Properties

Label 575.2.p.a.374.2
Level $575$
Weight $2$
Character 575.374
Analytic conductor $4.591$
Analytic rank $0$
Dimension $20$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [575,2,Mod(49,575)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(575, base_ring=CyclotomicField(22))
 
chi = DirichletCharacter(H, H._module([11, 16]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("575.49");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 575 = 5^{2} \cdot 23 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 575.p (of order \(22\), degree \(10\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(4.59139811622\)
Analytic rank: \(0\)
Dimension: \(20\)
Relative dimension: \(2\) over \(\Q(\zeta_{22})\)
Coefficient field: \(\Q(\zeta_{44})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{20} - x^{18} + x^{16} - x^{14} + x^{12} - x^{10} + x^{8} - x^{6} + x^{4} - x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 115)
Sato-Tate group: $\mathrm{SU}(2)[C_{22}]$

Embedding invariants

Embedding label 374.2
Root \(0.540641 - 0.841254i\) of defining polynomial
Character \(\chi\) \(=\) 575.374
Dual form 575.2.p.a.349.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(2.02730 + 0.925839i) q^{2} +(0.281733 - 0.959493i) q^{3} +(1.94306 + 2.24241i) q^{4} +(1.45949 - 1.68434i) q^{6} +(-0.0872586 - 0.0125459i) q^{7} +(0.607265 + 2.06815i) q^{8} +(1.68251 + 1.08128i) q^{9} +(1.01365 + 2.21959i) q^{11} +(2.69900 - 1.23259i) q^{12} +(3.56484 - 0.512546i) q^{13} +(-0.165284 - 0.106222i) q^{14} +(0.160869 - 1.11887i) q^{16} +(-2.55667 - 2.21537i) q^{17} +(2.40986 + 3.74982i) q^{18} +(-1.87358 - 2.16222i) q^{19} +(-0.0366213 + 0.0801894i) q^{21} +5.43826i q^{22} +(-2.15802 + 4.28287i) q^{23} +2.15546 q^{24} +(7.70154 + 2.26138i) q^{26} +(3.77875 - 3.27430i) q^{27} +(-0.141416 - 0.220047i) q^{28} +(-4.87604 + 5.62725i) q^{29} +(1.65370 - 0.485571i) q^{31} +(3.69269 - 5.74593i) q^{32} +(2.41526 - 0.347262i) q^{33} +(-3.13208 - 6.85830i) q^{34} +(0.844535 + 5.87387i) q^{36} +(-0.382654 + 0.595421i) q^{37} +(-1.79644 - 6.11811i) q^{38} +(0.512546 - 3.56484i) q^{39} +(-4.66991 + 3.00117i) q^{41} +(-0.148485 + 0.128663i) q^{42} +(0.675383 - 2.30014i) q^{43} +(-3.00764 + 6.58582i) q^{44} +(-8.34021 + 6.68469i) q^{46} -11.6146i q^{47} +(-1.02822 - 0.469574i) q^{48} +(-6.70899 - 1.96994i) q^{49} +(-2.84593 + 1.82897i) q^{51} +(8.07603 + 6.99792i) q^{52} +(-10.2695 - 1.47653i) q^{53} +(10.6921 - 3.13950i) q^{54} +(-0.0270422 - 0.188083i) q^{56} +(-2.60249 + 1.18852i) q^{57} +(-15.0951 + 6.89372i) q^{58} +(1.64421 + 11.4357i) q^{59} +(-3.89722 + 1.14433i) q^{61} +(3.80211 + 0.546662i) q^{62} +(-0.133248 - 0.115460i) q^{63} +(10.9041 - 7.00766i) q^{64} +(5.21797 + 1.53213i) q^{66} +(-11.1056 - 5.07177i) q^{67} -10.0377i q^{68} +(3.50140 + 3.27723i) q^{69} +(0.787956 - 1.72538i) q^{71} +(-1.21453 + 4.13631i) q^{72} +(4.16900 - 3.61246i) q^{73} +(-1.32702 + 0.852823i) q^{74} +(1.20812 - 8.40266i) q^{76} +(-0.0606031 - 0.206395i) q^{77} +(4.33955 - 6.75247i) q^{78} +(0.997420 + 6.93721i) q^{79} +(0.415415 + 0.909632i) q^{81} +(-12.2459 + 1.76070i) q^{82} +(2.25587 - 3.51021i) q^{83} +(-0.250975 + 0.0736930i) q^{84} +(3.49877 - 4.03779i) q^{86} +(4.02557 + 6.26391i) q^{87} +(-3.97489 + 3.44426i) q^{88} +(-15.3009 - 4.49275i) q^{89} -0.317493 q^{91} +(-13.7971 + 3.48270i) q^{92} -1.72352i q^{93} +(10.7532 - 23.5463i) q^{94} +(-4.47283 - 5.16192i) q^{96} +(7.77424 + 12.0969i) q^{97} +(-11.7773 - 10.2051i) q^{98} +(-0.694523 + 4.83052i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 20 q + 2 q^{4} + 12 q^{6} - 4 q^{9} + 16 q^{11} + 6 q^{14} + 10 q^{16} + 26 q^{19} + 12 q^{21} + 12 q^{24} + 22 q^{26} - 4 q^{29} - 40 q^{31} - 32 q^{34} + 48 q^{36} - 10 q^{41} - 38 q^{44} - 32 q^{46}+ \cdots - 12 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/575\mathbb{Z}\right)^\times\).

\(n\) \(51\) \(277\)
\(\chi(n)\) \(e\left(\frac{9}{11}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.02730 + 0.925839i 1.43352 + 0.654667i 0.972538 0.232743i \(-0.0747701\pi\)
0.460982 + 0.887410i \(0.347497\pi\)
\(3\) 0.281733 0.959493i 0.162658 0.553964i −0.837315 0.546720i \(-0.815876\pi\)
0.999974 0.00724338i \(-0.00230566\pi\)
\(4\) 1.94306 + 2.24241i 0.971531 + 1.12121i
\(5\) 0 0
\(6\) 1.45949 1.68434i 0.595836 0.687631i
\(7\) −0.0872586 0.0125459i −0.0329807 0.00474190i 0.125805 0.992055i \(-0.459849\pi\)
−0.158785 + 0.987313i \(0.550758\pi\)
\(8\) 0.607265 + 2.06815i 0.214700 + 0.731203i
\(9\) 1.68251 + 1.08128i 0.560836 + 0.360427i
\(10\) 0 0
\(11\) 1.01365 + 2.21959i 0.305628 + 0.669231i 0.998664 0.0516714i \(-0.0164549\pi\)
−0.693037 + 0.720902i \(0.743728\pi\)
\(12\) 2.69900 1.23259i 0.779135 0.355819i
\(13\) 3.56484 0.512546i 0.988707 0.142155i 0.371059 0.928609i \(-0.378995\pi\)
0.617648 + 0.786455i \(0.288086\pi\)
\(14\) −0.165284 0.106222i −0.0441741 0.0283890i
\(15\) 0 0
\(16\) 0.160869 1.11887i 0.0402172 0.279717i
\(17\) −2.55667 2.21537i −0.620084 0.537306i 0.287175 0.957878i \(-0.407284\pi\)
−0.907259 + 0.420572i \(0.861829\pi\)
\(18\) 2.40986 + 3.74982i 0.568010 + 0.883840i
\(19\) −1.87358 2.16222i −0.429828 0.496048i 0.498978 0.866615i \(-0.333709\pi\)
−0.928806 + 0.370567i \(0.879163\pi\)
\(20\) 0 0
\(21\) −0.0366213 + 0.0801894i −0.00799142 + 0.0174988i
\(22\) 5.43826i 1.15944i
\(23\) −2.15802 + 4.28287i −0.449979 + 0.893039i
\(24\) 2.15546 0.439982
\(25\) 0 0
\(26\) 7.70154 + 2.26138i 1.51040 + 0.443492i
\(27\) 3.77875 3.27430i 0.727220 0.630140i
\(28\) −0.141416 0.220047i −0.0267251 0.0415850i
\(29\) −4.87604 + 5.62725i −0.905458 + 1.04495i 0.0933249 + 0.995636i \(0.470250\pi\)
−0.998783 + 0.0493188i \(0.984295\pi\)
\(30\) 0 0
\(31\) 1.65370 0.485571i 0.297014 0.0872110i −0.129831 0.991536i \(-0.541443\pi\)
0.426844 + 0.904325i \(0.359625\pi\)
\(32\) 3.69269 5.74593i 0.652781 1.01575i
\(33\) 2.41526 0.347262i 0.420442 0.0604505i
\(34\) −3.13208 6.85830i −0.537147 1.17619i
\(35\) 0 0
\(36\) 0.844535 + 5.87387i 0.140756 + 0.978979i
\(37\) −0.382654 + 0.595421i −0.0629079 + 0.0978866i −0.871283 0.490782i \(-0.836711\pi\)
0.808375 + 0.588668i \(0.200348\pi\)
\(38\) −1.79644 6.11811i −0.291421 0.992489i
\(39\) 0.512546 3.56484i 0.0820730 0.570830i
\(40\) 0 0
\(41\) −4.66991 + 3.00117i −0.729317 + 0.468704i −0.851867 0.523759i \(-0.824529\pi\)
0.122550 + 0.992462i \(0.460893\pi\)
\(42\) −0.148485 + 0.128663i −0.0229117 + 0.0198531i
\(43\) 0.675383 2.30014i 0.102995 0.350768i −0.891830 0.452370i \(-0.850579\pi\)
0.994825 + 0.101602i \(0.0323968\pi\)
\(44\) −3.00764 + 6.58582i −0.453419 + 0.992850i
\(45\) 0 0
\(46\) −8.34021 + 6.68469i −1.22970 + 0.985604i
\(47\) 11.6146i 1.69416i −0.531466 0.847079i \(-0.678359\pi\)
0.531466 0.847079i \(-0.321641\pi\)
\(48\) −1.02822 0.469574i −0.148411 0.0677772i
\(49\) −6.70899 1.96994i −0.958428 0.281420i
\(50\) 0 0
\(51\) −2.84593 + 1.82897i −0.398510 + 0.256107i
\(52\) 8.07603 + 6.99792i 1.11994 + 0.970437i
\(53\) −10.2695 1.47653i −1.41062 0.202817i −0.605462 0.795874i \(-0.707012\pi\)
−0.805160 + 0.593058i \(0.797921\pi\)
