Properties

Label 575.2.b.f.24.8
Level $575$
Weight $2$
Character 575.24
Analytic conductor $4.591$
Analytic rank $0$
Dimension $14$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [575,2,Mod(24,575)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("575.24"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(575, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 575 = 5^{2} \cdot 23 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 575.b (of order \(2\), degree \(1\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [14,0,0,-22] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(4)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(4.59139811622\)
Analytic rank: \(0\)
Dimension: \(14\)
Coefficient field: \(\mathbb{Q}[x]/(x^{14} + \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{14} + 25x^{12} + 248x^{10} + 1239x^{8} + 3259x^{6} + 4248x^{4} + 2149x^{2} + 81 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 24.8
Root \(0.202227i\) of defining polynomial
Character \(\chi\) \(=\) 575.24
Dual form 575.2.b.f.24.7

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+0.202227i q^{2} +2.69619i q^{3} +1.95910 q^{4} -0.545243 q^{6} -2.81698i q^{7} +0.800639i q^{8} -4.26945 q^{9} -1.84786 q^{11} +5.28212i q^{12} +6.49089i q^{13} +0.569670 q^{14} +3.75630 q^{16} +7.06930i q^{17} -0.863400i q^{18} +0.252319 q^{19} +7.59513 q^{21} -0.373689i q^{22} +1.00000i q^{23} -2.15868 q^{24} -1.31263 q^{26} -3.42269i q^{27} -5.51876i q^{28} -4.12351 q^{29} +3.54811 q^{31} +2.36090i q^{32} -4.98220i q^{33} -1.42961 q^{34} -8.36430 q^{36} -7.91248i q^{37} +0.0510258i q^{38} -17.5007 q^{39} +6.53833 q^{41} +1.53594i q^{42} -4.93835i q^{43} -3.62016 q^{44} -0.202227 q^{46} -0.851917i q^{47} +10.1277i q^{48} -0.935388 q^{49} -19.0602 q^{51} +12.7163i q^{52} -12.5831i q^{53} +0.692161 q^{54} +2.25538 q^{56} +0.680301i q^{57} -0.833886i q^{58} +10.3616 q^{59} +1.01207 q^{61} +0.717524i q^{62} +12.0270i q^{63} +7.03516 q^{64} +1.00754 q^{66} -3.37930i q^{67} +13.8495i q^{68} -2.69619 q^{69} -0.851917 q^{71} -3.41829i q^{72} -9.75748i q^{73} +1.60012 q^{74} +0.494319 q^{76} +5.20540i q^{77} -3.53911i q^{78} +16.5320 q^{79} -3.58013 q^{81} +1.32223i q^{82} +0.696772i q^{83} +14.8796 q^{84} +0.998669 q^{86} -11.1178i q^{87} -1.47947i q^{88} -13.1835 q^{89} +18.2847 q^{91} +1.95910i q^{92} +9.56638i q^{93} +0.172281 q^{94} -6.36545 q^{96} +5.48684i q^{97} -0.189161i q^{98} +7.88937 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 14 q - 22 q^{4} + 10 q^{6} - 30 q^{9} - 2 q^{11} - 14 q^{14} + 14 q^{16} - 30 q^{19} + 4 q^{21} - 36 q^{24} - 40 q^{26} - 6 q^{29} + 28 q^{31} - 40 q^{34} + 16 q^{39} + 38 q^{41} + 6 q^{44} + 2 q^{46} - 80 q^{49}+ \cdots + 106 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/575\mathbb{Z}\right)^\times\).

\(n\) \(51\) \(277\)
\(\chi(n)\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.202227i 0.142996i 0.997441 + 0.0714981i \(0.0227780\pi\)
−0.997441 + 0.0714981i \(0.977222\pi\)
\(3\) 2.69619i 1.55665i 0.627863 + 0.778324i \(0.283930\pi\)
−0.627863 + 0.778324i \(0.716070\pi\)
\(4\) 1.95910 0.979552
\(5\) 0 0
