527\) −3.90874 0.561992i −0.170267 0.0244808i
\(528\) 8.04304i 0.350028i
\(529\) 7.39715 + 21.7780i 0.321615 + 0.946870i
\(530\) 0 0
\(531\) 2.28297 15.8784i 0.0990725 0.689064i
\(532\) 20.8037 9.50074i 0.901955 0.411909i
\(533\) −3.64448 + 12.4119i −0.157860 + 0.537621i
\(534\) −0.0370854 0.0427988i −0.00160484 0.00185209i
\(535\) 0 0
\(536\) 0.581697 + 0.373834i 0.0251255 + 0.0161472i
\(537\) −13.9672 6.37863i −0.602731 0.275258i
\(538\) −0.195260 0.169194i −0.00841825 0.00729445i
\(539\) −7.88869 + 5.06975i −0.339790 + 0.218370i
\(540\) 0 0
\(541\) 1.97456 + 13.7333i 0.0848928 + 0.590442i 0.987217 + 0.159384i \(0.0509507\pi\)
−0.902324 + 0.431059i \(0.858140\pi\)
\(542\) 0.312674 + 0.486530i 0.0134305 + 0.0208983i
\(543\) 0.618931 + 0.536306i 0.0265609 + 0.0230151i
\(544\) −1.90571 + 4.17292i −0.0817065 + 0.178912i
\(545\) 0 0
\(546\) −0.279953 + 0.0822015i −0.0119809 + 0.00351790i
\(547\) 22.7793 19.7384i 0.973973 0.843952i −0.0137919 0.999905i \(-0.504390\pi\)
0.987764 + 0.155953i \(0.0498448\pi\)
\(548\) −12.0825 + 41.1491i −0.516138 + 1.75780i
\(549\) −2.67436 5.85603i −0.114139 0.249929i
\(550\) 0 0
\(551\) 33.2819 1.41786
\(552\) 1.37204 + 0.983001i 0.0583981 + 0.0418393i
\(553\) 4.97813i 0.211692i
\(554\) −0.285906 + 1.98852i −0.0121470 + 0.0844840i
\(555\) 0 0
\(556\) −31.2953 9.18913i −1.32722 0.389706i
\(557\) −16.3440 + 14.1622i −0.692519 + 0.600071i −0.928343 0.371724i \(-0.878767\pi\)
0.235824 + 0.971796i \(0.424221\pi\)
\(558\) −0.0449991 0.153253i −0.00190496 0.00648771i
\(559\) −9.71499 6.24345i −0.410900 0.264070i
\(560\) 0 0
\(561\) −5.80751 + 6.70222i −0.245193 + 0.282968i
\(562\) 0.678850 + 1.05631i 0.0286356 + 0.0445578i
\(563\) 0.283349 0.0407395i 0.0119418 0.00171696i −0.136341 0.990662i \(-0.543534\pi\)
0.148283 + 0.988945i \(0.452625\pi\)
\(564\) −0.773524 5.37998i −0.0325712 0.226538i
\(565\) 0 0
\(566\) −1.36864 + 1.57949i −0.0575281 + 0.0663910i
\(567\) 1.40647 + 0.642315i 0.0590663 + 0.0269747i
\(568\) −2.12179 + 3.30156i −0.0890282 + 0.138531i
\(569\) −1.66147 + 0.487852i −0.0696525 + 0.0204518i −0.316373 0.948635i \(-0.602465\pi\)
0.246721 + 0.969087i \(0.420647\pi\)
\(570\) 0 0
\(571\) −19.8922 5.84086i −0.832461 0.244433i −0.162387 0.986727i \(-0.551919\pi\)
−0.670074 + 0.742295i \(0.733738\pi\)
\(572\) 7.89181 3.60407i 0.329973 0.150694i
\(573\) −4.22245 0.607097i −0.176395 0.0253618i
\(574\) −0.823739 −0.0343822
\(575\) 0 0
\(576\) 15.6282 0.651174
\(577\) 23.8763 + 3.43290i 0.993985 + 0.142913i 0.620067 0.784549i \(-0.287105\pi\)
0.373917 + 0.927462i \(0.378014\pi\)
\(578\) −0.160506 + 0.0733005i −0.00667616 + 0.00304890i
\(579\) −4.63848 1.36198i −0.192769 0.0566020i
\(580\) 0 0
\(581\) −6.46934 + 1.89957i −0.268394 + 0.0788074i
\(582\) 0.264080 0.410917i 0.0109465 0.0170330i
\(583\) 0.507567 + 0.231798i 0.0210213 + 0.00960009i
\(584\) 2.39009 2.75831i 0.0989026 0.114140i
\(585\) 0 0
\(586\) 0.0536241 + 0.372964i 0.00221519 + 0.0154070i
\(587\) 33.2423 4.77952i 1.37206 0.197272i 0.583439 0.812157i \(-0.301707\pi\)
0.788617 + 0.614885i \(0.210798\pi\)
\(588\) −4.96455 7.72499i −0.204734 0.318573i
