Defining parameters
Level: | \( N \) | \(=\) | \( 575 = 5^{2} \cdot 23 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 575.g (of order \(5\) and degree \(4\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 25 \) |
Character field: | \(\Q(\zeta_{5})\) | ||
Newform subspaces: | \( 3 \) | ||
Sturm bound: | \(120\) | ||
Trace bound: | \(1\) | ||
Distinguishing \(T_p\): | \(2\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(575, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 248 | 224 | 24 |
Cusp forms | 232 | 224 | 8 |
Eisenstein series | 16 | 0 | 16 |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(575, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
575.2.g.a | $4$ | $4.591$ | \(\Q(\zeta_{10})\) | None | \(1\) | \(-5\) | \(-5\) | \(4\) | \(q+(-1+2\zeta_{10}-2\zeta_{10}^{2}+\zeta_{10}^{3})q^{2}+\cdots\) |
575.2.g.b | $108$ | $4.591$ | None | \(-4\) | \(1\) | \(3\) | \(24\) | ||
575.2.g.c | $112$ | $4.591$ | None | \(1\) | \(4\) | \(-2\) | \(-36\) |
Decomposition of \(S_{2}^{\mathrm{old}}(575, [\chi])\) into lower level spaces
\( S_{2}^{\mathrm{old}}(575, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(25, [\chi])\)\(^{\oplus 2}\)