\(6\) −0.545243 −0.222595
\(7\) − 2.81698i − 1.06472i −0.846518 0.532360i \(-0.821305\pi\)
0.846518 0.532360i \(-0.178695\pi\)
\(8\) 0.800639i 0.283069i
\(9\) −4.26945 −1.42315
\(10\) 0 0
\(11\) −1.84786 −0.557152 −0.278576 0.960414i \(-0.589862\pi\)
−0.278576 + 0.960414i \(0.589862\pi\)
\(12\) 5.28212i 1.52482i
\(13\) 6.49089i 1.80025i 0.435633 + 0.900124i \(0.356525\pi\)
−0.435633 + 0.900124i \(0.643475\pi\)
\(14\) 0.569670 0.152251
\(15\) 0 0
\(16\) 3.75630 0.939074
\(17\) 7.06930i 1.71456i 0.514853 + 0.857279i \(0.327847\pi\)
−0.514853 + 0.857279i \(0.672153\pi\)
\(18\) − 0.863400i − 0.203505i
\(19\) 0.252319 0.0578860 0.0289430 0.999581i \(-0.490786\pi\)
0.0289430 + 0.999581i \(0.490786\pi\)
\(20\) 0 0
\(21\) 7.59513 1.65739
\(22\) − 0.373689i − 0.0796707i
\(23\) 1.00000i 0.208514i
\(24\) −2.15868 −0.440638
\(25\) 0 0
\(26\) −1.31263 −0.257429
\(27\) − 3.42269i − 0.658696i
\(28\) − 5.51876i − 1.04295i
\(29\) −4.12351 −0.765717 −0.382858 0.923807i \(-0.625060\pi\)
−0.382858 + 0.923807i \(0.625060\pi\)
\(30\) 0 0
\(31\) 3.54811 0.637259 0.318630 0.947879i \(-0.396777\pi\)
0.318630 + 0.947879i \(0.396777\pi\)
\(32\) 2.36090i 0.417353i
\(33\) − 4.98220i − 0.867289i
\(34\) −1.42961 −0.245175
\(35\) 0 0
\(36\) −8.36430 −1.39405
\(37\) − 7.91248i − 1.30080i −0.759591 0.650402i \(-0.774601\pi\)
0.759591 0.650402i \(-0.225399\pi\)
\(38\) 0.0510258i 0.00827748i
\(39\) −17.5007 −2.80235
\(40\) 0 0
\(41\) 6.53833 1.02111 0.510557 0.859844i \(-0.329439\pi\)
0.510557 + 0.859844i \(0.329439\pi\)
\(42\) 1.53594i 0.237001i
\(43\) − 4.93835i − 0.753092i −0.926398 0.376546i \(-0.877112\pi\)
0.926398 0.376546i \(-0.122888\pi\)
\(44\) −3.62016 −0.545760
\(45\) 0 0
\(46\) −0.202227 −0.0298168
\(47\) − 0.851917i − 0.124265i −0.998068 0.0621324i \(-0.980210\pi\)
0.998068 0.0621324i \(-0.0197901\pi\)
\(48\) 10.1277i 1.46181i
\(49\) −0.935388 −0.133627
\(50\) 0 0
\(51\) −19.0602 −2.66896
\(52\) 12.7163i 1.76344i
\(53\) − 12.5831i − 1.72842i −0.503135 0.864208i \(-0.667820\pi\)
0.503135 0.864208i \(-0.332180\pi\)
\(54\) 0.692161 0.0941911
\(55\) 0 0
\(56\) 2.25538 0.301388
\(57\) 0.680301i 0.0901080i
\(58\) − 0.833886i − 0.109495i
\(59\) 10.3616 1.34897 0.674484 0.738290i \(-0.264366\pi\)
0.674484 + 0.738290i \(0.264366\pi\)
\(60\) 0 0
\(61\) 1.01207 0.129582 0.0647911 0.997899i \(-0.479362\pi\)
0.0647911 + 0.997899i \(0.479362\pi\)
\(62\) 0.717524i 0.0911257i
\(63\) 12.0270i 1.51526i
\(64\) 7.03516 0.879394
\(65\) 0 0
\(66\) 1.00754 0.124019
\(67\) − 3.37930i − 0.412848i −0.978463 0.206424i \(-0.933817\pi\)
0.978463 0.206424i \(-0.0661826\pi\)
\(68\) 13.8495i 1.67950i
\(69\) −2.69619 −0.324583
\(70\) 0 0
\(71\) −0.851917 −0.101104 −0.0505520 0.998721i \(-0.516098\pi\)
−0.0505520 + 0.998721i \(0.516098\pi\)
\(72\) − 3.41829i − 0.402849i
\(73\) − 9.75748i − 1.14203i −0.820941 0.571013i \(-0.806551\pi\)
0.820941 0.571013i \(-0.193449\pi\)
\(74\) 1.60012 0.186010
\(75\) 0 0
\(76\) 0.494319 0.0567023
\(77\) 5.20540i 0.593211i
\(78\) − 3.53911i − 0.400726i
\(79\) 16.5320 1.86000 0.929999 0.367561i \(-0.119807\pi\)
0.929999 + 0.367561i \(0.119807\pi\)
\(80\) 0 0