\(589\) −4.40458 + 5.08316i −0.181488 + 0.209448i
\(590\) 0 0
\(591\) 0.220925 + 0.141980i 0.00908764 + 0.00584027i
\(592\) −12.3578 42.0867i −0.507901 1.72975i
\(593\) 22.5585 19.5470i 0.926365 0.802700i −0.0542739 0.998526i \(-0.517284\pi\)
0.980639 + 0.195827i \(0.0627389\pi\)
\(594\) −0.860418 0.252641i −0.0353034 0.0103660i
\(595\) 0 0
\(596\) 5.47807 38.1008i 0.224391 1.56067i
\(597\) 4.32625i 0.177062i
\(598\) 0.173830 0.888133i 0.00710843 0.0363185i
\(599\) −4.70186 −0.192113 −0.0960564 0.995376i \(-0.530623\pi\)
−0.0960564 + 0.995376i \(0.530623\pi\)
\(600\) 0 0
\(601\) 8.89729 + 19.4823i 0.362928 + 0.794701i 0.999720 + 0.0236658i \(0.00753375\pi\)
−0.636792 + 0.771036i \(0.719739\pi\)
\(602\) 0.207178 0.705584i 0.00844395 0.0287575i
\(603\) 2.96969 2.57325i 0.120935 0.104791i
\(604\) −38.2569 + 11.2332i −1.55665 + 0.457073i
\(605\) 0 0
\(606\) −0.164711 + 0.360666i −0.00669091 + 0.0146511i
\(607\) −29.1696 25.2756i −1.18396 1.02591i −0.999069 0.0431477i \(-0.986261\pi\)
−0.184891 0.982759i \(-0.559193\pi\)
\(608\) 4.22433 + 6.57319i 0.171319 + 0.266578i
\(609\) 0.986403 + 6.86058i 0.0399711 + 0.278005i
\(610\) 0 0
\(611\) −4.91289 + 3.15732i −0.198754 + 0.127732i
\(612\) 13.1263 + 11.3740i 0.530599 + 0.459766i
\(613\) 17.1155 + 7.81638i 0.691288 + 0.315700i 0.729900 0.683554i \(-0.239567\pi\)
−0.0386125 + 0.999254i \(0.512294\pi\)
\(614\) 0.663370 + 0.426322i 0.0267714 + 0.0172050i
\(615\) 0 0
\(616\) 0.724983 + 0.836675i 0.0292104 + 0.0337106i
\(617\) −4.46602 + 15.2099i −0.179795 + 0.612326i 0.819438 + 0.573168i \(0.194286\pi\)
−0.999233 + 0.0391580i \(0.987532\pi\)
\(618\) 0.780473 0.356430i 0.0313952 0.0143377i
\(619\) −4.22984 + 29.4192i −0.170012 + 1.18246i 0.708842 + 0.705367i \(0.249218\pi\)
−0.878854 + 0.477091i \(0.841691\pi\)
\(620\) 0 0
\(621\) 18.8915 14.7685i 0.758091 0.592641i
\(622\) 2.05794i 0.0825158i
\(623\) 0.983162 + 0.141357i 0.0393896 + 0.00566336i
\(624\) 3.51546 + 7.69778i 0.140731 + 0.308158i
\(625\) 0 0
\(626\) 1.29956 + 1.49977i 0.0519408 + 0.0599429i
\(627\) 4.25553 + 14.4930i 0.169949 + 0.578794i
\(628\) 6.21947 9.67769i 0.248184 0.386182i
\(629\) 20.0912 43.9936i 0.801089 1.75414i
\(630\) 0 0
\(631\) −14.0318 + 9.01768i −0.558597 + 0.358988i −0.789273 0.614042i \(-0.789542\pi\)
0.230677 + 0.973030i \(0.425906\pi\)
\(632\) 1.12156 0.161257i 0.0446134 0.00641444i
\(633\) 6.50065 0.934652i 0.258378 0.0371491i
\(634\) −0.945584 + 0.607690i −0.0375539 + 0.0241345i
\(635\) 0 0
\(636\) −0.226988 + 0.497034i −0.00900066 + 0.0197087i
\(637\) −5.33416 + 8.30012i −0.211347 + 0.328863i
\(638\) 0.226502 + 0.771397i 0.00896732 + 0.0305399i
\(639\) 14.6051 + 16.8552i 0.577769 + 0.666781i
\(640\) 0 0
\(641\) −12.5542 27.4898i −0.495859 1.08578i −0.977793 0.209573i \(-0.932793\pi\)
0.481934 0.876208i \(-0.339935\pi\)
\(642\) 0.645431 + 0.0927990i 0.0254731 + 0.00366248i
\(643\) 7.45857i 0.294137i −0.989126 0.147069i \(-0.953016\pi\)
0.989126 0.147069i \(-0.0469838\pi\)
\(644\) −14.7101 + 1.36187i −0.579659 + 0.0536653i
\(645\) 0 0
\(646\) −0.406038 + 2.82406i −0.0159754 + 0.111111i