\(54\) 10.6921 3.13950i 1.45502 0.427231i
\(55\) 0 0
\(56\) −0.0270422 0.188083i −0.00361367 0.0251336i
\(57\) −2.60249 + 1.18852i −0.344708 + 0.157423i
\(58\) −15.0951 + 6.89372i −1.98209 + 0.905190i
\(59\) 1.64421 + 11.4357i 0.214058 + 1.48881i 0.759417 + 0.650604i \(0.225484\pi\)
−0.545359 + 0.838203i \(0.683607\pi\)
\(60\) 0 0
\(61\) −3.89722 + 1.14433i −0.498988 + 0.146516i −0.521535 0.853230i \(-0.674641\pi\)
0.0225474 + 0.999746i \(0.492822\pi\)
\(62\) 3.80211 + 0.546662i 0.482869 + 0.0694261i
\(63\) −0.133248 0.115460i −0.0167876 0.0145466i
\(64\) 10.9041 7.00766i 1.36302 0.875958i
\(65\) 0 0
\(66\) 5.21797 + 1.53213i 0.642288 + 0.188593i
\(67\) −11.1056 5.07177i −1.35677 0.619615i −0.401637 0.915799i \(-0.631559\pi\)
−0.955131 + 0.296184i \(0.904286\pi\)
\(68\) 10.0377i 1.21725i
\(69\) 3.50140 + 3.27723i 0.421518 + 0.394532i
\(70\) 0 0
\(71\) 0.787956 1.72538i 0.0935131 0.204765i −0.857095 0.515158i \(-0.827733\pi\)
0.950608 + 0.310393i \(0.100461\pi\)
\(72\) −1.21453 + 4.13631i −0.143134 + 0.487468i
\(73\) 4.16900 3.61246i 0.487944 0.422806i −0.375827 0.926690i \(-0.622641\pi\)
0.863772 + 0.503884i \(0.168096\pi\)
\(74\) −1.32702 + 0.852823i −0.154263 + 0.0991387i
\(75\) 0 0
\(76\) 1.20812 8.40266i 0.138581 0.963852i
\(77\) −0.0606031 0.206395i −0.00690637 0.0235209i
\(78\) 4.33955 6.75247i 0.491357 0.764566i
\(79\) 0.997420 + 6.93721i 0.112219 + 0.780497i 0.965753 + 0.259461i \(0.0835450\pi\)
−0.853535 + 0.521036i \(0.825546\pi\)
\(80\) 0 0
\(81\) 0.415415 + 0.909632i 0.0461572 + 0.101070i
\(82\) −12.2459 + 1.76070i −1.35234 + 0.194436i
\(83\) 2.25587 3.51021i 0.247614 0.385295i −0.695091 0.718922i \(-0.744636\pi\)
0.942705 + 0.333626i \(0.108272\pi\)
\(84\) −0.250975 + 0.0736930i −0.0273836 + 0.00804056i
\(85\) 0 0
\(86\) 3.49877 4.03779i 0.377282 0.435406i
\(87\) 4.02557 + 6.26391i 0.431586 + 0.671561i
\(88\) −3.97489 + 3.44426i −0.423725 + 0.367160i
\(89\) −15.3009 4.49275i −1.62189 0.476231i −0.660367 0.750943i \(-0.729599\pi\)
−0.961526 + 0.274713i \(0.911417\pi\)
\(90\) 0 0
\(91\) −0.317493 −0.0332823
\(92\) −13.7971 + 3.48270i −1.43845 + 0.363096i
\(93\) 1.72352i 0.178720i
\(94\) 10.7532 23.5463i 1.10911 2.42861i
\(95\) 0 0
\(96\) −4.47283 5.16192i −0.456506 0.526836i
\(97\) 7.77424 + 12.0969i 0.789354 + 1.22826i 0.969614 + 0.244640i \(0.0786698\pi\)
−0.180260 + 0.983619i \(0.557694\pi\)
\(98\) −11.7773 10.2051i −1.18969 1.03087i
\(99\) −0.694523 + 4.83052i −0.0698022 + 0.485485i
\(100\) 0 0
\(101\) 14.6237 + 9.39808i 1.45511 + 0.935144i 0.998976 + 0.0452346i \(0.0144035\pi\)
0.456137 + 0.889910i \(0.349233\pi\)
\(102\) −7.46289 + 1.07300i −0.738937 + 0.106243i
\(103\) 1.05821 0.483270i 0.104269 0.0476180i −0.362598 0.931946i \(-0.618110\pi\)
0.466867 + 0.884328i \(0.345383\pi\)
\(104\) 3.22482 + 7.06137i 0.316220 + 0.692425i
\(105\) 0 0
\(106\) −19.4523 12.5013i −1.88938 1.21423i
\(107\) −4.83181 16.4556i −0.467108 1.59083i −0.770160 0.637851i \(-0.779824\pi\)
0.303051 0.952974i \(-0.401995\pi\)
\(108\) 14.6847 + 2.11134i 1.41303 + 0.203164i
\(109\) 1.71227 1.97606i 0.164006 0.189273i −0.667798 0.744343i \(-0.732763\pi\)
0.831804 + 0.555070i \(0.187308\pi\)
\(110\) 0 0
\(111\) 0.463496 + 0.534903i 0.0439931 + 0.0507707i
\(112\) −0.0280744 + 0.0956126i −0.00265278 + 0.00903454i
\(113\) 16.2969 + 7.44256i 1.53309 + 0.700137i 0.990198 0.139668i \(-0.0446035\pi\)
0.542888 + 0.839805i \(0.317331\pi\)
\(114\) −6.37640 −0.597205
\(115\) 0 0
\(116\) −22.0931 −2.05129
\(117\) 6.55207 + 2.99223i 0.605739 + 0.276632i
\(118\) −7.25434 + 24.7060i −0.667816 + 2.27437i
\(119\) 0.195298 + 0.225386i 0.0179029 + 0.0206611i
\(120\) 0 0
\(121\) 3.30439 3.81347i 0.300399 0.346679i
\(122\) −8.96031 1.28830i −0.811228 0.116637i
\(123\) 1.56393 + 5.32627i 0.141015 + 0.480254i
\(124\) 4.30209 + 2.76479i 0.386339 + 0.248285i
\(125\) 0 0
\(126\) −0.163236 0.357438i −0.0145422 0.0318431i
\(127\) −2.72142 + 1.24283i −0.241487 + 0.110283i −0.532482 0.846441i \(-0.678741\pi\)
0.290996 + 0.956724i \(0.406013\pi\)
\(128\) 15.0726 2.16711i 1.33224 0.191548i
\(129\) −2.01669 1.29605i −0.177560 0.114111i
\(130\) 0 0
\(131\) 1.91036 13.2869i 0.166909 1.16088i −0.718316 0.695716i \(-0.755087\pi\)
0.885226 0.465162i \(-0.154004\pi\)
\(132\) 5.47170 + 4.74125i 0.476250 + 0.412673i
\(133\) 0.136359 + 0.212178i 0.0118238 + 0.0183982i
\(134\) −17.8188 20.5640i −1.53931 1.77646i
\(135\) 0 0
\(136\) 3.02915 6.63291i 0.259747 0.568767i
\(137\) 19.2932i 1.64833i 0.566350 + 0.824165i \(0.308355\pi\)
−0.566350 + 0.824165i \(0.691645\pi\)
\(138\) 4.06421 + 9.88567i 0.345968 + 0.841524i
\(139\) −15.4962 −1.31437 −0.657185 0.753729i \(-0.728253\pi\)
−0.657185 + 0.753729i \(0.728253\pi\)
\(140\) 0 0
\(141\) −11.1441 3.27220i −0.938502 0.275569i
\(142\) 3.19485 2.76835i 0.268106 0.232315i
\(143\) 4.75114 + 7.39292i 0.397310 + 0.618227i
\(144\) 1.48047 1.70856i 0.123373 0.142380i
\(145\) 0 0
\(146\) 11.7964 3.46373i 0.976275 0.286660i
\(147\) −3.78028 + 5.88224i −0.311793 + 0.485159i
\(148\) −2.07870 + 0.298872i −0.170868 + 0.0245671i
\(149\) 6.62691 + 14.5109i 0.542898 + 1.18878i 0.960020 + 0.279930i \(0.0903114\pi\)
−0.417122 + 0.908850i \(0.636961\pi\)
\(150\) 0 0
\(151\) −0.0629411 0.437765i −0.00512208 0.0356248i 0.987100 0.160104i \(-0.0511830\pi\)
−0.992222 + 0.124479i \(0.960274\pi\)
\(152\) 3.33405 5.18789i 0.270427 0.420793i
\(153\) −1.90618 6.49186i −0.154106 0.524836i
\(154\) 0.0682278 0.474535i 0.00549795 0.0382391i
\(155\) 0 0
\(156\) 8.98974 5.77735i 0.719755 0.462559i
\(157\) 5.37996 4.66176i 0.429367 0.372049i −0.413200 0.910640i \(-0.635589\pi\)
0.842567 + 0.538592i \(0.181043\pi\)
\(158\) −4.40066 + 14.9873i −0.350098 + 1.19232i
\(159\) −4.30997 + 9.43751i −0.341803 + 0.748443i
\(160\) 0 0
\(161\) 0.242038 0.346643i 0.0190753 0.0273193i
\(162\) 2.22871i 0.175104i
\(163\) 6.50054 + 2.96870i 0.509162 + 0.232526i 0.653395 0.757017i \(-0.273344\pi\)
−0.144233 + 0.989544i \(0.546071\pi\)
\(164\) −15.8038 4.64041i −1.23407 0.362355i
\(165\) 0 0
\(166\) 7.82322 5.02768i 0.607200 0.390224i
\(167\) −1.00714 0.872694i −0.0779351 0.0675311i 0.615022 0.788510i \(-0.289147\pi\)
−0.692957 + 0.720979i \(0.743693\pi\)
\(168\) −0.188083 0.0270422i −0.0145109 0.00208635i
\(169\) −0.0280633 + 0.00824014i −0.00215872 + 0.000633857i
\(170\) 0 0
\(171\) −0.814334 5.66382i −0.0622737 0.433123i
\(172\) 6.47018 2.95483i 0.493346 0.225304i
\(173\) 2.45670 1.12194i 0.186779 0.0852992i −0.319830 0.947475i \(-0.603626\pi\)
0.506609 + 0.862176i \(0.330899\pi\)
\(174\) 2.36168 + 16.4259i 0.179039 + 1.24524i
\(175\) 0 0
\(176\) 2.64649 0.777080i 0.199487 0.0585746i
\(177\) 11.4357 + 1.64421i 0.859563 + 0.123587i
\(178\) −26.8600 23.2743i −2.01324 1.74449i
\(179\) 16.6467 10.6982i 1.24423 0.799620i 0.258188 0.966095i \(-0.416875\pi\)
0.986046 + 0.166474i \(0.0532383\pi\)
\(180\) 0 0
\(181\) −3.82402 1.12283i −0.284237 0.0834596i 0.136506 0.990639i \(-0.456413\pi\)
−0.420744 + 0.907180i \(0.638231\pi\)
\(182\) −0.643655 0.293947i −0.0477109 0.0217888i
\(183\) 4.06175i 0.300253i
\(184\) −10.1681 1.86229i −0.749603 0.137290i
\(185\) 0 0