\(81\) −3.58013 −0.397793
\(82\) 1.32223i 0.146016i
\(83\) 0.696772i 0.0764806i 0.999269 + 0.0382403i \(0.0121752\pi\)
−0.999269 + 0.0382403i \(0.987825\pi\)
\(84\) 14.8796 1.62350
\(85\) 0 0
\(86\) 0.998669 0.107689
\(87\) − 11.1178i − 1.19195i
\(88\) − 1.47947i − 0.157712i
\(89\) −13.1835 −1.39745 −0.698724 0.715392i \(-0.746248\pi\)
−0.698724 + 0.715392i \(0.746248\pi\)
\(90\) 0 0
\(91\) 18.2847 1.91676
\(92\) 1.95910i 0.204251i
\(93\) 9.56638i 0.991988i
\(94\) 0.172281 0.0177694
\(95\) 0 0
\(96\) −6.36545 −0.649671
\(97\) 5.48684i 0.557104i 0.960421 + 0.278552i \(0.0898544\pi\)
−0.960421 + 0.278552i \(0.910146\pi\)
\(98\) − 0.189161i − 0.0191081i
\(99\) 7.88937 0.792911
\(100\) 0 0
\(101\) −9.56925 −0.952176 −0.476088 0.879398i \(-0.657946\pi\)
−0.476088 + 0.879398i \(0.657946\pi\)
\(102\) − 3.85449i − 0.381651i
\(103\) − 9.10123i − 0.896770i −0.893840 0.448385i \(-0.851999\pi\)
0.893840 0.448385i \(-0.148001\pi\)
\(104\) −5.19686 −0.509594
\(105\) 0 0
\(106\) 2.54464 0.247157
\(107\) − 11.7093i − 1.13198i −0.824411 0.565991i \(-0.808494\pi\)
0.824411 0.565991i \(-0.191506\pi\)
\(108\) − 6.70540i − 0.645228i
\(109\) −1.46844 −0.140651 −0.0703257 0.997524i \(-0.522404\pi\)
−0.0703257 + 0.997524i \(0.522404\pi\)
\(110\) 0 0
\(111\) 21.3336 2.02489
\(112\) − 10.5814i − 0.999850i
\(113\) 1.62939i 0.153280i 0.997059 + 0.0766401i \(0.0244193\pi\)
−0.997059 + 0.0766401i \(0.975581\pi\)
\(114\) −0.137575 −0.0128851
\(115\) 0 0
\(116\) −8.07839 −0.750060
\(117\) − 27.7125i − 2.56203i
\(118\) 2.09540i 0.192897i
\(119\) 19.9141 1.82552
\(120\) 0 0
\(121\) −7.58540 −0.689581
\(122\) 0.204668i 0.0185298i
\(123\) 17.6286i 1.58952i
\(124\) 6.95112 0.624229
\(125\) 0 0
\(126\) −2.43218 −0.216676
\(127\) 8.59258i 0.762468i 0.924479 + 0.381234i \(0.124501\pi\)
−0.924479 + 0.381234i \(0.875499\pi\)
\(128\) 6.14451i 0.543103i
\(129\) 13.3147 1.17230
\(130\) 0 0
\(131\) 2.93777 0.256674 0.128337 0.991731i \(-0.459036\pi\)
0.128337 + 0.991731i \(0.459036\pi\)
\(132\) − 9.76064i − 0.849555i
\(133\) − 0.710778i − 0.0616323i
\(134\) 0.683387 0.0590357
\(135\) 0 0
\(136\) −5.65996 −0.485337
\(137\) 21.9366i 1.87417i 0.349101 + 0.937085i \(0.386487\pi\)
−0.349101 + 0.937085i \(0.613513\pi\)
\(138\) − 0.545243i − 0.0464142i
\(139\) −15.3324 −1.30048 −0.650239 0.759730i \(-0.725331\pi\)
−0.650239 + 0.759730i \(0.725331\pi\)
\(140\) 0 0
\(141\) 2.29693 0.193437
\(142\) − 0.172281i − 0.0144575i
\(143\) − 11.9943i − 1.00301i
\(144\) −16.0373 −1.33644
\(145\) 0 0
\(146\) 1.97323 0.163305
\(147\) − 2.52199i − 0.208010i
\(148\) − 15.5014i − 1.27420i
\(149\) 15.0218 1.23063 0.615316 0.788281i \(-0.289028\pi\)
0.615316 + 0.788281i \(0.289028\pi\)
\(150\) 0 0
\(151\) 17.5294 1.42652 0.713262 0.700897i \(-0.247217\pi\)
0.713262 + 0.700897i \(0.247217\pi\)
\(152\) 0.202016i 0.0163857i
\(153\) − 30.1820i − 2.44007i
\(154\) −1.05267 −0.0848269
\(155\) 0 0
\(156\) −34.2857 −2.74505
\(157\) − 7.10315i − 0.566893i −0.958988 0.283446i \(-0.908522\pi\)
0.958988 0.283446i \(-0.0914778\pi\)
\(158\) 3.34323i 0.265973i
\(159\) 33.9263 2.69053
\(160\) 0 0
\(161\) 2.81698 0.222009
