Properties

Label 575.2.g
Level $575$
Weight $2$
Character orbit 575.g
Rep. character $\chi_{575}(116,\cdot)$
Character field $\Q(\zeta_{5})$
Dimension $224$
Newform subspaces $3$
Sturm bound $120$
Trace bound $1$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 575 = 5^{2} \cdot 23 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 575.g (of order \(5\) and degree \(4\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 25 \)
Character field: \(\Q(\zeta_{5})\)
Newform subspaces: \( 3 \)
Sturm bound: \(120\)
Trace bound: \(1\)
Distinguishing \(T_p\): \(2\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(575, [\chi])\).

Total New Old
Modular forms 248 224 24
Cusp forms 232 224 8
Eisenstein series 16 0 16

Trace form

\( 224 q - 2 q^{2} - 58 q^{4} - 4 q^{5} - 4 q^{6} - 8 q^{7} + 12 q^{8} - 60 q^{9} - 24 q^{10} - 16 q^{12} - 16 q^{13} - 12 q^{14} - 10 q^{15} - 38 q^{16} - 28 q^{17} + 12 q^{18} + 20 q^{20} - 12 q^{21} - 24 q^{22}+ \cdots - 32 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(575, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
575.2.g.a 575.g 25.d $4$ $4.591$ \(\Q(\zeta_{10})\) None 575.2.g.a \(1\) \(-5\) \(-5\) \(4\) $\mathrm{SU}(2)[C_{5}]$ \(q+(-1+2\zeta_{10}-2\zeta_{10}^{2}+\zeta_{10}^{3})q^{2}+\cdots\)
575.2.g.b 575.g 25.d $108$ $4.591$ None 575.2.g.b \(-4\) \(1\) \(3\) \(24\) $\mathrm{SU}(2)[C_{5}]$
575.2.g.c 575.g 25.d $112$ $4.591$ None 575.2.g.c \(1\) \(4\) \(-2\) \(-36\) $\mathrm{SU}(2)[C_{5}]$

Decomposition of \(S_{2}^{\mathrm{old}}(575, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(575, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(25, [\chi])\)\(^{\oplus 2}\)