Defining parameters
Level: | \( N \) | \(=\) | \( 575 = 5^{2} \cdot 23 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 575.k (of order \(11\) and degree \(10\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 23 \) |
Character field: | \(\Q(\zeta_{11})\) | ||
Newform subspaces: | \( 7 \) | ||
Sturm bound: | \(120\) | ||
Trace bound: | \(2\) | ||
Distinguishing \(T_p\): | \(2\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(575, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 660 | 410 | 250 |
Cusp forms | 540 | 350 | 190 |
Eisenstein series | 120 | 60 | 60 |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(575, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
575.2.k.a | $10$ | $4.591$ | \(\Q(\zeta_{22})\) | None | \(-5\) | \(-1\) | \(0\) | \(-5\) | \(q+(-\zeta_{22}-\zeta_{22}^{3}+\zeta_{22}^{4}-\zeta_{22}^{5}+\cdots)q^{2}+\cdots\) |
575.2.k.b | $10$ | $4.591$ | \(\Q(\zeta_{22})\) | None | \(7\) | \(7\) | \(0\) | \(5\) | \(q+(1-\zeta_{22}-\zeta_{22}^{7}+\zeta_{22}^{8})q^{2}+(1+\cdots)q^{3}+\cdots\) |
575.2.k.c | $20$ | $4.591$ | \(\mathbb{Q}[x]/(x^{20} - \cdots)\) | None | \(4\) | \(-1\) | \(0\) | \(4\) | \(q+(1-\beta _{2}-\beta _{3}-\beta _{4}-\beta _{6}-\beta _{8}+\beta _{13}+\cdots)q^{2}+\cdots\) |
575.2.k.d | $50$ | $4.591$ | None | \(5\) | \(2\) | \(0\) | \(5\) | ||
575.2.k.e | $80$ | $4.591$ | None | \(-2\) | \(0\) | \(0\) | \(4\) | ||
575.2.k.f | $80$ | $4.591$ | None | \(2\) | \(0\) | \(0\) | \(-4\) | ||
575.2.k.g | $100$ | $4.591$ | None | \(0\) | \(0\) | \(0\) | \(0\) |
Decomposition of \(S_{2}^{\mathrm{old}}(575, [\chi])\) into lower level spaces
\( S_{2}^{\mathrm{old}}(575, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(23, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(115, [\chi])\)\(^{\oplus 2}\)