\(162\) − 0.724001i − 0.0568829i
\(163\) − 14.5905i − 1.14282i −0.820666 0.571408i \(-0.806397\pi\)
0.820666 0.571408i \(-0.193603\pi\)
\(164\) 12.8093 1.00024
\(165\) 0 0
\(166\) −0.140906 −0.0109364
\(167\) 9.45066i 0.731314i 0.930750 + 0.365657i \(0.119156\pi\)
−0.930750 + 0.365657i \(0.880844\pi\)
\(168\) 6.08095i 0.469156i
\(169\) −29.1316 −2.24090
\(170\) 0 0
\(171\) −1.07726 −0.0823805
\(172\) − 9.67475i − 0.737692i
\(173\) − 23.3055i − 1.77188i −0.463799 0.885940i \(-0.653514\pi\)
0.463799 0.885940i \(-0.346486\pi\)
\(174\) 2.24832 0.170445
\(175\) 0 0
\(176\) −6.94113 −0.523207
\(177\) 27.9369i 2.09987i
\(178\) − 2.66606i − 0.199830i
\(179\) −23.5562 −1.76068 −0.880338 0.474347i \(-0.842684\pi\)
−0.880338 + 0.474347i \(0.842684\pi\)
\(180\) 0 0
\(181\) 0.505059 0.0375407 0.0187704 0.999824i \(-0.494025\pi\)
0.0187704 + 0.999824i \(0.494025\pi\)
\(182\) 3.69767i 0.274089i
\(183\) 2.72874i 0.201714i
\(184\) −0.800639 −0.0590239
\(185\) 0 0
\(186\) −1.93458 −0.141851
\(187\) − 13.0631i − 0.955269i
\(188\) − 1.66899i − 0.121724i
\(189\) −9.64165 −0.701327
\(190\) 0 0
\(191\) 2.51313 0.181844 0.0909219 0.995858i \(-0.471019\pi\)
0.0909219 + 0.995858i \(0.471019\pi\)
\(192\) 18.9681i 1.36891i
\(193\) − 4.17037i − 0.300190i −0.988672 0.150095i \(-0.952042\pi\)
0.988672 0.150095i \(-0.0479579\pi\)
\(194\) −1.10959 −0.0796638
\(195\) 0 0
\(196\) −1.83252 −0.130894
\(197\) 6.60102i 0.470303i 0.971959 + 0.235151i \(0.0755586\pi\)
−0.971959 + 0.235151i \(0.924441\pi\)
\(198\) 1.59545i 0.113383i
\(199\) 9.91175 0.702626 0.351313 0.936258i \(-0.385735\pi\)
0.351313 + 0.936258i \(0.385735\pi\)
\(200\) 0 0
\(201\) 9.11125 0.642658
\(202\) − 1.93516i − 0.136158i
\(203\) 11.6159i 0.815273i
\(204\) −37.3409 −2.61439
\(205\) 0 0
\(206\) 1.84052 0.128235
\(207\) − 4.26945i − 0.296747i
\(208\) 24.3817i 1.69057i
\(209\) −0.466251 −0.0322513
\(210\) 0 0
\(211\) 8.33546 0.573837 0.286918 0.957955i \(-0.407369\pi\)
0.286918 + 0.957955i \(0.407369\pi\)
\(212\) − 24.6515i − 1.69307i
\(213\) − 2.29693i − 0.157383i
\(214\) 2.36794 0.161869
\(215\) 0 0
\(216\) 2.74034 0.186456
\(217\) − 9.99496i − 0.678502i
\(218\) − 0.296959i − 0.0201126i
\(219\) 26.3080 1.77773
\(220\) 0 0
\(221\) −45.8860 −3.08663
\(222\) 4.31423i 0.289552i
\(223\) 13.4909i 0.903420i 0.892165 + 0.451710i \(0.149186\pi\)
−0.892165 + 0.451710i \(0.850814\pi\)
\(224\) 6.65062 0.444363
\(225\) 0 0
\(226\) −0.329507 −0.0219185
\(227\) 5.77415i 0.383244i 0.981469 + 0.191622i \(0.0613747\pi\)
−0.981469 + 0.191622i \(0.938625\pi\)
\(228\) 1.33278i 0.0882655i
\(229\) −22.3181 −1.47482 −0.737412 0.675444i \(-0.763952\pi\)
−0.737412 + 0.675444i \(0.763952\pi\)
\(230\) 0 0
\(231\) −14.0348 −0.923420
\(232\) − 3.30144i − 0.216750i
\(233\) 21.8227i 1.42965i 0.699303 + 0.714825i \(0.253494\pi\)
−0.699303 + 0.714825i \(0.746506\pi\)
\(234\) 5.60423 0.366360
\(235\) 0 0
\(236\) 20.2995 1.32138
\(237\) 44.5735i 2.89536i
\(238\) 4.02717i 0.261043i
\(239\) 26.7115 1.72782 0.863912 0.503644i \(-0.168007\pi\)
0.863912 + 0.503644i \(0.168007\pi\)
\(240\) 0 0
\(241\) 15.1565 0.976318 0.488159 0.872755i \(-0.337669\pi\)