\(186\) 1.59570 3.49409i 0.117002 0.256199i
\(187\) 2.32563 7.92038i 0.170067 0.579195i
\(188\) 26.0447 22.5678i 1.89950 1.64593i
\(189\) −0.370807 + 0.238303i −0.0269723 + 0.0173340i
\(190\) 0 0
\(191\) 0.850935 5.91838i 0.0615715 0.428239i −0.935599 0.353065i \(-0.885140\pi\)
0.997170 0.0751744i \(-0.0239513\pi\)
\(192\) −3.65175 12.4367i −0.263543 0.897544i
\(193\) 5.45312 8.48523i 0.392524 0.610780i −0.587603 0.809149i \(-0.699928\pi\)
0.980127 + 0.198370i \(0.0635646\pi\)
\(194\) 4.56092 + 31.7219i 0.327455 + 2.27750i
\(195\) 0 0
\(196\) −8.61857 18.8720i −0.615612 1.34800i
\(197\) −5.06355 + 0.728029i −0.360763 + 0.0518699i −0.320313 0.947312i \(-0.603788\pi\)
−0.0404498 + 0.999182i \(0.512879\pi\)
\(198\) −5.88029 + 9.14991i −0.417894 + 0.650255i
\(199\) 25.5033 7.48844i 1.80788 0.530842i 0.809468 0.587164i \(-0.199756\pi\)
0.998413 + 0.0563229i \(0.0179376\pi\)
\(200\) 0 0
\(201\) −7.99514 + 9.22689i −0.563934 + 0.650814i
\(202\) 20.9456 + 32.5920i 1.47373 + 2.29316i
\(203\) 0.496076 0.429852i 0.0348177 0.0301697i
\(204\) −9.63112 2.82795i −0.674313 0.197996i
\(205\) 0 0
\(206\) 2.59275 0.180646
\(207\) −8.26187 + 4.87252i −0.574240 + 0.338664i
\(208\) 4.07103i 0.282275i
\(209\) 2.90009 6.35031i 0.200603 0.439260i
\(210\) 0 0
\(211\) 9.65433 + 11.1417i 0.664631 + 0.767026i 0.983526 0.180765i \(-0.0578572\pi\)
−0.318895 + 0.947790i \(0.603312\pi\)
\(212\) −16.6432 25.8974i −1.14306 1.77864i
\(213\) −1.43350 1.24213i −0.0982217 0.0851096i
\(214\) 5.43971 37.8340i 0.371851 2.58628i
\(215\) 0 0
\(216\) 9.06646 + 5.82666i 0.616895 + 0.396454i
\(217\) −0.150392 + 0.0216231i −0.0102092 + 0.00146787i
\(218\) 5.30081 2.42080i 0.359016 0.163957i
\(219\) −2.29158 5.01787i −0.154851 0.339076i
\(220\) 0 0
\(221\) −10.2496 6.58702i −0.689463 0.443091i
\(222\) 0.444413 + 1.51353i 0.0298271 + 0.101582i
\(223\) −1.00163 0.144012i −0.0670740 0.00964378i 0.108696 0.994075i \(-0.465332\pi\)
−0.175770 + 0.984431i \(0.556242\pi\)
\(224\) −0.394306 + 0.455054i −0.0263457 + 0.0304046i
\(225\) 0 0
\(226\) 26.1482 + 30.1767i 1.73935 + 2.00732i
\(227\) 1.42057 4.83803i 0.0942867 0.321111i −0.898821 0.438316i \(-0.855575\pi\)
0.993108 + 0.117205i \(0.0373934\pi\)
\(228\) −7.72193 3.52649i −0.511397 0.233547i
\(229\) 22.9504 1.51661 0.758304 0.651901i \(-0.226028\pi\)
0.758304 + 0.651901i \(0.226028\pi\)
\(230\) 0 0
\(231\) −0.215109 −0.0141531
\(232\) −14.5991 6.66717i −0.958476 0.437721i
\(233\) −6.06370 + 20.6511i −0.397246 + 1.35290i 0.481850 + 0.876254i \(0.339965\pi\)
−0.879097 + 0.476644i \(0.841853\pi\)
\(234\) 10.5127 + 12.1323i 0.687237 + 0.793114i
\(235\) 0 0
\(236\) −22.4489 + 25.9074i −1.46130 + 1.68643i
\(237\) 6.93721 + 0.997420i 0.450620 + 0.0647894i
\(238\) 0.187257 + 0.637740i 0.0121381 + 0.0413386i
\(239\) 7.37760 + 4.74129i 0.477217 + 0.306689i 0.757047 0.653361i \(-0.226642\pi\)
−0.279830 + 0.960050i \(0.590278\pi\)
\(240\) 0 0
\(241\) 3.66317 + 8.02123i 0.235966 + 0.516693i 0.990157 0.139962i \(-0.0446980\pi\)
−0.754191 + 0.656655i \(0.771971\pi\)
\(242\) 10.2296 4.67172i 0.657587 0.300310i
\(243\) 15.8371 2.27704i 1.01595 0.146072i
\(244\) −10.1386 6.51568i −0.649057 0.417123i
\(245\) 0 0
\(246\) −1.76070 + 12.2459i −0.112258 + 0.780771i
\(247\) −7.78723 6.74767i −0.495490 0.429344i
\(248\) 2.00847 + 3.12524i 0.127538 + 0.198453i
\(249\) −2.73247 3.15343i −0.173163 0.199841i
\(250\) 0 0
\(251\) −2.44763 + 5.35957i −0.154493 + 0.338293i −0.971014 0.239023i \(-0.923173\pi\)
0.816521 + 0.577316i \(0.195900\pi\)
\(252\) 0.523141i 0.0329548i
\(253\) −11.6937 0.448583i −0.735175 0.0282022i
\(254\) −6.66780 −0.418375
\(255\) 0 0
\(256\) 7.68968 + 2.25789i 0.480605 + 0.141118i
\(257\) −5.82941 + 5.05121i −0.363628 + 0.315086i −0.817442 0.576011i \(-0.804609\pi\)
0.453814 + 0.891097i \(0.350063\pi\)
\(258\) −2.88852 4.49462i −0.179831 0.279823i
\(259\) 0.0408599 0.0471549i 0.00253891 0.00293006i
\(260\) 0 0
\(261\) −14.2886 + 4.19552i −0.884443 + 0.259696i
\(262\) 16.1744 25.1678i 0.999256 1.55487i
\(263\) −22.1627 + 3.18652i −1.36661 + 0.196489i −0.786270 0.617883i \(-0.787991\pi\)
−0.580343 + 0.814372i \(0.697081\pi\)
\(264\) 2.18489 + 4.78424i 0.134471 + 0.294450i
\(265\) 0 0
\(266\) 0.0799977 + 0.556396i 0.00490497 + 0.0341148i
\(267\) −8.62153 + 13.4154i −0.527629 + 0.821007i
\(268\) −10.2059 34.7581i −0.623425 2.12319i
\(269\) 1.31816 9.16802i 0.0803698 0.558984i −0.909357 0.416016i \(-0.863426\pi\)
0.989727 0.142968i \(-0.0456648\pi\)
\(270\) 0 0
\(271\) 18.4727 11.8717i 1.12214 0.721154i 0.158233 0.987402i \(-0.449420\pi\)
0.963905 + 0.266247i \(0.0857838\pi\)
\(272\) −2.88999 + 2.50419i −0.175232 + 0.151839i
\(273\) −0.0894481 + 0.304632i −0.00541365 + 0.0184372i
\(274\) −17.8624 + 39.1132i −1.07911 + 2.36291i
\(275\) 0 0
\(276\) −0.545473 + 14.2194i −0.0328336 + 0.855909i
\(277\) 12.5089i 0.751589i 0.926703 + 0.375795i \(0.122630\pi\)
−0.926703 + 0.375795i \(0.877370\pi\)
\(278\) −31.4155 14.3470i −1.88418 0.860474i
\(279\) 3.30740 + 0.971141i 0.198009 + 0.0581407i
\(280\) 0 0
\(281\) −20.6303 + 13.2583i −1.23070 + 0.790922i −0.984000 0.178171i \(-0.942982\pi\)
−0.246699 + 0.969092i \(0.579346\pi\)
\(282\) −19.5629 16.9514i −1.16496 1.00944i
\(283\) −17.4860 2.51410i −1.03943 0.149448i −0.398597 0.917126i \(-0.630503\pi\)
−0.640836 + 0.767678i \(0.721412\pi\)
\(284\) 5.40006 1.58560i 0.320435 0.0940882i
\(285\) 0 0
\(286\) 2.78736 + 19.3865i 0.164820 + 1.14635i
\(287\) 0.445142 0.203290i 0.0262759 0.0119998i
\(288\) 12.4259 5.67474i 0.732205 0.334387i
\(289\) −0.790638 5.49901i −0.0465081 0.323471i
\(290\) 0 0
\(291\) 13.7972 4.05122i 0.808806 0.237487i
\(292\) 16.2012 + 2.32939i 0.948106 + 0.136317i
\(293\) 6.41653 + 5.55996i 0.374858 + 0.324816i 0.821831 0.569731i \(-0.192953\pi\)
−0.446973 + 0.894547i \(0.647498\pi\)
\(294\) −13.1098 + 8.42515i −0.764578 + 0.491365i
\(295\) 0 0
\(296\) −1.46379 0.429809i −0.0850813 0.0249821i
\(297\) 11.0979 + 5.06826i 0.643968 + 0.294090i
\(298\) 35.5535i 2.05956i
\(299\) −5.49782 + 16.3738i −0.317947 + 0.946921i
\(300\) 0 0
\(301\) −0.0877903 + 0.192234i −0.00506015 + 0.0110802i
\(302\) 0.277699 0.945756i 0.0159798 0.0544222i
\(303\) 13.1374 11.3836i 0.754722 0.653970i
\(304\) −2.72064 + 1.74845i −0.156039 + 0.100280i
\(305\) 0 0
\(306\) 2.14600 14.9258i 0.122679 0.853251i
\(307\) 4.13574 + 14.0850i 0.236039 + 0.803875i 0.989267 + 0.146116i \(0.0466774\pi\)
−0.753228 + 0.657759i \(0.771504\pi\)
\(308\) 0.345068 0.536936i 0.0196621 0.0305948i
\(309\) −0.165561 1.15150i −0.00941843 0.0655066i
\(310\) 0 0
\(311\) 12.5355 + 27.4490i 0.710826 + 1.55649i 0.826332 + 0.563184i \(0.190424\pi\)
−0.115506 + 0.993307i \(0.536849\pi\)
\(312\) 7.68388 1.10477i 0.435014 0.0625455i
\(313\) −3.00922 + 4.68243i −0.170091 + 0.264667i −0.915826 0.401576i \(-0.868462\pi\)
0.745734 + 0.666243i \(0.232099\pi\)
\(314\) 15.2228 4.46983i 0.859074 0.252247i
\(315\) 0 0
\(316\) −13.6180 + 15.7160i −0.766074 + 0.884097i
\(317\) 1.51979 + 2.36484i 0.0853600 + 0.132823i 0.881308 0.472542i \(-0.156664\pi\)
−0.795948 + 0.605365i \(0.793027\pi\)