\(647\) 6.94356 3.17102i 0.272980 0.124666i −0.274222 0.961666i \(-0.588420\pi\)
0.547202 + 0.837001i \(0.315693\pi\)
\(648\) −0.0991526 + 0.337683i −0.00389508 + 0.0132654i
\(649\) −10.6860 12.3323i −0.419462 0.484085i
\(650\) 0 0
\(651\) −1.17836 0.757286i −0.0461836 0.0296804i
\(652\) 15.9539 + 7.28589i 0.624802 + 0.285337i
\(653\) −29.3782 25.4564i −1.14966 0.996185i −0.999972 0.00745135i \(-0.997628\pi\)
−0.149686 0.988734i \(-0.547826\pi\)
\(654\) 0.772173 0.496246i 0.0301944 0.0194047i
\(655\) 0 0
\(656\) 3.40014 + 23.6485i 0.132753 + 0.923319i
\(657\) −11.2134 17.4484i −0.437476 0.680726i
\(658\) −0.281047 0.243529i −0.0109564 0.00949374i
\(659\) 5.38310 11.7873i 0.209696 0.459170i −0.775335 0.631551i \(-0.782419\pi\)
0.985030 + 0.172381i \(0.0551460\pi\)
\(660\) 0 0
\(661\) 28.9778 8.50866i 1.12711 0.330949i 0.335537 0.942027i \(-0.391082\pi\)
0.791570 + 0.611078i \(0.209264\pi\)
\(662\) 1.09248 0.946639i 0.0424604 0.0367922i
\(663\) −2.62880 + 8.95287i −0.102094 + 0.347701i
\(664\) −0.637531 1.39600i −0.0247410 0.0541753i
\(665\) 0 0
\(666\) 1.95619 0.0758007
\(667\) −20.2955 7.08990i −0.785844 0.274522i
\(668\) 38.9037i 1.50523i
\(669\) 1.31033 9.11356i 0.0506604 0.352351i
\(670\) 0 0
\(671\) −6.28342 1.84498i −0.242569 0.0712246i
\(672\) −1.22977 + 1.06560i −0.0474393 + 0.0411064i
\(673\) 0.667173 + 2.27218i 0.0257176 + 0.0875862i 0.971352 0.237646i \(-0.0763758\pi\)
−0.945634 + 0.325232i \(0.894558\pi\)
\(674\) −2.03488 1.30773i −0.0783805 0.0503721i
\(675\) 0 0
\(676\) −10.9824 + 12.6744i −0.422402 + 0.487478i
\(677\) 18.7600 + 29.1912i 0.721006 + 1.12191i 0.987431 + 0.158052i \(0.0505213\pi\)
−0.266425 + 0.963856i \(0.585842\pi\)
\(678\) −1.70958 + 0.245801i −0.0656562 + 0.00943993i
\(679\) 1.21925 + 8.48004i 0.0467904 + 0.325434i
\(680\) 0 0
\(681\) −5.80963 + 6.70467i −0.222626 + 0.256924i
\(682\) −0.147791 0.0674940i −0.00565922 0.00258448i
\(683\) 12.5776 19.5711i 0.481269 0.748869i −0.512696 0.858570i \(-0.671353\pi\)
0.993965 + 0.109702i \(0.0349895\pi\)
\(684\) 28.3845 8.33444i 1.08531 0.318675i
\(685\) 0 0
\(686\) −1.51832 0.445819i −0.0579698 0.0170215i
\(687\) 7.62712 3.48319i 0.290993 0.132892i
\(688\) −21.1116 3.03539i −0.804872 0.115723i
\(689\) 0.587093 0.0223665
\(690\) 0 0
\(691\) −45.0096 −1.71225 −0.856123 0.516772i \(-0.827133\pi\)
−0.856123 + 0.516772i \(0.827133\pi\)
\(692\) −42.5593 6.11911i −1.61786 0.232614i
\(693\) 5.72279 2.61351i 0.217391 0.0992790i
\(694\) 0.510520 + 0.149902i 0.0193791 + 0.00569020i
\(695\) 0 0
\(696\) −1.51372 + 0.444470i −0.0573776 + 0.0168476i
\(697\) −14.2422 + 22.1612i −0.539461 + 0.839417i
\(698\) 0.669363 + 0.305688i 0.0253358 + 0.0115705i
\(699\) 15.7256 18.1483i 0.594796 0.686431i
\(700\) 0 0
\(701\) −3.34738 23.2815i −0.126429 0.879332i −0.950029 0.312161i \(-0.898947\pi\)
0.823600 0.567171i \(-0.191962\pi\)
\(702\) −0.933908 + 0.134276i −0.0352481 + 0.00506791i
\(703\) −44.5357 69.2989i −1.67969 2.61366i
\(704\) 10.4105 12.0144i 0.392362 0.452810i
\(705\) 0 0
\(706\) −1.93952 1.24645i −0.0729946 0.0469108i
\(707\) −1.95925 6.67261i −0.0736854 0.250949i
\(708\) 12.0764 10.4643i 0.453859 0.393271i