0.488159 + 0.872755i \(0.337669\pi\)
\(242\) − 1.53397i − 0.0986076i
\(243\) − 19.9208i − 1.27792i
\(244\) 1.98275 0.126933
\(245\) 0 0
\(246\) −3.56498 −0.227295
\(247\) 1.63778i 0.104209i
\(248\) 2.84075i 0.180388i
\(249\) −1.87863 −0.119053
\(250\) 0 0
\(251\) −13.2026 −0.833340 −0.416670 0.909058i \(-0.636803\pi\)
−0.416670 + 0.909058i \(0.636803\pi\)
\(252\) 23.5621i 1.48427i
\(253\) − 1.84786i − 0.116174i
\(254\) −1.73765 −0.109030
\(255\) 0 0
\(256\) 12.8277 0.801733
\(257\) − 13.9450i − 0.869866i −0.900463 0.434933i \(-0.856772\pi\)
0.900463 0.434933i \(-0.143228\pi\)
\(258\) 2.69260i 0.167634i
\(259\) −22.2893 −1.38499
\(260\) 0 0
\(261\) 17.6051 1.08973
\(262\) 0.594097i 0.0367035i
\(263\) 21.7883i 1.34352i 0.740767 + 0.671762i \(0.234462\pi\)
−0.740767 + 0.671762i \(0.765538\pi\)
\(264\) 3.98894 0.245502
\(265\) 0 0
\(266\) 0.143739 0.00881319
\(267\) − 35.5452i − 2.17533i
\(268\) − 6.62041i − 0.404406i
\(269\) −10.2596 −0.625540 −0.312770 0.949829i \(-0.601257\pi\)
−0.312770 + 0.949829i \(0.601257\pi\)
\(270\) 0 0
\(271\) 4.11888 0.250204 0.125102 0.992144i \(-0.460074\pi\)
0.125102 + 0.992144i \(0.460074\pi\)
\(272\) 26.5544i 1.61010i
\(273\) 49.2991i 2.98372i
\(274\) −4.43618 −0.267999
\(275\) 0 0
\(276\) −5.28212 −0.317946
\(277\) − 9.62736i − 0.578452i −0.957261 0.289226i \(-0.906602\pi\)
0.957261 0.289226i \(-0.0933980\pi\)
\(278\) − 3.10063i − 0.185964i
\(279\) −15.1485 −0.906916
\(280\) 0 0
\(281\) 16.9191 1.00931 0.504654 0.863322i \(-0.331620\pi\)
0.504654 + 0.863322i \(0.331620\pi\)
\(282\) 0.464502i 0.0276607i
\(283\) − 7.51375i − 0.446646i −0.974744 0.223323i \(-0.928309\pi\)
0.974744 0.223323i \(-0.0716905\pi\)
\(284\) −1.66899 −0.0990366
\(285\) 0 0
\(286\) 2.42557 0.143427
\(287\) − 18.4183i − 1.08720i
\(288\) − 10.0798i − 0.593956i
\(289\) −32.9750 −1.93971
\(290\) 0 0
\(291\) −14.7936 −0.867214
\(292\) − 19.1159i − 1.11867i
\(293\) 15.7923i 0.922596i 0.887245 + 0.461298i \(0.152616\pi\)
−0.887245 + 0.461298i \(0.847384\pi\)
\(294\) 0.510014 0.0297446
\(295\) 0 0
\(296\) 6.33503 0.368216
\(297\) 6.32466i 0.366994i
\(298\) 3.03781i 0.175976i
\(299\) −6.49089 −0.375378
\(300\) 0 0
\(301\) −13.9112 −0.801831
\(302\) 3.54493i 0.203988i
\(303\) − 25.8005i − 1.48220i
\(304\) 0.947785 0.0543592
\(305\) 0 0
\(306\) 6.10363 0.348921
\(307\) 25.0861i 1.43174i 0.698234 + 0.715870i \(0.253970\pi\)
−0.698234 + 0.715870i \(0.746030\pi\)
\(308\) 10.1979i 0.581081i
\(309\) 24.5387 1.39596
\(310\) 0 0
\(311\) 18.2599 1.03542 0.517711 0.855555i \(-0.326784\pi\)
0.517711 + 0.855555i \(0.326784\pi\)
\(312\) − 14.0117i − 0.793258i
\(313\) 11.3712i 0.642738i 0.946954 + 0.321369i \(0.104143\pi\)
−0.946954 + 0.321369i \(0.895857\pi\)
\(314\) 1.43645 0.0810636
\(315\) 0 0
\(316\) 32.3880 1.82197
\(317\) − 15.7315i − 0.883570i −0.897121 0.441785i \(-0.854345\pi\)
0.897121 0.441785i \(-0.145655\pi\)
\(318\) 6.86083i 0.384736i
\(319\) 7.61969 0.426621
\(320\) 0 0
\(321\) 31.5706 1.76210
\(322\) 0.569670i 0.0317465i
\(323\) 1.78372i 0.0992488i
\(324\) −7.01386 −0.389659
\(325\) 0 0
\(326\) 2.95059 0.163418
\(327\) − 3.95921i − 0.218945i
\(328\) 5.23484i 0.289045i