\(318\) −17.4752 + 15.1424i −0.979962 + 0.849142i
\(319\) −17.4328 5.11873i −0.976049 0.286594i
\(320\) 0 0
\(321\) −17.1503 −0.957238
\(322\) 0.811620 0.478662i 0.0452298 0.0266748i
\(323\) 9.67876i 0.538541i
\(324\) −1.23259 + 2.69900i −0.0684774 + 0.149945i
\(325\) 0 0
\(326\) 10.4300 + 12.0369i 0.577667 + 0.666663i
\(327\) −1.41362 2.19963i −0.0781732 0.121640i
\(328\) −9.04274 7.83558i −0.499302 0.432648i
\(329\) −0.145715 + 1.01347i −0.00803354 + 0.0558745i
\(330\) 0 0
\(331\) −11.6540 7.48954i −0.640560 0.411663i 0.179646 0.983731i \(-0.442505\pi\)
−0.820206 + 0.572069i \(0.806141\pi\)
\(332\) 12.2546 1.76195i 0.672560 0.0966995i
\(333\) −1.28764 + 0.588043i −0.0705620 + 0.0322246i
\(334\) −1.23381 2.70167i −0.0675111 0.147829i
\(335\) 0 0
\(336\) 0.0838301 + 0.0538744i 0.00457331 + 0.00293909i
\(337\) −6.07980 20.7059i −0.331188 1.12792i −0.941851 0.336031i \(-0.890915\pi\)
0.610663 0.791890i \(-0.290903\pi\)
\(338\) −0.0645219 0.00927685i −0.00350953 0.000504594i
\(339\) 11.7325 13.5400i 0.637220 0.735391i
\(340\) 0 0
\(341\) 2.75404 + 3.17834i 0.149140 + 0.172117i
\(342\) 3.59288 12.2362i 0.194281 0.661659i
\(343\) 1.12203 + 0.512414i 0.0605839 + 0.0276677i
\(344\) 5.16718 0.278596
\(345\) 0 0
\(346\) 6.01920 0.323594
\(347\) 17.1989 + 7.85449i 0.923288 + 0.421651i 0.819585 0.572957i \(-0.194204\pi\)
0.103702 + 0.994608i \(0.466931\pi\)
\(348\) −6.22434 + 21.1981i −0.333659 + 1.13634i
\(349\) 13.7056 + 15.8171i 0.733643 + 0.846669i 0.992877 0.119146i \(-0.0380155\pi\)
−0.259234 + 0.965815i \(0.583470\pi\)
\(350\) 0 0
\(351\) 11.7924 13.6091i 0.629431 0.726402i
\(352\) 16.4967 + 2.37187i 0.879277 + 0.126421i
\(353\) 0.454159 + 1.54672i 0.0241724 + 0.0823238i 0.970696 0.240311i \(-0.0772495\pi\)
−0.946523 + 0.322635i \(0.895431\pi\)
\(354\) 21.6615 + 13.9210i 1.15129 + 0.739891i
\(355\) 0 0
\(356\) −19.6560 43.0406i −1.04177 2.28115i
\(357\) 0.271278 0.123889i 0.0143576 0.00655688i
\(358\) 43.6527 6.27632i 2.30712 0.331714i
\(359\) −29.2892 18.8230i −1.54583 0.993442i −0.986362 0.164588i \(-0.947371\pi\)
−0.559464 0.828854i \(-0.688993\pi\)
\(360\) 0 0
\(361\) 1.53906 10.7044i 0.0810034 0.563391i
\(362\) −6.71289 5.81675i −0.352822 0.305722i
\(363\) −2.72804 4.24491i −0.143185 0.222800i
\(364\) −0.616908 0.711950i −0.0323348 0.0373163i
\(365\) 0 0
\(366\) −3.76052 + 8.23440i −0.196566 + 0.430419i
\(367\) 22.6244i 1.18098i −0.807044 0.590491i \(-0.798934\pi\)
0.807044 0.590491i \(-0.201066\pi\)
\(368\) 4.44480 + 3.10352i 0.231701 + 0.161782i
\(369\) −11.1023 −0.577961
\(370\) 0 0
\(371\) 0.877577 + 0.257680i 0.0455615 + 0.0133781i
\(372\) 3.86483 3.34890i 0.200382 0.173632i
\(373\) −5.83633 9.08151i −0.302194 0.470223i 0.656635 0.754209i \(-0.271979\pi\)
−0.958828 + 0.283986i \(0.908343\pi\)
\(374\) 12.0478 13.9038i 0.622974 0.718951i
\(375\) 0 0
\(376\) 24.0207 7.05312i 1.23877 0.363737i
\(377\) −14.4981 + 22.5594i −0.746688 + 1.16187i
\(378\) −0.972370 + 0.139806i −0.0500133 + 0.00719083i
\(379\) 1.53173 + 3.35401i 0.0786795 + 0.172284i 0.944884 0.327406i \(-0.106174\pi\)
−0.866204 + 0.499690i \(0.833447\pi\)
\(380\) 0 0
\(381\) 0.425774 + 2.96133i 0.0218131 + 0.151713i
\(382\) 7.20457 11.2105i 0.368618 0.573580i
\(383\) −1.67426 5.70202i −0.0855509 0.291360i 0.905594 0.424146i \(-0.139426\pi\)
−0.991145 + 0.132787i \(0.957608\pi\)
\(384\) 2.16711 15.0726i 0.110590 0.769171i
\(385\) 0 0
\(386\) 18.9111 12.1534i 0.962549 0.618593i
\(387\) 3.62344 3.13973i 0.184190 0.159601i
\(388\) −12.0205 + 40.9382i −0.610250 + 2.07832i
\(389\) −2.75929 + 6.04199i −0.139901 + 0.306341i −0.966594 0.256313i \(-0.917492\pi\)
0.826693 + 0.562654i \(0.190220\pi\)
\(390\) 0 0
\(391\) 15.0055 6.16908i 0.758860 0.311984i
\(392\) 15.0715i 0.761226i
\(393\) −12.2104 5.57632i −0.615935 0.281288i
\(394\) −10.9394 3.21210i −0.551119 0.161823i
\(395\) 0 0
\(396\) −12.1815 + 7.82858i −0.612144 + 0.393401i
\(397\) 3.44429 + 2.98449i 0.172864 + 0.149787i 0.736996 0.675897i \(-0.236244\pi\)
−0.564132 + 0.825685i \(0.690789\pi\)
\(398\) 58.6360 + 8.43058i 2.93916 + 0.422587i
\(399\) 0.242000 0.0710577i 0.0121152 0.00355733i
\(400\) 0 0
\(401\) 3.97219 + 27.6272i 0.198362 + 1.37964i 0.809038 + 0.587756i \(0.199989\pi\)
−0.610676 + 0.791880i \(0.709102\pi\)
\(402\) −24.7512 + 11.3035i −1.23448 + 0.563767i
\(403\) 5.64630 2.57858i 0.281262 0.128448i
\(404\) 7.34038 + 51.0534i 0.365197 + 2.54000i
\(405\) 0 0
\(406\) 1.40367 0.412155i 0.0696629 0.0204549i
\(407\) −1.70947 0.245784i −0.0847351 0.0121831i
\(408\) −5.51082 4.77515i −0.272826 0.236405i
\(409\) −6.83017 + 4.38949i −0.337730 + 0.217046i −0.698502 0.715608i \(-0.746150\pi\)
0.360772 + 0.932654i \(0.382513\pi\)
\(410\) 0 0
\(411\) 18.5117 + 5.43552i 0.913115 + 0.268115i
\(412\) 3.13987 + 1.43393i 0.154690 + 0.0706446i
\(413\) 1.01850i 0.0501169i
\(414\) −21.2605 + 2.22893i −1.04490 + 0.109546i
\(415\) 0 0
\(416\) 10.2188 22.3760i 0.501016 1.09707i
\(417\) −4.36578 + 14.8685i −0.213793 + 0.728113i
\(418\) 11.7587 10.1890i 0.575138 0.498360i
\(419\) 23.3315 14.9942i 1.13982 0.732517i 0.172232 0.985056i \(-0.444902\pi\)
0.967587 + 0.252539i \(0.0812658\pi\)
\(420\) 0 0
\(421\) 4.97445 34.5981i 0.242440 1.68621i −0.397359 0.917663i \(-0.630073\pi\)
0.639799 0.768543i \(-0.279018\pi\)
\(422\) 9.25685 + 31.5259i 0.450616 + 1.53466i
\(423\) 12.5586 19.5416i 0.610621 0.950145i
\(424\) −3.18261 22.1355i −0.154561 1.07500i
\(425\) 0 0
\(426\) −1.75612 3.84537i −0.0850844 0.186309i
\(427\) 0.354423 0.0509583i 0.0171517 0.00246604i
\(428\) 27.5118 42.8092i 1.32983 2.06926i
\(429\) 8.43201 2.47586i 0.407101 0.119536i
\(430\) 0 0
\(431\) 6.06858 7.00351i 0.292313 0.337347i −0.590530 0.807016i \(-0.701081\pi\)
0.882843 + 0.469669i \(0.155627\pi\)
\(432\) −3.05563 4.75465i −0.147014 0.228758i
\(433\) −17.1014 + 14.8185i −0.821841 + 0.712129i −0.960521 0.278208i \(-0.910260\pi\)
0.138680 + 0.990337i \(0.455714\pi\)
\(434\) −0.324909 0.0954019i −0.0155961 0.00457944i
\(435\) 0 0
\(436\) 7.75820 0.371550
\(437\) 13.3037 3.35816i 0.636404 0.160642i
\(438\) 12.2944i 0.587448i
\(439\) 7.68428 16.8262i 0.366751 0.803072i −0.632835 0.774287i \(-0.718109\pi\)
0.999586 0.0287853i \(-0.00916393\pi\)
\(440\) 0 0
\(441\) −9.15787 10.5687i −0.436089 0.503274i
\(442\) −14.6805 22.8434i −0.698282 1.08655i
\(443\) −16.9129 14.6551i −0.803554 0.696284i 0.152876 0.988245i \(-0.451147\pi\)
−0.956430 + 0.291962i \(0.905692\pi\)
\(444\) −0.298872 + 2.07870i −0.0141838 + 0.0986507i
\(445\) 0 0
\(446\) −1.89727 1.21930i −0.0898384 0.0577356i
\(447\) 15.7901 2.27028i 0.746848 0.107381i
\(448\) −1.03940 + 0.474677i −0.0491069 + 0.0224264i
\(449\) −2.04143 4.47012i −0.0963412 0.210958i 0.855325 0.518092i \(-0.173357\pi\)
−0.951666 + 0.307134i \(0.900630\pi\)
\(450\) 0 0
\(451\) −11.3950 7.32313i −0.536570 0.344833i
\(452\) 14.9767 + 51.0058i 0.704442 + 2.39911i
\(453\) −0.437765 0.0629411i −0.0205680 0.00295723i
\(454\) 7.35916 8.49293i 0.345383 0.398593i
\(455\) 0 0
\(456\) −4.03843 4.66060i −0.189117 0.218252i
\(457\) 3.26318 11.1134i 0.152645 0.519861i −0.847291 0.531128i \(-0.821768\pi\)