\(709\) −32.8793 9.65422i −1.23481 0.362572i −0.401745 0.915752i \(-0.631596\pi\)
−0.833062 + 0.553180i \(0.813414\pi\)
\(710\) 0 0
\(711\) 0.916390 6.37363i 0.0343673 0.239030i
\(712\) 0.226084i 0.00847285i
\(713\) 3.76877 2.16144i 0.141142 0.0809467i
\(714\) −0.594172 −0.0222363
\(715\) 0 0
\(716\) 12.7077 + 27.8260i 0.474909 + 1.03990i
\(717\) −3.16603 + 10.7825i −0.118238 + 0.402680i
\(718\) 0.377112 0.326770i 0.0140737 0.0121949i
\(719\) 22.3827 6.57217i 0.834735 0.245100i 0.163685 0.986513i \(-0.447662\pi\)
0.671050 + 0.741412i \(0.265844\pi\)
\(720\) 0 0
\(721\) −6.25157 + 13.6890i −0.232821 + 0.509806i
\(722\) 2.40672 + 2.08543i 0.0895687 + 0.0776117i
\(723\) 15.1958 + 23.6451i 0.565138 + 0.879371i
\(724\) −0.232195 1.61495i −0.00862947 0.0600193i
\(725\) 0 0
\(726\) 0.508824 0.327001i 0.0188842 0.0121362i
\(727\) 30.4481 + 26.3834i 1.12926 + 0.978507i 0.999914 0.0130932i \(-0.00416783\pi\)
0.129343 + 0.991600i \(0.458713\pi\)
\(728\) 1.05956 + 0.483883i 0.0392698 + 0.0179339i
\(729\) −10.9363 7.02833i −0.405048 0.260309i
\(730\) 0 0
\(731\) −15.4005 17.7731i −0.569607 0.657361i
\(732\) 1.80669 6.15303i 0.0667773 0.227422i
\(733\) 20.6659 9.43781i 0.763313 0.348594i 0.00457542 0.999990i \(-0.498544\pi\)
0.758738 + 0.651396i \(0.225816\pi\)
\(734\) −0.154499 + 1.07456i −0.00570266 + 0.0396629i
\(735\) 0 0
\(736\) −1.17576 4.90825i −0.0433391 0.180921i
\(737\) 3.99714i 0.147236i
\(738\) −1.05466 0.151637i −0.0388224 0.00558182i
\(739\) 7.47356 + 16.3648i 0.274919 + 0.601989i 0.995849 0.0910188i \(-0.0290123\pi\)
−0.720930 + 0.693008i \(0.756285\pi\)
\(740\) 0 0
\(741\) 10.4075 + 12.0109i 0.382328 + 0.441230i
\(742\) 0.0105326 + 0.0358708i 0.000386664 + 0.00131686i
\(743\) 3.14797 4.89833i 0.115488 0.179702i −0.778698 0.627399i \(-0.784119\pi\)
0.894185 + 0.447697i \(0.147756\pi\)
\(744\) 0.132445 0.290013i 0.00485566 0.0106324i
\(745\) 0 0
\(746\) 2.16002 1.38816i 0.0790840 0.0508242i
\(747\) −8.63256 + 1.24117i −0.315849 + 0.0454122i
\(748\) 17.4879 2.51438i 0.639420 0.0919347i
\(749\) −9.62131 + 6.18324i −0.351555 + 0.225931i
\(750\) 0 0
\(751\) 3.84740 8.42462i 0.140393 0.307419i −0.826354 0.563151i \(-0.809589\pi\)
0.966748 + 0.255732i \(0.0823164\pi\)
\(752\) −5.83133 + 9.07372i −0.212647 + 0.330885i
\(753\) −7.74578 26.3797i −0.282272 0.961330i
\(754\) 0.553942 + 0.639283i 0.0201734 + 0.0232813i
\(755\) 0 0
\(756\) 6.39819 + 14.0101i 0.232700 + 0.509542i
\(757\) −8.04064 1.15607i −0.292242 0.0420180i −0.00536536 0.999986i \(-0.501708\pi\)
−0.286877 + 0.957968i \(0.592617\pi\)
\(758\) 2.94048i 0.106803i
\(759\) 0.492336 9.74443i 0.0178707 0.353700i
\(760\) 0 0
\(761\) −4.15984 + 28.9323i −0.150794 + 1.04880i 0.764099 + 0.645099i \(0.223184\pi\)
−0.914893 + 0.403697i \(0.867725\pi\)
\(762\) 1.40695 0.642532i 0.0509684 0.0232765i
\(763\) −4.53565 + 15.4470i −0.164201 + 0.559219i
\(764\) 5.56539 + 6.42281i 0.201349 + 0.232369i
\(765\) 0 0
\(766\) 2.30544 + 1.48162i 0.0832990 + 0.0535330i
\(767\) −15.6175 7.13228i −0.563915 0.257532i
\(768\) 11.6249 + 10.0730i 0.419476 + 0.363478i
