Properties

Label 575.2.i
Level $575$
Weight $2$
Character orbit 575.i
Rep. character $\chi_{575}(139,\cdot)$
Character field $\Q(\zeta_{10})$
Dimension $216$
Newform subspaces $1$
Sturm bound $120$
Trace bound $0$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 575 = 5^{2} \cdot 23 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 575.i (of order \(10\) and degree \(4\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 25 \)
Character field: \(\Q(\zeta_{10})\)
Newform subspaces: \( 1 \)
Sturm bound: \(120\)
Trace bound: \(0\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(575, [\chi])\).

Total New Old
Modular forms 248 216 32
Cusp forms 232 216 16
Eisenstein series 16 0 16

Trace form

\( 216 q + 52 q^{4} + 2 q^{5} + 4 q^{6} - 30 q^{8} + 50 q^{9} - 2 q^{10} - 12 q^{14} - 10 q^{15} - 72 q^{16} + 36 q^{20} + 12 q^{21} + 20 q^{24} + 10 q^{25} - 56 q^{26} - 30 q^{27} + 60 q^{28} - 8 q^{29} - 14 q^{30}+ \cdots - 32 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(575, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
575.2.i.a 575.i 25.e $216$ $4.591$ None 575.2.i.a \(0\) \(0\) \(2\) \(0\) $\mathrm{SU}(2)[C_{10}]$

Decomposition of \(S_{2}^{\mathrm{old}}(575, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(575, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(25, [\chi])\)\(^{\oplus 2}\)