0.999937 + 0.0112669i \(0.00358644\pi\)
\(458\) 46.5275 + 21.2484i 2.17409 + 0.992873i
\(459\) −16.9148 −0.789516
\(460\) 0 0
\(461\) −15.5495 −0.724210 −0.362105 0.932137i \(-0.617942\pi\)
−0.362105 + 0.932137i \(0.617942\pi\)
\(462\) −0.436091 0.199156i −0.0202888 0.00926558i
\(463\) −2.85313 + 9.71687i −0.132596 + 0.451581i −0.998846 0.0480300i \(-0.984706\pi\)
0.866250 + 0.499611i \(0.166524\pi\)
\(464\) 5.51175 + 6.36089i 0.255876 + 0.295297i
\(465\) 0 0
\(466\) −31.4125 + 36.2520i −1.45516 + 1.67934i
\(467\) −0.158222 0.0227489i −0.00732164 0.00105269i 0.138653 0.990341i \(-0.455723\pi\)
−0.145975 + 0.989288i \(0.546632\pi\)
\(468\) 6.02126 + 20.5065i 0.278333 + 0.947914i
\(469\) 0.905432 + 0.581886i 0.0418089 + 0.0268690i
\(470\) 0 0
\(471\) −2.95722 6.47540i −0.136261 0.298371i
\(472\) −22.6524 + 10.3450i −1.04266 + 0.476168i
\(473\) 5.78997 0.832472i 0.266223 0.0382771i
\(474\) 13.1404 + 8.44481i 0.603558 + 0.387883i
\(475\) 0 0
\(476\) −0.125932 + 0.875877i −0.00577209 + 0.0401458i
\(477\) −15.6819 13.5885i −0.718026 0.622173i
\(478\) 10.5670 + 16.4425i 0.483321 + 0.752063i
\(479\) 3.84712 + 4.43982i 0.175779 + 0.202860i 0.836802 0.547506i \(-0.184423\pi\)
−0.661022 + 0.750366i \(0.729877\pi\)
\(480\) 0 0
\(481\) −1.05892 + 2.31870i −0.0482825 + 0.105724i
\(482\) 19.6530i 0.895169i
\(483\) −0.264411 0.329895i −0.0120311 0.0150107i
\(484\) 14.9720 0.680545
\(485\) 0 0
\(486\) 34.2149 + 10.0464i 1.55202 + 0.455714i
\(487\) −5.24040 + 4.54083i −0.237465 + 0.205765i −0.765461 0.643482i \(-0.777489\pi\)
0.527996 + 0.849247i \(0.322944\pi\)
\(488\) −4.73329 7.36514i −0.214266 0.333404i
\(489\) 4.67986 5.40085i 0.211631 0.244235i
\(490\) 0 0
\(491\) 21.0671 6.18586i 0.950745 0.279164i 0.230648 0.973037i \(-0.425915\pi\)
0.720097 + 0.693873i \(0.244097\pi\)
\(492\) −8.90487 + 13.8563i −0.401463 + 0.624688i
\(493\) 24.9329 3.58481i 1.12292 0.161452i
\(494\) −9.53982 20.8893i −0.429217 0.939854i
\(495\) 0 0
\(496\) −0.277260 1.92839i −0.0124493 0.0865871i
\(497\) −0.0904024 + 0.140669i −0.00405510 + 0.00630986i
\(498\) −2.61997 8.92279i −0.117404 0.399840i
\(499\) −4.04910 + 28.1621i −0.181263 + 1.26071i 0.672520 + 0.740079i \(0.265212\pi\)
−0.853783 + 0.520630i \(0.825697\pi\)
\(500\) 0 0
\(501\) −1.12109 + 0.720480i −0.0500866 + 0.0321887i
\(502\) −9.92419 + 8.59936i −0.442938 + 0.383808i
\(503\) −9.67821 + 32.9609i −0.431530 + 1.46966i 0.401207 + 0.915987i \(0.368591\pi\)
−0.832737 + 0.553668i \(0.813227\pi\)
\(504\) 0.157872 0.345691i 0.00703217 0.0153983i
\(505\) 0 0
\(506\) −23.2913 11.7359i −1.03543 0.521723i
\(507\) 0.0292481i 0.00129895i
\(508\) −8.07482 3.68765i −0.358262 0.163613i
\(509\) −6.60273 1.93874i −0.292661 0.0859329i 0.132107 0.991236i \(-0.457826\pi\)
−0.424767 + 0.905303i \(0.639644\pi\)
\(510\) 0 0
\(511\) −0.409102 + 0.262914i −0.0180976 + 0.0116306i
\(512\) −9.51763 8.24708i −0.420624 0.364473i
\(513\) −14.1595 2.03584i −0.625159 0.0898843i
\(514\) −16.4946 + 4.84325i −0.727545 + 0.213626i
\(515\) 0 0
\(516\) −1.01228 7.04056i −0.0445631 0.309943i
\(517\) 25.7796 11.7731i 1.13378 0.517782i
\(518\) 0.126493 0.0577675i 0.00555779 0.00253816i
\(519\) −0.384358 2.67327i −0.0168714 0.117343i
\(520\) 0 0
\(521\) 5.29187 1.55383i 0.231841 0.0680747i −0.163748 0.986502i \(-0.552358\pi\)
0.395589 + 0.918427i \(0.370540\pi\)
\(522\) −32.8517 4.72337i −1.43788 0.206736i
\(523\) −3.59678 3.11663i −0.157276 0.136281i 0.572668 0.819787i \(-0.305908\pi\)
−0.729944 + 0.683507i \(0.760454\pi\)
\(524\) 33.5066 21.5334i 1.46374 0.940689i
\(525\) 0 0
\(526\) −47.8808 14.0591i −2.08770 0.613005i
\(527\) −5.30369 2.42212i −0.231033 0.105509i
\(528\) 2.75822i 0.120036i
\(529\) −13.6859 18.4850i −0.595039 0.803697i
\(530\) 0 0
\(531\) −9.59886 + 21.0186i −0.416555 + 0.912129i
\(532\) −0.210838 + 0.718048i −0.00914098 + 0.0311313i
\(533\) −15.1092 + 13.0922i −0.654453 + 0.567087i
\(534\) −29.8989 + 19.2149i −1.29385 + 0.831508i
\(535\) 0 0
\(536\) 3.74514 26.0480i 0.161766 1.12510i
\(537\) −5.57492 18.9864i −0.240576 0.819325i
\(538\) 11.1604 17.3660i 0.481160 0.748700i
\(539\) −2.42813 16.8880i −0.104587 0.727419i
\(540\) 0 0
\(541\) −7.02447 15.3814i −0.302006 0.661300i 0.696406 0.717648i \(-0.254782\pi\)
−0.998411 + 0.0563484i \(0.982054\pi\)
\(542\) 48.4411 6.96478i 2.08072 0.299163i
\(543\) −2.15470 + 3.35278i −0.0924671 + 0.143882i
\(544\) −22.1704 + 6.50980i −0.950546 + 0.279106i
\(545\) 0 0
\(546\) −0.463379 + 0.534768i −0.0198308 + 0.0228859i
\(547\) −20.8518 32.4460i −0.891557 1.38729i −0.921766 0.387746i \(-0.873254\pi\)
0.0302093 0.999544i \(-0.490383\pi\)
\(548\) −43.2633 + 37.4879i −1.84812 + 1.60140i
\(549\) −7.79444 2.28865i −0.332659 0.0976774i
\(550\) 0 0
\(551\) 21.3030 0.907539
\(552\) −4.65154 + 9.23157i −0.197983 + 0.392922i
\(553\) 0.617845i 0.0262734i
\(554\) −11.5813 + 25.3594i −0.492040 + 1.07742i
\(555\) 0 0
\(556\) −30.1100 34.7488i −1.27695 1.47368i
\(557\) 22.7805 + 35.4471i 0.965239 + 1.50194i 0.861764 + 0.507309i \(0.169360\pi\)
0.103475 + 0.994632i \(0.467004\pi\)
\(558\) 5.80599 + 5.03092i 0.245787 + 0.212976i
\(559\) 1.22870 8.54579i 0.0519685 0.361449i
\(560\) 0 0
\(561\) −6.94434 4.46286i −0.293190 0.188422i
\(562\) −54.0988 + 7.77824i −2.28202 + 0.328105i
\(563\) −5.47564 + 2.50064i −0.230771 + 0.105389i −0.527445 0.849589i \(-0.676850\pi\)
0.296674 + 0.954979i \(0.404123\pi\)
\(564\) −14.3160 31.3477i −0.602814 1.31998i
\(565\) 0 0
\(566\) −33.1217 21.2860i −1.39221 0.894719i
\(567\) −0.0248364 0.0845850i −0.00104303 0.00355224i
\(568\) 4.04685 + 0.581849i 0.169802 + 0.0244139i
\(569\) −11.4512 + 13.2154i −0.480061 + 0.554020i −0.943183 0.332275i \(-0.892184\pi\)
0.463121 + 0.886295i \(0.346729\pi\)
\(570\) 0 0
\(571\) −8.64327 9.97487i −0.361710 0.417435i 0.545502 0.838109i \(-0.316339\pi\)
−0.907212 + 0.420674i \(0.861794\pi\)
\(572\) −7.34622 + 25.0189i −0.307161 + 1.04609i
\(573\) −5.43891 2.48387i −0.227214 0.103765i
\(574\) 1.09065 0.0455229
\(575\) 0 0
\(576\) 25.9235 1.08015
\(577\) −29.5506 13.4953i −1.23021 0.561818i −0.309065 0.951041i \(-0.600016\pi\)
−0.921143 + 0.389223i \(0.872743\pi\)
\(578\) 3.48833 11.8802i 0.145095 0.494149i
\(579\) −6.60519 7.62280i −0.274502 0.316793i
\(580\) 0 0
\(581\) −0.240883 + 0.277994i −0.00999351 + 0.0115331i
\(582\) 31.7219 + 4.56092i 1.31491 + 0.189056i
\(583\) −7.13240 24.2907i −0.295394 1.00602i
\(584\) 10.0028 + 6.42841i 0.413919 + 0.266009i
\(585\) 0 0
\(586\) 7.86064 + 17.2124i 0.324720 + 0.711037i
\(587\) 11.9812 5.47162i 0.494516 0.225838i −0.152515 0.988301i \(-0.548737\pi\)
0.647032 + 0.762463i \(0.276010\pi\)
\(588\) −20.5357 + 2.95259i −0.846879 + 0.121763i
\(589\) −4.14825 2.66592i −0.170926 0.109847i
\(590\) 0 0
\(591\) −0.728029 + 5.06355i −0.0299471 + 0.208287i
\(592\) 0.604640 + 0.523923i 0.0248505 + 0.0215331i
\(593\) −17.0754 26.5698i −0.701202 1.09109i −0.990982 0.133999i \(-0.957218\pi\)
0.289779 0.957094i \(-0.406418\pi\)
\(594\) 17.8065 + 20.5498i 0.730610 + 0.843169i
\(595\) 0 0
\(596\) −19.6630 + 43.0559i −0.805426 + 1.76364i
\(597\) 26.5800i 1.08785i