\(769\) −12.2803 + 7.89208i −0.442840 + 0.284596i −0.742998 0.669294i \(-0.766597\pi\)
0.300158 + 0.953889i \(0.402960\pi\)
\(770\) 0 0
\(771\) 2.52790 + 17.5820i 0.0910403 + 0.633199i
\(772\) 5.20693 + 8.10215i 0.187402 + 0.291603i
\(773\) 13.0471 + 11.3054i 0.469271 + 0.406625i 0.857136 0.515091i \(-0.172242\pi\)
−0.387865 + 0.921716i \(0.626787\pi\)
\(774\) 0.395142 0.865241i 0.0142031 0.0311004i
\(775\) 0 0
\(776\) −1.87104 + 0.549388i −0.0671666 + 0.0197219i
\(777\) 12.9650 11.2342i 0.465117 0.403026i
\(778\) −0.315080 + 1.07306i −0.0112962 + 0.0384712i
\(779\) 18.6391 + 40.8139i 0.667815 + 1.46231i
\(780\) 0 0
\(781\) 22.6867 0.811795
\(782\) 0.849200 1.63563i 0.0303673 0.0584899i
\(783\) 22.4134i 0.800991i
\(784\) −2.59332 + 18.0369i −0.0926186 + 0.644176i
\(785\) 0 0
\(786\) −1.10366 0.324065i −0.0393663 0.0115590i
\(787\) −11.5950 + 10.0471i −0.413318 + 0.358142i −0.836561 0.547875i \(-0.815437\pi\)
0.423243 + 0.906016i \(0.360892\pi\)
\(788\) −0.147399 0.501995i −0.00525087 0.0178828i
\(789\) −7.35320 4.72561i −0.261781 0.168236i
\(790\) 0 0
\(791\) 19.8380 22.8942i 0.705356 0.814025i
\(792\) 0.774198 + 1.20467i 0.0275099 + 0.0428063i
\(793\) −6.82010 + 0.980582i −0.242189 + 0.0348215i
\(794\) 0.154578 + 1.07511i 0.00548577 + 0.0381544i
\(795\) 0 0
\(796\) −5.64417 + 6.51371i −0.200052 + 0.230872i
\(797\) −22.8517 10.4360i −0.809448 0.369663i −0.0326932 0.999465i \(-0.510408\pi\)
−0.776755 + 0.629803i \(0.783136\pi\)
\(798\) −0.547137 + 0.851362i −0.0193685 + 0.0301379i
\(799\) −11.4109 + 3.35055i −0.403690 + 0.118534i
\(800\) 0 0
\(801\) 1.23275 + 0.361967i 0.0435570 + 0.0127895i
\(802\) −2.70612 + 1.23584i −0.0955565 + 0.0436392i
\(803\) −20.8834 3.00258i −0.736959 0.105959i
\(804\) 3.91419 0.138043
\(805\) 0 0
\(806\) −0.170947 −0.00602136
\(807\) −2.90095 0.417094i −0.102118 0.0146824i
\(808\) 1.43986 0.657563i 0.0506542 0.0231330i
\(809\) 21.8919 + 6.42804i 0.769678 + 0.225998i 0.642917 0.765935i \(-0.277724\pi\)
0.126761 + 0.991933i \(0.459542\pi\)
\(810\) 0 0
\(811\) 41.7803 12.2678i 1.46711 0.430781i 0.551949 0.833878i \(-0.313884\pi\)
0.915157 + 0.403097i \(0.132066\pi\)
\(812\) 7.46538 11.6164i 0.261984 0.407654i
\(813\) 5.96757 + 2.72530i 0.209292 + 0.0955803i
\(814\) 1.30309 1.50385i 0.0456734 0.0527099i
\(815\) 0 0
\(816\) 2.45256 + 17.0579i 0.0858567 + 0.597147i
\(817\) −39.6476 + 5.70046i −1.38709 + 0.199434i
\(818\) 0.773766 + 1.20400i 0.0270541 + 0.0420970i
\(819\) 4.33481 5.00264i 0.151471 0.174806i
\(820\) 0 0
\(821\) 40.9122 + 26.2927i 1.42785 + 0.917621i 0.999905 + 0.0138148i \(0.00439753\pi\)
0.427942 + 0.903806i \(0.359239\pi\)
\(822\) −0.534648 1.82085i −0.0186480 0.0635093i
\(823\) 0.868528 0.752583i 0.0302750 0.0262334i −0.639592 0.768715i \(-0.720897\pi\)
0.669867 + 0.742481i \(0.266351\pi\)
\(824\) −3.28662 0.965039i −0.114495 0.0336187i
\(825\) 0 0
\(826\) 0.155592 1.08217i 0.00541374 0.0376534i
\(827\) 15.3873i 0.535069i 0.963548 + 0.267534i \(0.0862089\pi\)
−0.963548 + 0.267534i \(0.913791\pi\)
\(828\) −19.0844 0.964240i −0.663230 0.0335096i
\(829\) 43.7168 1.51835 0.759174 0.650888i \(-0.225603\pi\)
0.759174 + 0.650888i \(0.225603\pi\)