\(329\) −2.39984 −0.132307
\(330\) 0 0
\(331\) 12.5991 0.692507 0.346253 0.938141i \(-0.387454\pi\)
0.346253 + 0.938141i \(0.387454\pi\)
\(332\) 1.36505i 0.0749168i
\(333\) 33.7819i 1.85124i
\(334\) −1.91118 −0.104575
\(335\) 0 0
\(336\) 28.5295 1.55641
\(337\) 16.5473i 0.901388i 0.892679 + 0.450694i \(0.148823\pi\)
−0.892679 + 0.450694i \(0.851177\pi\)
\(338\) − 5.89121i − 0.320440i
\(339\) −4.39315 −0.238603
\(340\) 0 0
\(341\) −6.55643 −0.355050
\(342\) − 0.217852i − 0.0117801i
\(343\) − 17.0839i − 0.922444i
\(344\) 3.95384 0.213177
\(345\) 0 0
\(346\) 4.71300 0.253372
\(347\) − 8.43461i − 0.452794i −0.974035 0.226397i \(-0.927305\pi\)
0.974035 0.226397i \(-0.0726946\pi\)
\(348\) − 21.7809i − 1.16758i
\(349\) 13.2201 0.707658 0.353829 0.935310i \(-0.384879\pi\)
0.353829 + 0.935310i \(0.384879\pi\)
\(350\) 0 0
\(351\) 22.2163 1.18582
\(352\) − 4.36263i − 0.232529i
\(353\) − 1.28663i − 0.0684803i −0.999414 0.0342401i \(-0.989099\pi\)
0.999414 0.0342401i \(-0.0109011\pi\)
\(354\) −5.64960 −0.300273
\(355\) 0 0
\(356\) −25.8278 −1.36887
\(357\) 53.6922i 2.84169i
\(358\) − 4.76371i − 0.251770i
\(359\) −14.7493 −0.778438 −0.389219 0.921145i \(-0.627255\pi\)
−0.389219 + 0.921145i \(0.627255\pi\)
\(360\) 0 0
\(361\) −18.9363 −0.996649
\(362\) 0.102137i 0.00536818i
\(363\) − 20.4517i − 1.07344i
\(364\) 35.8217 1.87757
\(365\) 0 0
\(366\) −0.551825 −0.0288443
\(367\) 25.9403i 1.35407i 0.735950 + 0.677036i \(0.236736\pi\)
−0.735950 + 0.677036i \(0.763264\pi\)
\(368\) 3.75630i 0.195811i
\(369\) −27.9151 −1.45320
\(370\) 0 0
\(371\) −35.4462 −1.84028
\(372\) 18.7415i 0.971704i
\(373\) 13.1177i 0.679209i 0.940568 + 0.339604i \(0.110293\pi\)
−0.940568 + 0.339604i \(0.889707\pi\)
\(374\) 2.64172 0.136600
\(375\) 0 0
\(376\) 0.682078 0.0351755
\(377\) − 26.7653i − 1.37848i
\(378\) − 1.94980i − 0.100287i
\(379\) −9.63674 −0.495006 −0.247503 0.968887i \(-0.579610\pi\)
−0.247503 + 0.968887i \(0.579610\pi\)
\(380\) 0 0
\(381\) −23.1672 −1.18689
\(382\) 0.508224i 0.0260030i
\(383\) − 16.1595i − 0.825711i −0.910797 0.412856i \(-0.864531\pi\)
0.910797 0.412856i \(-0.135469\pi\)
\(384\) −16.5668 −0.845419
\(385\) 0 0
\(386\) 0.843362 0.0429260
\(387\) 21.0841i 1.07176i
\(388\) 10.7493i 0.545712i
\(389\) −27.6271 −1.40075 −0.700374 0.713776i \(-0.746983\pi\)
−0.700374 + 0.713776i \(0.746983\pi\)
\(390\) 0 0
\(391\) −7.06930 −0.357510
\(392\) − 0.748908i − 0.0378256i
\(393\) 7.92080i 0.399551i
\(394\) −1.33491 −0.0672516
\(395\) 0 0
\(396\) 15.4561 0.776698
\(397\) − 10.7707i − 0.540565i −0.962781 0.270282i \(-0.912883\pi\)
0.962781 0.270282i \(-0.0871170\pi\)
\(398\) 2.00443i 0.100473i
\(399\) 1.91639 0.0959397
\(400\) 0 0
\(401\) −31.5635 −1.57621 −0.788104 0.615542i \(-0.788937\pi\)
−0.788104 + 0.615542i \(0.788937\pi\)
\(402\) 1.84254i 0.0918977i
\(403\) 23.0304i 1.14723i
\(404\) −18.7472 −0.932706
\(405\) 0 0
\(406\) −2.34904 −0.116581
\(407\) 14.6212i 0.724745i
\(408\) − 15.2603i − 0.755499i
\(409\) −15.6426 −0.773479 −0.386740 0.922189i \(-0.626399\pi\)
−0.386740 + 0.922189i \(0.626399\pi\)
\(410\) 0 0
\(411\) −59.1453 −2.91742
\(412\) − 17.8303i − 0.878433i