\(598\) −26.3053 + 28.1046i −1.07570 + 1.14928i
\(599\) 5.38162 0.219887 0.109943 0.993938i \(-0.464933\pi\)
0.109943 + 0.993938i \(0.464933\pi\)
\(600\) 0 0
\(601\) −32.4793 9.53678i −1.32486 0.389013i −0.458614 0.888636i \(-0.651654\pi\)
−0.866243 + 0.499622i \(0.833472\pi\)
\(602\) −0.355955 + 0.308437i −0.0145077 + 0.0125710i
\(603\) −13.2013 20.5416i −0.537598 0.836518i
\(604\) 0.859352 0.991745i 0.0349665 0.0403535i
\(605\) 0 0
\(606\) 37.1728 10.9149i 1.51004 0.443388i
\(607\) −11.7812 + 18.3320i −0.478186 + 0.744072i −0.993611 0.112863i \(-0.963998\pi\)
0.515424 + 0.856935i \(0.327634\pi\)
\(608\) −19.3425 + 2.78103i −0.784442 + 0.112786i
\(609\) −0.272679 0.597084i −0.0110495 0.0241951i
\(610\) 0 0
\(611\) −5.95300 41.4040i −0.240833 1.67503i
\(612\) 10.8536 16.8885i 0.438731 0.682678i
\(613\) −1.91064 6.50705i −0.0771701 0.262817i 0.911867 0.410486i \(-0.134641\pi\)
−0.989037 + 0.147669i \(0.952823\pi\)
\(614\) −4.65607 + 32.3837i −0.187904 + 1.30690i
\(615\) 0 0
\(616\) 0.390055 0.250673i 0.0157158 0.0100999i
\(617\) −24.3863 + 21.1308i −0.981755 + 0.850695i −0.988795 0.149280i \(-0.952304\pi\)
0.00704038 + 0.999975i \(0.497759\pi\)
\(618\) 0.730462 2.48773i 0.0293835 0.100071i
\(619\) 14.5801 31.9260i 0.586024 1.28321i −0.351792 0.936078i \(-0.614427\pi\)
0.937815 0.347134i \(-0.112845\pi\)
\(620\) 0 0
\(621\) 5.86879 + 23.2499i 0.235506 + 0.932986i
\(622\) 67.2534i 2.69661i
\(623\) 1.27877 + 0.583995i 0.0512329 + 0.0233973i
\(624\) −3.90613 1.14694i −0.156370 0.0459144i
\(625\) 0 0
\(626\) −10.4358 + 6.70667i −0.417098 + 0.268052i
\(627\) −5.27603 4.57170i −0.210704 0.182576i
\(628\) 20.9072 + 3.00600i 0.834287 + 0.119952i
\(629\) 2.29740 0.674577i 0.0916033 0.0268971i
\(630\) 0 0
\(631\) 1.85675 + 12.9139i 0.0739159 + 0.514096i 0.992820 + 0.119616i \(0.0381663\pi\)
−0.918904 + 0.394480i \(0.870925\pi\)
\(632\) −13.7415 + 6.27554i −0.546608 + 0.249628i
\(633\) 13.4103 6.12428i 0.533012 0.243418i
\(634\) 0.891617 + 6.20133i 0.0354106 + 0.246286i
\(635\) 0 0
\(636\) −29.5373 + 8.67294i −1.17123 + 0.343904i
\(637\) −24.9261 3.58384i −0.987610 0.141997i
\(638\) −30.6024 26.5172i −1.21156 1.04982i
\(639\) 3.19136 2.05097i 0.126248 0.0811349i
\(640\) 0 0
\(641\) 34.6688 + 10.1797i 1.36934 + 0.402073i 0.882044 0.471166i \(-0.156167\pi\)
0.487291 + 0.873239i \(0.337985\pi\)
\(642\) −34.7689 15.8784i −1.37222 0.626672i
\(643\) 31.5510i 1.24425i −0.782917 0.622126i \(-0.786269\pi\)
0.782917 0.622126i \(-0.213731\pi\)
\(644\) 1.24761 0.130798i 0.0491628 0.00515417i
\(645\) 0 0
\(646\) −8.96097 + 19.6218i −0.352565 + 0.772009i
\(647\) −3.90562 + 13.3013i −0.153546 + 0.522929i −0.999954 0.00960580i \(-0.996942\pi\)
0.846408 + 0.532535i \(0.178761\pi\)
\(648\) −1.62899 + 1.41153i −0.0639928 + 0.0554501i
\(649\) −23.7160 + 15.2413i −0.930934 + 0.598275i
\(650\) 0 0
\(651\) −0.0216231 + 0.150392i −0.000847474 + 0.00589431i
\(652\) 5.97391 + 20.3453i 0.233956 + 0.796782i
\(653\) −3.05729 + 4.75724i −0.119641 + 0.186165i −0.895909 0.444239i \(-0.853474\pi\)
0.776267 + 0.630404i \(0.217111\pi\)
\(654\) −0.829328 5.76810i −0.0324293 0.225551i
\(655\) 0 0
\(656\) 2.60667 + 5.70780i 0.101773 + 0.222852i
\(657\) 10.9204 1.57012i 0.426047 0.0612564i
\(658\) −1.23372 + 1.91971i −0.0480954 + 0.0748379i
\(659\) 28.0838 8.24614i 1.09399 0.321224i 0.315527 0.948917i \(-0.397819\pi\)
0.778461 + 0.627692i \(0.216000\pi\)
\(660\) 0 0
\(661\) −10.5207 + 12.1415i −0.409207 + 0.472250i −0.922519 0.385952i \(-0.873873\pi\)
0.513312 + 0.858202i \(0.328418\pi\)
\(662\) −16.6920 25.9733i −0.648753 1.00948i
\(663\) −9.20784 + 7.97864i −0.357603 + 0.309865i
\(664\) 8.62956 + 2.53387i 0.334892 + 0.0983331i
\(665\) 0 0
\(666\) −3.15486 −0.122248
\(667\) −13.5782 33.0272i −0.525749 1.27882i
\(668\) 3.95413i 0.152990i
\(669\) −0.420370 + 0.920482i −0.0162524 + 0.0355879i
\(670\) 0 0
\(671\) −6.49036 7.49027i −0.250558 0.289159i
\(672\) 0.325532 + 0.506538i 0.0125577 + 0.0195401i
\(673\) 2.88949 + 2.50376i 0.111382 + 0.0965128i 0.708771 0.705438i \(-0.249250\pi\)
−0.597389 + 0.801951i \(0.703795\pi\)
\(674\) 6.84471 47.6060i 0.263649 1.83372i
\(675\) 0 0
\(676\) −0.0730065 0.0469185i −0.00280794 0.00180456i
\(677\) 16.2586 2.33764i 0.624870 0.0898428i 0.177396 0.984140i \(-0.443233\pi\)
0.447474 + 0.894297i \(0.352324\pi\)
\(678\) 36.3211 16.5873i 1.39490 0.637031i
\(679\) −0.526602 1.15310i −0.0202091 0.0442518i
\(680\) 0 0
\(681\) −4.24183 2.72606i −0.162547 0.104463i
\(682\) 2.64066 + 8.99325i 0.101116 + 0.344369i
\(683\) 7.28651 + 1.04764i 0.278811 + 0.0400869i 0.280302 0.959912i \(-0.409566\pi\)
−0.00149105 + 0.999999i \(0.500475\pi\)
\(684\) 11.1183 12.8312i 0.425119 0.490614i
\(685\) 0 0
\(686\) 1.80028 + 2.07764i 0.0687351 + 0.0793245i
\(687\) 6.46589 22.0208i 0.246689 0.840145i
\(688\) −2.46491 1.12569i −0.0939737 0.0429163i
\(689\) −37.3658 −1.42352
\(690\) 0 0
\(691\) −9.67502 −0.368055 −0.184028 0.982921i \(-0.558914\pi\)
−0.184028 + 0.982921i \(0.558914\pi\)
\(692\) 7.28935 + 3.32894i 0.277100 + 0.126547i
\(693\) 0.121206 0.412791i 0.00460425 0.0156806i
\(694\) 27.5955 + 31.8469i 1.04751 + 1.20889i
\(695\) 0 0
\(696\) −10.5101 + 12.1293i −0.398386 + 0.459762i
\(697\) 18.5881 + 2.67257i 0.704076 + 0.101231i
\(698\) 13.1413 + 44.7552i 0.497406 + 1.69401i
\(699\) 18.1062 + 11.6362i 0.684840 + 0.440120i
\(700\) 0 0
\(701\) 17.6838 + 38.7221i 0.667908 + 1.46252i 0.874965 + 0.484186i \(0.160884\pi\)
−0.207057 + 0.978329i \(0.566388\pi\)
\(702\) 36.5066 16.6720i 1.37785 0.629244i
\(703\) 2.00436 0.288184i 0.0755960 0.0108691i
\(704\) 26.6071 + 17.0994i 1.00279 + 0.644456i
\(705\) 0 0
\(706\) −0.511298 + 3.55616i −0.0192430 + 0.133838i
\(707\) −1.15814 1.00353i −0.0435562 0.0377417i
\(708\) 18.5334 + 28.8385i 0.696526 + 1.08382i
\(709\) 22.9666 + 26.5049i 0.862529 + 0.995411i 0.999988 + 0.00490358i \(0.00156086\pi\)
−0.137459 + 0.990507i \(0.543894\pi\)
\(710\) 0 0
\(711\) −5.82291 + 12.7504i −0.218376 + 0.478177i
\(712\) 34.3729i 1.28818i
\(713\) −1.48909 + 8.13045i −0.0557668 + 0.304488i
\(714\) 0.664664 0.0248744
\(715\) 0 0
\(716\) 56.3353 + 16.5415i 2.10535 + 0.618187i
\(717\) 6.62775 5.74298i 0.247518 0.214475i
\(718\) −41.9511 65.2771i −1.56560 2.43612i
\(719\) 14.5394 16.7793i 0.542226 0.625763i −0.416828 0.908986i \(-0.636858\pi\)
0.959054 + 0.283223i \(0.0914036\pi\)
\(720\) 0 0
\(721\) −0.0984013 + 0.0288932i −0.00366466 + 0.00107604i
\(722\) 13.0307 20.2762i 0.484953 0.754602i
\(723\) 8.72835 1.25495i 0.324611 0.0466720i
\(724\) −4.91245 10.7568i −0.182570 0.399772i
\(725\) 0 0
\(726\) −1.60046 11.1315i −0.0593987 0.413127i
\(727\) −0.377738 + 0.587772i −0.0140095 + 0.0217993i −0.848188 0.529696i \(-0.822306\pi\)
0.834178 + 0.551495i \(0.185942\pi\)
\(728\) −0.192802 0.656624i −0.00714573 0.0243361i
\(729\) 1.85009 12.8677i 0.0685220 0.476581i
\(730\) 0 0
\(731\) −6.82240 + 4.38449i −0.252336 + 0.162166i
\(732\) −9.10812 + 7.89223i −0.336646 + 0.291705i
\(733\) 10.5094 35.7918i 0.388174 1.32200i −0.501403 0.865214i \(-0.667183\pi\)
0.889577 0.456785i \(-0.150999\pi\)
\(734\) 20.9465 45.8664i 0.773149 1.69296i