\(830\) 0 0
\(831\) 9.46680 + 20.7294i 0.328400 + 0.719095i
\(832\) 4.71239 16.0489i 0.163373 0.556396i
\(833\) −15.1846 + 13.1576i −0.526117 + 0.455883i
\(834\) 1.38481 0.406618i 0.0479522 0.0140800i
\(835\) 0 0
\(836\) 12.5008 27.3729i 0.432349 0.946712i
\(837\) −3.42321 2.96623i −0.118323 0.102528i
\(838\) −0.638055 0.992833i −0.0220413 0.0342969i
\(839\) −1.60650 11.1735i −0.0554627 0.385751i −0.998579 0.0532888i \(-0.983030\pi\)
0.943116 0.332462i \(-0.107879\pi\)
\(840\) 0 0
\(841\) −7.49181 + 4.81469i −0.258338 + 0.166024i
\(842\) −0.867020 0.751277i −0.0298795 0.0258907i
\(843\) 12.9563 + 5.91692i 0.446237 + 0.203790i
\(844\) −11.0069 7.07372i −0.378874 0.243488i
\(845\) 0 0
\(846\) −0.315003 0.363533i −0.0108300 0.0124985i
\(847\) −2.98877 + 10.1788i −0.102695 + 0.349748i
\(848\) 0.986328 0.450441i 0.0338707 0.0154682i
\(849\) −3.37394 + 23.4663i −0.115793 + 0.805361i
\(850\) 0 0
\(851\) 12.3956 + 51.7460i 0.424917 + 1.77383i
\(852\) 22.2160i 0.761106i
\(853\) −16.5522 2.37985i −0.566737 0.0814845i −0.147010 0.989135i \(-0.546965\pi\)
−0.419727 + 0.907651i \(0.637874\pi\)
\(854\) −0.182267 0.399108i −0.00623704 0.0136572i
\(855\) 0 0
\(856\) −1.70474 1.96737i −0.0582667 0.0672433i
\(857\) 1.74302 + 5.93618i 0.0595405 + 0.202776i 0.983891 0.178767i \(-0.0572109\pi\)
−0.924351 + 0.381543i \(0.875393\pi\)
\(858\) −0.207554 + 0.322961i −0.00708579 + 0.0110257i
\(859\) 3.60612 7.89631i 0.123039 0.269419i −0.838082 0.545544i \(-0.816323\pi\)
0.961122 + 0.276125i \(0.0890504\pi\)
\(860\) 0 0
\(861\) −7.86077 + 5.05181i −0.267894 + 0.172165i
\(862\) −0.816646 + 0.117416i −0.0278151 + 0.00399921i
\(863\) 11.1982 1.61006i 0.381192 0.0548072i 0.0509446 0.998701i \(-0.483777\pi\)
0.330248 + 0.943894i \(0.392868\pi\)
\(864\) −4.42666 + 2.84484i −0.150598 + 0.0967834i
\(865\) 0 0
\(866\) −1.24386 + 2.72368i −0.0422682 + 0.0925546i
\(867\) −1.08214 + 1.68384i −0.0367513 + 0.0571861i
\(868\) 0.786189 + 2.67752i 0.0266850 + 0.0908808i
\(869\) −4.28939 4.95022i −0.145508 0.167925i
\(870\) 0 0
\(871\) −1.74707 3.82555i −0.0591973 0.129624i
\(872\) −3.62711 0.521499i −0.122829 0.0176602i
\(873\) 11.0817i 0.375058i
\(874\) −1.56164 2.72293i −0.0528232 0.0921045i
\(875\) 0 0
\(876\) 2.94027 20.4500i 0.0993426 0.690943i
\(877\) 22.5349 10.2913i 0.760950 0.347514i 0.00314460 0.999995i \(-0.498999\pi\)
0.757805 + 0.652481i \(0.226272\pi\)
\(878\) 0.792013 2.69735i 0.0267291 0.0910311i
\(879\) 2.79903 + 3.23025i 0.0944090 + 0.108954i
\(880\) 0 0
\(881\) 28.0492 + 18.0261i 0.945000 + 0.607315i 0.919808 0.392368i \(-0.128344\pi\)
0.0251917 + 0.999683i \(0.491980\pi\)
\(882\) −0.739229 0.337594i −0.0248911 0.0113674i
\(883\) 9.88198 + 8.56278i 0.332555 + 0.288161i 0.805092 0.593150i \(-0.202116\pi\)
−0.472537 + 0.881311i \(0.656662\pi\)
\(884\) 15.6382 10.0501i 0.525969 0.338020i
\(885\) 0 0
\(886\) −0.384017 2.67090i −0.0129013 0.0897305i
\(887\) −11.9964 18.6668i −0.402800 0.626770i 0.579303 0.815112i \(-0.303325\pi\)
−0.982103 + 0.188343i \(0.939688\pi\)
\(888\) 2.95103 + 2.55708i 0.0990301 + 0.0858101i
\(889\) −11.2696 + 24.6770i −0.377971 + 0.827641i