\(413\) − 29.1885i − 1.43627i
\(414\) 0.863400 0.0424338
\(415\) 0 0
\(416\) −15.3244 −0.751338
\(417\) − 41.3391i − 2.02439i
\(418\) − 0.0942887i − 0.00461181i
\(419\) 11.1799 0.546175 0.273088 0.961989i \(-0.411955\pi\)
0.273088 + 0.961989i \(0.411955\pi\)
\(420\) 0 0
\(421\) 0.661200 0.0322249 0.0161125 0.999870i \(-0.494871\pi\)
0.0161125 + 0.999870i \(0.494871\pi\)
\(422\) 1.68566i 0.0820565i
\(423\) 3.63722i 0.176848i
\(424\) 10.0745 0.489260
\(425\) 0 0
\(426\) 0.464502 0.0225052
\(427\) − 2.85098i − 0.137969i
\(428\) − 22.9398i − 1.10884i
\(429\) 32.3389 1.56134
\(430\) 0 0
\(431\) −15.2276 −0.733488 −0.366744 0.930322i \(-0.619527\pi\)
−0.366744 + 0.930322i \(0.619527\pi\)
\(432\) − 12.8566i − 0.618565i
\(433\) − 22.2662i − 1.07005i −0.844838 0.535023i \(-0.820303\pi\)
0.844838 0.535023i \(-0.179697\pi\)
\(434\) 2.02125 0.0970233
\(435\) 0 0
\(436\) −2.87684 −0.137775
\(437\) 0.252319i 0.0120701i
\(438\) 5.32020i 0.254209i
\(439\) −21.1491 −1.00939 −0.504695 0.863298i \(-0.668395\pi\)
−0.504695 + 0.863298i \(0.668395\pi\)
\(440\) 0 0
\(441\) 3.99359 0.190171
\(442\) − 9.27941i − 0.441376i
\(443\) − 9.94721i − 0.472606i −0.971679 0.236303i \(-0.924064\pi\)
0.971679 0.236303i \(-0.0759358\pi\)
\(444\) 41.7947 1.98349
\(445\) 0 0
\(446\) −2.72824 −0.129186
\(447\) 40.5016i 1.91566i
\(448\) − 19.8179i − 0.936308i
\(449\) 8.32870 0.393056 0.196528 0.980498i \(-0.437033\pi\)
0.196528 + 0.980498i \(0.437033\pi\)
\(450\) 0 0
\(451\) −12.0819 −0.568916
\(452\) 3.19215i 0.150146i
\(453\) 47.2627i 2.22060i
\(454\) −1.16769 −0.0548024
\(455\) 0 0
\(456\) −0.544675 −0.0255067
\(457\) − 33.2599i − 1.55583i −0.628369 0.777916i \(-0.716277\pi\)
0.628369 0.777916i \(-0.283723\pi\)
\(458\) − 4.51333i − 0.210894i
\(459\) 24.1960 1.12937
\(460\) 0 0
\(461\) 14.8481 0.691544 0.345772 0.938318i \(-0.387617\pi\)
0.345772 + 0.938318i \(0.387617\pi\)
\(462\) − 2.83821i − 0.132046i
\(463\) 15.6422i 0.726956i 0.931603 + 0.363478i \(0.118411\pi\)
−0.931603 + 0.363478i \(0.881589\pi\)
\(464\) −15.4891 −0.719065
\(465\) 0 0
\(466\) −4.41314 −0.204435
\(467\) − 5.26987i − 0.243861i −0.992539 0.121930i \(-0.961092\pi\)
0.992539 0.121930i \(-0.0389084\pi\)
\(468\) − 54.2918i − 2.50964i
\(469\) −9.51944 −0.439567
\(470\) 0 0
\(471\) 19.1514 0.882452
\(472\) 8.29591i 0.381850i
\(473\) 9.12541i 0.419587i
\(474\) −9.01398 −0.414026
\(475\) 0 0
\(476\) 39.0138 1.78819
\(477\) 53.7228i 2.45980i
\(478\) 5.40179i 0.247072i
\(479\) −0.404422 −0.0184785 −0.00923927 0.999957i \(-0.502941\pi\)
−0.00923927 + 0.999957i \(0.502941\pi\)
\(480\) 0 0
\(481\) 51.3590 2.34177
\(482\) 3.06506i 0.139610i
\(483\) 7.59513i 0.345590i
\(484\) −14.8606 −0.675481
\(485\) 0 0
\(486\) 4.02853 0.182738
\(487\) − 17.0409i − 0.772198i −0.922457 0.386099i \(-0.873822\pi\)
0.922457 0.386099i \(-0.126178\pi\)
\(488\) 0.810302i 0.0366807i
\(489\) 39.3388 1.77896
\(490\) 0 0
\(491\) −9.42821 −0.425489 −0.212745 0.977108i \(-0.568240\pi\)
−0.212745 + 0.977108i \(0.568240\pi\)
\(492\) 34.5362i 1.55701i
\(493\) − 29.1503i − 1.31287i
\(494\) −0.331203 −0.0149015
\(495\) 0 0
\(496\) 13.3278 0.598434