\(735\) 0 0
\(736\) 16.6402 + 28.2151i 0.613364 + 1.04002i
\(737\) 29.7909i 1.09736i
\(738\) −22.5077 10.2789i −0.828518 0.378372i
\(739\) −23.5752 6.92231i −0.867229 0.254641i −0.182293 0.983244i \(-0.558352\pi\)
−0.684936 + 0.728603i \(0.740170\pi\)
\(740\) 0 0
\(741\) −8.66826 + 5.57075i −0.318437 + 0.204647i
\(742\) 1.54054 + 1.33489i 0.0565552 + 0.0490053i
\(743\) 40.9388 + 5.88612i 1.50190 + 0.215941i 0.843665 0.536871i \(-0.180394\pi\)
0.658236 + 0.752811i \(0.271303\pi\)
\(744\) 3.56450 1.04663i 0.130681 0.0383713i
\(745\) 0 0
\(746\) −3.42400 23.8145i −0.125362 0.871910i
\(747\) 7.59104 3.46671i 0.277742 0.126840i
\(748\) 22.2796 10.1748i 0.814623 0.372026i
\(749\) 0.215166 + 1.49651i 0.00786201 + 0.0546815i
\(750\) 0 0
\(751\) 39.3106 11.5426i 1.43446 0.421197i 0.530091 0.847941i \(-0.322158\pi\)
0.904372 + 0.426744i \(0.140339\pi\)
\(752\) −12.9952 1.86842i −0.473885 0.0681344i
\(753\) 4.45289 + 3.85845i 0.162272 + 0.140610i
\(754\) −50.2783 + 32.3119i −1.83103 + 1.17673i
\(755\) 0 0
\(756\) −1.25488 0.368465i −0.0456394 0.0134009i
\(757\) 9.08592 + 4.14940i 0.330233 + 0.150812i 0.573630 0.819114i \(-0.305535\pi\)
−0.243397 + 0.969927i \(0.578262\pi\)
\(758\) 8.21774i 0.298482i
\(759\) −3.72490 + 11.0936i −0.135205 + 0.402673i
\(760\) 0 0
\(761\) −7.00401 + 15.3366i −0.253895 + 0.555953i −0.993065 0.117566i \(-0.962491\pi\)
0.739170 + 0.673519i \(0.235218\pi\)
\(762\) −1.87854 + 6.39771i −0.0680522 + 0.231764i
\(763\) −0.174202 + 0.150947i −0.00630653 + 0.00546464i
\(764\) 14.9249 9.59163i 0.539963 0.347013i
\(765\) 0 0
\(766\) 1.88491 13.1098i 0.0681045 0.473677i
\(767\) 11.7227 + 39.9238i 0.423282 + 1.44157i
\(768\) 4.33287 6.74207i 0.156349 0.243283i
\(769\) −6.22901 43.3237i −0.224624 1.56229i −0.720223 0.693743i \(-0.755961\pi\)
0.495599 0.868551i \(-0.334949\pi\)
\(770\) 0 0
\(771\) 3.20427 + 7.01636i 0.115399 + 0.252688i
\(772\) 29.6231 4.25916i 1.06616 0.153291i
\(773\) 18.1814 28.2907i 0.653938 1.01755i −0.342999 0.939336i \(-0.611443\pi\)
0.996937 0.0782114i \(-0.0249209\pi\)
\(774\) 10.2527 3.01046i 0.368525 0.108209i
\(775\) 0 0
\(776\) −20.2973 + 23.4244i −0.728632 + 0.840886i
\(777\) −0.0337332 0.0524899i −0.00121017 0.00188306i
\(778\) −11.1878 + 9.69430i −0.401103 + 0.347558i
\(779\) 15.2386 + 4.47446i 0.545980 + 0.160314i
\(780\) 0 0
\(781\) 4.62835 0.165615
\(782\) 36.1323 + 1.38607i 1.29209 + 0.0495659i
\(783\) 37.2296i 1.33048i
\(784\) −3.28337 + 7.18957i −0.117263 + 0.256770i
\(785\) 0 0
\(786\) −19.5915 22.6098i −0.698805 0.806464i
\(787\) 0.676215 + 1.05221i 0.0241045 + 0.0375073i 0.853097 0.521753i \(-0.174722\pi\)
−0.828992 + 0.559260i \(0.811085\pi\)
\(788\) −11.4713 9.93997i −0.408649 0.354097i
\(789\) −3.18652 + 22.1627i −0.113443 + 0.789014i
\(790\) 0 0
\(791\) −1.32867 0.853887i −0.0472422 0.0303607i
\(792\) −10.4120 + 1.49702i −0.369975 + 0.0531943i
\(793\) −13.3064 + 6.07684i −0.472525 + 0.215795i
\(794\) 4.21946 + 9.23933i 0.149743 + 0.327892i
\(795\) 0 0
\(796\) 66.3466 + 42.6384i 2.35159 + 1.51128i
\(797\) 3.44308 + 11.7261i 0.121960 + 0.415358i 0.997728 0.0673749i \(-0.0214624\pi\)
−0.875768 + 0.482733i \(0.839644\pi\)
\(798\) 0.556396 + 0.0799977i 0.0196962 + 0.00283189i
\(799\) −25.7306 + 29.6947i −0.910282 + 1.05052i
\(800\) 0 0
\(801\) −20.8860 24.1037i −0.737969 0.851662i
\(802\) −17.5255 + 59.6863i −0.618846 + 2.10760i
\(803\) 12.2441 + 5.59168i 0.432084 + 0.197326i
\(804\) −36.2255 −1.27758
\(805\) 0 0
\(806\) 13.8341 0.487285
\(807\) −8.42528 3.84770i −0.296584 0.135445i
\(808\) −10.5562 + 35.9512i −0.371367 + 1.26476i
\(809\) −17.5520 20.2561i −0.617097 0.712167i 0.358056 0.933700i \(-0.383440\pi\)
−0.975153 + 0.221533i \(0.928894\pi\)
\(810\) 0 0
\(811\) 25.9259 29.9201i 0.910381 1.05064i −0.0881316 0.996109i \(-0.528090\pi\)
0.998512 0.0545266i \(-0.0173650\pi\)
\(812\) 1.92781 + 0.277177i 0.0676529 + 0.00972702i
\(813\) −6.18644 21.0691i −0.216968 0.738925i
\(814\) −3.23805 2.08097i −0.113494 0.0729379i
\(815\) 0 0
\(816\) 1.58855 + 3.47844i 0.0556104 + 0.121770i
\(817\) −6.23880 + 2.84917i −0.218268 + 0.0996797i
\(818\) −17.9108 + 2.57518i −0.626236 + 0.0900392i
\(819\) −0.534184 0.343299i −0.0186659 0.0119958i
\(820\) 0 0
\(821\) 4.50608 31.3404i 0.157263 1.09379i −0.746385 0.665514i \(-0.768212\pi\)
0.903648 0.428275i \(-0.140879\pi\)
\(822\) 32.4964 + 28.1583i 1.13344 + 0.982134i
\(823\) 25.3640 + 39.4672i 0.884134 + 1.37574i 0.926363 + 0.376632i \(0.122918\pi\)
−0.0422285 + 0.999108i \(0.513446\pi\)
\(824\) 1.64209 + 1.89508i 0.0572050 + 0.0660181i
\(825\) 0 0
\(826\) 0.942962 2.06480i 0.0328099 0.0718436i
\(827\) 24.2676i 0.843869i −0.906626 0.421934i \(-0.861351\pi\)
0.906626 0.421934i \(-0.138649\pi\)
\(828\) −26.9795 9.05891i −0.937603 0.314819i
\(829\) 21.8597 0.759220 0.379610 0.925147i \(-0.376058\pi\)
0.379610 + 0.925147i \(0.376058\pi\)
\(830\) 0 0
\(831\) 12.0022 + 3.52417i 0.416353 + 0.122252i
\(832\) 35.2797 30.5700i 1.22310 1.05983i
\(833\) 12.7886 + 19.8994i 0.443098 + 0.689473i
\(834\) −22.6166 + 26.1009i −0.783148 + 0.903801i
\(835\) 0 0
\(836\) 19.8751 5.83585i 0.687393 0.201837i
\(837\) 4.65902 7.24957i 0.161039 0.250582i
\(838\) 61.1823 8.79669i 2.11351 0.303876i
\(839\) 11.3411 + 24.8335i 0.391538 + 0.857348i 0.998059 + 0.0622806i \(0.0198374\pi\)
−0.606521 + 0.795068i \(0.707435\pi\)
\(840\) 0 0
\(841\) −3.76305 26.1726i −0.129760 0.902504i
\(842\) 42.1169 65.5352i 1.45145 2.25849i
\(843\) 6.90899 + 23.5299i 0.237958 + 0.810412i
\(844\) −6.22531 + 43.2980i −0.214284 + 1.49038i
\(845\) 0 0
\(846\) 43.5525 27.9895i 1.49737 0.962298i
\(847\) −0.336180 + 0.291301i −0.0115513 + 0.0100092i
\(848\) −3.30408 + 11.2527i −0.113463 + 0.386418i
\(849\) −7.33863 + 16.0694i −0.251861 + 0.551499i
\(850\) 0 0
\(851\) −1.72433 2.92379i −0.0591094 0.100226i
\(852\) 5.62804i 0.192813i
\(853\) 25.6230 + 11.7016i 0.877316 + 0.400657i 0.802578 0.596547i \(-0.203461\pi\)
0.0747372 + 0.997203i \(0.476188\pi\)
\(854\) 0.765701 + 0.224830i 0.0262018 + 0.00769353i
\(855\) 0 0
\(856\) 31.0986 19.9858i 1.06293 0.683102i
\(857\) 8.49369 + 7.35982i 0.290139 + 0.251407i 0.787752 0.615992i \(-0.211245\pi\)
−0.497613 + 0.867399i \(0.665790\pi\)
\(858\) 19.3865 + 2.78736i 0.661844 + 0.0951588i
\(859\) −8.44772 + 2.48047i −0.288233 + 0.0846327i −0.422653 0.906292i \(-0.638901\pi\)
0.134420 + 0.990924i \(0.457083\pi\)
\(860\) 0 0
\(861\) −0.0696439 0.484384i −0.00237346 0.0165078i
\(862\) 18.7870 8.57972i 0.639887 0.292226i
\(863\) −43.5371 + 19.8827i −1.48202 + 0.676816i −0.981945 0.189166i \(-0.939421\pi\)
−0.500075 + 0.865982i \(0.666694\pi\)
\(864\) −4.86019 33.8034i −0.165347 1.15001i
\(865\) 0 0
\(866\) −48.3892 + 14.2084i −1.64433 + 0.482820i
\(867\) −5.49901 0.790638i −0.186756 0.0268515i
\(868\) −0.340708 0.295225i −0.0115644 0.0100206i
\(869\) −14.3867 + 9.24578i −0.488036 + 0.313641i
\(870\) 0 0
\(871\) −42.1892 12.3879i −1.42953 0.419747i
\(872\) 5.12661 + 2.34124i 0.173609 + 0.0792845i
\(873\) 28.7593i 0.973356i
\(874\) 30.0798 + 5.50910i 1.01746 + 0.186348i
\(875\) 0 0
\(876\) 6.79944 14.8887i 0.229732 0.503043i