\(890\) 0 0
\(891\) 1.95204 0.573170i 0.0653957 0.0192019i
\(892\) −13.8627 + 12.0121i −0.464158 + 0.402195i
\(893\) −5.70679 + 19.4355i −0.190970 + 0.650385i
\(894\) 0.707574 + 1.54937i 0.0236648 + 0.0518187i
\(895\) 0 0
\(896\) 4.31954 0.144306
\(897\) −3.78790 9.54133i −0.126474 0.318576i
\(898\) 1.48567i 0.0495775i
\(899\) −0.577928 + 4.01958i −0.0192750 + 0.134060i
\(900\) 0 0
\(901\) 1.14714 + 0.336832i 0.0382169 + 0.0112215i
\(902\) −0.819121 + 0.709772i −0.0272737 + 0.0236328i
\(903\) −2.35013 8.00382i −0.0782076 0.266351i
\(904\) 5.80064 + 3.72784i 0.192926 + 0.123986i
\(905\) 0 0
\(906\) 1.15539 1.33339i 0.0383853 0.0442990i
\(907\) 11.5834 + 18.0240i 0.384619 + 0.598479i 0.978543 0.206042i \(-0.0660585\pi\)
−0.593924 + 0.804521i \(0.702422\pi\)
\(908\) 17.4943 2.51530i 0.580568 0.0834730i
\(909\) −1.28017 8.90379i −0.0424606 0.295320i
\(910\) 0 0
\(911\) 25.5067 29.4363i 0.845076 0.975269i −0.154844 0.987939i \(-0.549488\pi\)
0.999920 + 0.0126696i \(0.00403297\pi\)
\(912\) 26.6999 + 12.1935i 0.884123 + 0.403766i
\(913\) −4.79631 + 7.46321i −0.158735 + 0.246996i
\(914\) −0.230030 + 0.0675428i −0.00760870 + 0.00223412i
\(915\) 0 0
\(916\) −16.0279 4.70621i −0.529576 0.155497i
\(917\) 18.3516 8.38091i 0.606024 0.276762i
\(918\) −1.90184 0.273443i −0.0627700 0.00902496i
\(919\) −29.9408 −0.987657 −0.493829 0.869559i \(-0.664403\pi\)
−0.493829 + 0.869559i \(0.664403\pi\)
\(920\) 0 0
\(921\) 8.94494 0.294746
\(922\) −3.11912 0.448462i −0.102723 0.0147693i
\(923\) 21.7129 9.91594i 0.714688 0.326387i
\(924\) 6.01302 + 1.76558i 0.197814 + 0.0580834i
\(925\) 0 0
\(926\) 3.52295 1.03443i 0.115771 0.0339935i
\(927\) −10.5240 + 16.3756i −0.345653 + 0.537846i
\(928\) 4.29124 + 1.95974i 0.140867 + 0.0643318i
\(929\) −8.14358 + 9.39819i −0.267182 + 0.308345i −0.873448 0.486917i \(-0.838121\pi\)
0.606266 + 0.795262i \(0.292667\pi\)
\(930\) 0 0
\(931\) 4.87026 + 33.8734i 0.159616 + 1.11016i
\(932\) −47.3537 + 6.80843i −1.55112 + 0.223017i
\(933\) 12.6209 + 19.6385i 0.413189 + 0.642934i
\(934\) 1.02031 1.17750i 0.0333855 0.0385289i
\(935\) 0 0
\(936\) 1.26750 + 0.814576i 0.0414297 + 0.0266252i
\(937\) 2.68807 + 9.15473i 0.0878155 + 0.299072i 0.991677 0.128754i \(-0.0410978\pi\)
−0.903861 + 0.427826i \(0.859280\pi\)
\(938\) 0.202394 0.175376i 0.00660840 0.00572621i
\(939\) 21.5992 + 6.34209i 0.704863 + 0.206966i
\(940\) 0 0
\(941\) 0.484266 3.36814i 0.0157866 0.109798i −0.980405 0.196995i \(-0.936882\pi\)
0.996191 + 0.0871966i \(0.0277908\pi\)
\(942\) 0.509046i 0.0165856i
\(943\) −2.67180 28.8591i −0.0870058 0.939782i
\(944\) −31.7099 −1.03207
\(945\) 0 0
\(946\) −0.401948 0.880143i −0.0130684 0.0286159i
\(947\) −3.50424 + 11.9343i −0.113872 + 0.387814i −0.996631 0.0820124i \(-0.973865\pi\)
0.882759 + 0.469826i \(0.155683\pi\)
\(948\) 4.84750 4.20038i 0.157439 0.136422i
\(949\) −21.2993 + 6.25405i −0.691405 + 0.203015i
\(950\) 0 0
\(951\) −5.29668 + 11.5981i −0.171757 + 0.376095i
\(952\) 1.79269 + 1.55338i 0.0581015 + 0.0503452i
\(953\) 7.23572 + 11.2590i 0.234388 + 0.364715i 0.938445 0.345429i \(-0.112266\pi\)
−0.704057 + 0.710143i \(0.748630\pi\)
\(954\) 0.00688198 + 0.0478652i 0.000222812 + 0.00154969i
\(955\) 0 0
\(956\) 18.8341 12.1039i 0.609137 0.391469i
\(957\) 6.89227 + 5.97219i 0.222795 + 0.193053i
\(958\) −0.958797 0.437868i −0.0309773 0.0141469i
\(959\) 28.0009 + 17.9951i 0.904197 + 0.581092i
\(960\) 0 0
\(961\) 19.7633 + 22.8080i 0.637524 + 0.735742i
\(962\) 0.589852 2.00885i 0.0190176 0.0647680i
\(963\) −13.4567 + 6.14545i −0.433635 + 0.198034i
\(964\) 7.96900 55.4256i 0.256664 1.78514i
\(965\) 0 0
\(966\) 0.515009 0.402610i 0.0165701 0.0129538i
\(967\) 24.7635i 0.796341i 0.917311 + 0.398170i \(0.130355\pi\)
−0.917311 + 0.398170i \(0.869645\pi\)
\(968\) −2.39008 0.343642i −0.0768202 0.0110451i
\(969\) 13.4446 + 29.4395i 0.431902 + 0.945734i
\(970\) 0 0
\(971\) −11.6629 13.4597i −0.374281 0.431944i 0.537092 0.843523i \(-0.319523\pi\)
−0.911374 + 0.411580i \(0.864977\pi\)
\(972\) 8.98041 + 30.5845i 0.288047 + 0.980997i
\(973\) −13.6859 + 21.2956i −0.438749 + 0.682707i
\(974\) 0.690922 1.51291i 0.0221386 0.0484767i
\(975\) 0 0
\(976\) −10.7056 + 6.88004i −0.342676 + 0.220225i
\(977\) −7.20015 + 1.03522i −0.230353 + 0.0331198i −0.256525 0.966538i \(-0.582577\pi\)
0.0261716 + 0.999657i \(0.491668\pi\)
\(978\) −0.768191 + 0.110449i −0.0245640 + 0.00353178i
\(979\) 1.09945 0.706574i 0.0351386 0.0225822i
\(980\) 0 0
\(981\) −8.65065 + 18.9423i −0.276194 + 0.604780i
\(982\) 1.04446 1.62521i 0.0333301 0.0518627i
\(983\) 9.07613 + 30.9104i 0.289483 + 0.985890i 0.967926 + 0.251236i \(0.0808372\pi\)
−0.678442 + 0.734654i \(0.737345\pi\)
\(984\) −1.39280 1.60738i −0.0444008 0.0512412i
\(985\) 0 0
\(986\) 0.715594 + 1.56693i 0.0227892 + 0.0499013i
\(987\) −4.17548 0.600344i −0.132907 0.0191092i
\(988\) 31.6618i 1.00729i
\(989\) 25.3916 + 4.96978i 0.807407 + 0.158030i
\(990\) 0 0
\(991\) −1.54572 + 10.7507i −0.0491013 + 0.341507i 0.950431 + 0.310935i \(0.100642\pi\)
−0.999533 + 0.0305723i \(0.990267\pi\)
\(992\) −0.867221 + 0.396047i −0.0275343 + 0.0125745i
\(993\) 4.61978 15.7335i 0.146604 0.499288i
\(994\) 0.995387 + 1.14874i 0.0315718 + 0.0364358i
\(995\) 0 0
\(996\) −7.30834 4.69678i −0.231574 0.148823i
\(997\) 19.1851 + 8.76152i 0.607597 + 0.277480i 0.695360 0.718661i \(-0.255245\pi\)
−0.0877636 + 0.996141i \(0.527972\pi\)
\(998\) −0.672189 0.582455i −0.0212778 0.0184373i
\(999\) 46.6687 29.9922i 1.47653 0.948910i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 575.2.p.a.399.2 20
5.2 odd 4 115.2.g.a.31.1 yes 10
5.3 odd 4 575.2.k.a.376.1 10
5.4 even 2 inner 575.2.p.a.399.1 20
23.3 even 11 inner 575.2.p.a.49.1 20
115.3 odd 44 575.2.k.a.26.1 10
115.7 even 44 2645.2.a.o.1.4 5
115.49 even 22 inner 575.2.p.a.49.2 20
115.62 odd 44 2645.2.a.n.1.4 5
115.72 odd 44 115.2.g.a.26.1 10
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
115.2.g.a.26.1 10 115.72 odd 44
115.2.g.a.31.1 yes 10 5.2 odd 4
575.2.k.a.26.1 10 115.3 odd 44
575.2.k.a.376.1 10 5.3 odd 4
575.2.p.a.49.1 20 23.3 even 11 inner
575.2.p.a.49.2 20 115.49 even 22 inner
575.2.p.a.399.1 20 5.4 even 2 inner
575.2.p.a.399.2 20 1.1 even 1 trivial
2645.2.a.n.1.4 5 115.62 odd 44
2645.2.a.o.1.4 5 115.7 even 44