\(877\) −13.2847 + 45.2435i −0.448592 + 1.52776i 0.356317 + 0.934365i \(0.384032\pi\)
−0.804909 + 0.593398i \(0.797786\pi\)
\(878\) 31.1567 26.9975i 1.05149 0.911121i
\(879\) 7.14248 4.59020i 0.240910 0.154823i
\(880\) 0 0
\(881\) −5.26169 + 36.5959i −0.177271 + 1.23295i 0.685773 + 0.727816i \(0.259464\pi\)
−0.863043 + 0.505130i \(0.831445\pi\)
\(882\) −8.78083 29.9048i −0.295666 1.00695i
\(883\) −29.4975 + 45.8990i −0.992670 + 1.54462i −0.162807 + 0.986658i \(0.552055\pi\)
−0.829863 + 0.557967i \(0.811582\pi\)
\(884\) −5.14479 35.7828i −0.173038 1.20351i
\(885\) 0 0
\(886\) −20.7193 45.3689i −0.696077 1.52420i
\(887\) −14.0346 + 2.01788i −0.471237 + 0.0677537i −0.373843 0.927492i \(-0.621960\pi\)
−0.0973946 + 0.995246i \(0.531051\pi\)
\(888\) −0.824797 + 1.28341i −0.0276784 + 0.0430684i
\(889\) 0.253060 0.0743050i 0.00848734 0.00249211i
\(890\) 0 0
\(891\) −1.59792 + 1.84410i −0.0535324 + 0.0617797i
\(892\) −1.62329 2.52589i −0.0543517 0.0845730i
\(893\) −25.1133 + 21.7608i −0.840384 + 0.728197i
\(894\) 34.1133 + 10.0166i 1.14092 + 0.335004i
\(895\) 0 0
\(896\) −1.34240 −0.0448465
\(897\) 14.1616 + 9.88816i 0.472843 + 0.330156i
\(898\) 10.9523i 0.365484i
\(899\) −5.33109 + 11.6735i −0.177802 + 0.389332i
\(900\) 0 0
\(901\) 22.9847 + 26.5257i 0.765730 + 0.883699i
\(902\) −16.3211 25.3962i −0.543434 0.845600i
\(903\) 0.159714 + 0.138393i 0.00531494 + 0.00460542i
\(904\) −5.49580 + 38.2242i −0.182788 + 1.27132i
\(905\) 0 0
\(906\) −0.829210 0.532901i −0.0275486 0.0177044i
\(907\) 49.3023 7.08860i 1.63706 0.235373i 0.738506 0.674246i \(-0.235531\pi\)
0.898549 + 0.438873i \(0.144622\pi\)
\(908\) 13.6091 6.21507i 0.451634 0.206254i
\(909\) 14.4425 + 31.6247i 0.479028 + 1.04892i
\(910\) 0 0
\(911\) −17.7763 11.4241i −0.588955 0.378498i 0.211959 0.977279i \(-0.432016\pi\)
−0.800913 + 0.598781i \(0.795652\pi\)
\(912\) 0.911132 + 3.10303i 0.0301706 + 0.102752i
\(913\) 10.0779 + 1.44898i 0.333529 + 0.0479543i
\(914\) 16.9046 19.5090i 0.559156 0.645300i
\(915\) 0 0
\(916\) 44.5941 + 51.4644i 1.47343 + 1.70043i
\(917\) −0.333391 + 1.13543i −0.0110095 + 0.0374951i
\(918\) −34.2915 15.6604i −1.13179 0.516870i
\(919\) 1.66022 0.0547657 0.0273829 0.999625i \(-0.491283\pi\)
0.0273829 + 0.999625i \(0.491283\pi\)
\(920\) 0 0
\(921\) 14.6797 0.483711
\(922\) −31.5235 14.3963i −1.03817 0.474116i
\(923\) 1.92459 6.55457i 0.0633488 0.215746i
\(924\) −0.417970 0.482363i −0.0137502 0.0158686i
\(925\) 0 0
\(926\) −14.7804 + 17.0575i −0.485715 + 0.560545i
\(927\) 2.30300 + 0.331122i 0.0756406 + 0.0108755i
\(928\) 14.3281 + 48.7971i 0.470343 + 1.60184i
\(929\) −24.5455 15.7744i −0.805311 0.517542i 0.0720340 0.997402i \(-0.477051\pi\)
−0.877345 + 0.479860i \(0.840687\pi\)
\(930\) 0 0
\(931\) 8.31037 + 18.1972i 0.272361 + 0.596388i
\(932\) −58.0904 + 26.5290i −1.90281 + 0.868986i
\(933\) 29.8688 4.29449i 0.977861 0.140595i
\(934\) −0.299702 0.192607i −0.00980656 0.00630229i
\(935\) 0 0
\(936\) −2.20955 + 15.3678i −0.0722214 + 0.502311i
\(937\) −13.9149 12.0573i −0.454580 0.393895i 0.397253 0.917709i \(-0.369963\pi\)
−0.851833 + 0.523813i \(0.824509\pi\)
\(938\) 1.29685 + 2.01794i 0.0423437 + 0.0658881i
\(939\) 3.64497 + 4.20652i 0.118949 + 0.137275i
\(940\) 0 0
\(941\) 17.9910 39.3947i 0.586489 1.28423i −0.351052 0.936356i \(-0.614176\pi\)
0.937541 0.347876i \(-0.113097\pi\)
\(942\) 15.8655i 0.516926i
\(943\) −2.77584 26.4772i −0.0903937 0.862215i
\(944\) 13.0596 0.425053
\(945\) 0 0
\(946\) 12.5088 + 3.67290i 0.406695 + 0.119416i
\(947\) −15.9299 + 13.8033i −0.517652 + 0.448548i −0.874085 0.485773i \(-0.838538\pi\)
0.356433 + 0.934321i \(0.383993\pi\)
\(948\) 11.2428 + 17.4941i 0.365149 + 0.568183i
\(949\) 13.0102 15.0146i 0.422330 0.487395i
\(950\) 0 0
\(951\) 2.69722 0.791977i 0.0874635 0.0256816i
\(952\) −0.347535 + 0.540775i −0.0112637 + 0.0175266i
\(953\) −14.5941 + 2.09831i −0.472749 + 0.0679710i −0.374572 0.927198i \(-0.622210\pi\)
−0.0981772 + 0.995169i \(0.531301\pi\)
\(954\) −19.2113 42.0669i −0.621989 1.36197i
\(955\) 0 0
\(956\) 3.70319 + 25.7562i 0.119770 + 0.833016i
\(957\) −9.82277 + 15.2845i −0.317525 + 0.494079i
\(958\) 3.68873 + 12.5627i 0.119178 + 0.405881i
\(959\) 0.242051 1.68350i 0.00781622 0.0543630i
\(960\) 0 0
\(961\) −23.5799 + 15.1539i −0.760642 + 0.488835i
\(962\) −4.29349 + 3.72033i −0.138428 + 0.119948i
\(963\) 9.66362 32.9113i 0.311406 1.06055i
\(964\) −10.8691 + 23.8001i −0.350071 + 0.766549i
\(965\) 0 0
\(966\) −0.230613 0.913599i −0.00741984 0.0293946i
\(967\) 25.3720i 0.815909i −0.913002 0.407955i \(-0.866242\pi\)
0.913002 0.407955i \(-0.133758\pi\)
\(968\) 9.89347 + 4.51820i 0.317988 + 0.145220i
\(969\) 9.28671 + 2.72682i 0.298332 + 0.0875982i
\(970\) 0 0
\(971\) −32.9014 + 21.1444i −1.05586 + 0.678557i −0.948858 0.315702i \(-0.897760\pi\)
−0.106997 + 0.994259i \(0.534124\pi\)
\(972\) 35.8786 + 31.0890i 1.15081 + 0.997180i
\(973\) 1.35218 + 0.194414i 0.0433488 + 0.00623261i
\(974\) −14.8280 + 4.35388i −0.475118 + 0.139507i
\(975\) 0 0
\(976\) 0.653409 + 4.54456i 0.0209151 + 0.145468i
\(977\) 21.1528 9.66014i 0.676736 0.309055i −0.0472363 0.998884i \(-0.515041\pi\)
0.723973 + 0.689829i \(0.242314\pi\)
\(978\) 14.4878 6.61636i 0.463269 0.211568i
\(979\) −5.53774 38.5158i −0.176987 1.23097i
\(980\) 0 0
\(981\) 5.01759 1.47330i 0.160199 0.0470387i
\(982\) 48.4365 + 6.96412i 1.54567 + 0.222234i
\(983\) 0.497051 + 0.430697i 0.0158535 + 0.0137371i 0.662751 0.748839i \(-0.269389\pi\)
−0.646898 + 0.762577i \(0.723934\pi\)
\(984\) −10.0658 + 6.46891i −0.320887 + 0.206221i
\(985\) 0 0
\(986\) 53.8655 + 15.8163i 1.71543 + 0.503695i
\(987\) 0.931366 + 0.425341i 0.0296457 + 0.0135387i
\(988\) 30.5733i 0.972667i
\(989\) 8.39371 + 7.85633i 0.266905 + 0.249817i
\(990\) 0 0
\(991\) 1.31140 2.87157i 0.0416581 0.0912185i −0.887659 0.460502i \(-0.847670\pi\)
0.929317 + 0.369283i \(0.120397\pi\)
\(992\) 3.31654 11.2951i 0.105300 0.358620i
\(993\) −10.4695 + 9.07184i −0.332238 + 0.287886i
\(994\) −0.313510 + 0.201480i −0.00994392 + 0.00639057i
\(995\) 0 0
\(996\) 1.76195 12.2546i 0.0558295 0.388303i
\(997\) 2.48154 + 8.45136i 0.0785913 + 0.267657i 0.989410 0.145150i \(-0.0463665\pi\)
−0.910818 + 0.412807i \(0.864548\pi\)
\(998\) −34.2823 + 53.3443i −1.08519 + 1.68858i
\(999\) 0.503637 + 3.50287i 0.0159344 + 0.110826i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 575.2.p.a.374.2 20
5.2 odd 4 575.2.k.a.351.1 10
5.3 odd 4 115.2.g.a.6.1 10
5.4 even 2 inner 575.2.p.a.374.1 20
23.4 even 11 inner 575.2.p.a.349.1 20
115.4 even 22 inner 575.2.p.a.349.2 20
115.27 odd 44 575.2.k.a.326.1 10
115.48 odd 44 2645.2.a.n.1.5 5
115.73 odd 44 115.2.g.a.96.1 yes 10
115.113 even 44 2645.2.a.o.1.5 5
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
115.2.g.a.6.1 10 5.3 odd 4
115.2.g.a.96.1 yes 10 115.73 odd 44
575.2.k.a.326.1 10 115.27 odd 44
575.2.k.a.351.1 10 5.2 odd 4
575.2.p.a.349.1 20 23.4 even 11 inner
575.2.p.a.349.2 20 115.4 even 22 inner
575.2.p.a.374.1 20 5.4 even 2 inner
575.2.p.a.374.2 20 1.1 even 1 trivial
2645.2.a.n.1.5 5 115.48 odd 44
2645.2.a.o.1.5 5 115.113 even 44