\(497\) 2.39984i 0.107647i
\(498\) − 0.379910i − 0.0170242i
\(499\) 25.7959 1.15478 0.577391 0.816468i \(-0.304071\pi\)
0.577391 + 0.816468i \(0.304071\pi\)
\(500\) 0 0
\(501\) −25.4808 −1.13840
\(502\) − 2.66992i − 0.119165i
\(503\) − 21.6111i − 0.963589i −0.876284 0.481795i \(-0.839985\pi\)
0.876284 0.481795i \(-0.160015\pi\)
\(504\) −9.62926 −0.428921
\(505\) 0 0
\(506\) 0.373689 0.0166125
\(507\) − 78.5445i − 3.48828i
\(508\) 16.8338i 0.746877i
\(509\) 6.13182 0.271788 0.135894 0.990723i \(-0.456609\pi\)
0.135894 + 0.990723i \(0.456609\pi\)
\(510\) 0 0
\(511\) −27.4866 −1.21594
\(512\) 14.8831i 0.657748i
\(513\) − 0.863609i − 0.0381293i
\(514\) 2.82006 0.124388
\(515\) 0 0
\(516\) 26.0850 1.14833
\(517\) 1.57423i 0.0692345i
\(518\) − 4.50750i − 0.198048i
\(519\) 62.8360 2.75819
\(520\) 0 0
\(521\) 22.4021 0.981454 0.490727 0.871313i \(-0.336731\pi\)
0.490727 + 0.871313i \(0.336731\pi\)
\(522\) 3.56024i 0.155827i
\(523\) − 8.25468i − 0.360952i −0.983579 0.180476i \(-0.942236\pi\)
0.983579 0.180476i \(-0.0577638\pi\)
\(524\) 5.75540 0.251426
\(525\) 0 0
\(526\) −4.40619 −0.192119
\(527\) 25.0827i 1.09262i
\(528\) − 18.7146i − 0.814449i
\(529\) −1.00000 −0.0434783
\(530\) 0 0
\(531\) −44.2384 −1.91978
\(532\) − 1.39249i − 0.0603720i
\(533\) 42.4395i 1.83826i
\(534\) 7.18821 0.311064
\(535\) 0 0
\(536\) 2.70560 0.116864
\(537\) − 63.5121i − 2.74075i
\(538\) − 2.07477i − 0.0894498i
\(539\) 1.72847 0.0744505
\(540\) 0 0
\(541\) 24.9079 1.07087 0.535437 0.844575i \(-0.320147\pi\)
0.535437 + 0.844575i \(0.320147\pi\)
\(542\) 0.832950i 0.0357782i
\(543\) 1.36174i 0.0584376i
\(544\) −16.6899 −0.715575
\(545\) 0 0
\(546\) −9.96962 −0.426660
\(547\) − 19.8049i − 0.846795i −0.905944 0.423398i \(-0.860837\pi\)
0.905944 0.423398i \(-0.139163\pi\)
\(548\) 42.9761i 1.83585i
\(549\) −4.32098 −0.184415
\(550\) 0 0
\(551\) −1.04044 −0.0443243
\(552\) − 2.15868i − 0.0918793i
\(553\) − 46.5704i − 1.98038i
\(554\) 1.94692 0.0827165
\(555\) 0 0
\(556\) −30.0378 −1.27389
\(557\) − 36.6380i − 1.55240i −0.630486 0.776201i \(-0.717144\pi\)
0.630486 0.776201i \(-0.282856\pi\)
\(558\) − 3.06344i − 0.129686i
\(559\) 32.0543 1.35575
\(560\) 0 0
\(561\) 35.2207 1.48702
\(562\) 3.42150i 0.144327i
\(563\) − 19.0783i − 0.804054i −0.915628 0.402027i \(-0.868306\pi\)
0.915628 0.402027i \(-0.131694\pi\)
\(564\) 4.49993 0.189481
\(565\) 0 0
\(566\) 1.51949 0.0638687
\(567\) 10.0852i 0.423537i
\(568\) − 0.682078i − 0.0286194i
\(569\) −4.50086 −0.188686 −0.0943429 0.995540i \(-0.530075\pi\)
−0.0943429 + 0.995540i \(0.530075\pi\)
\(570\) 0 0
\(571\) 1.25913 0.0526930 0.0263465 0.999653i \(-0.491613\pi\)
0.0263465 + 0.999653i \(0.491613\pi\)
\(572\) − 23.4981i − 0.982503i
\(573\) 6.77589i 0.283067i
\(574\) 3.72469 0.155466
\(575\) 0 0
\(576\) −30.0363 −1.25151
\(577\) 1.33814i 0.0557077i 0.999612 + 0.0278539i \(0.00886730\pi\)
−0.999612 + 0.0278539i \(0.991133\pi\)
\(578\) − 6.66845i − 0.277371i
\(579\) 11.2441 0.467289
\(580\) 0 0
\(581\) 1.96279 0.0814304
\(582\) − 2.99166i − 0.124008i
\(583\) 23.2518i 0.962990i
\(584\) 7.81221 0.323272
\(585\) 0 0
\(586\) −3.19363 −0.131928
\(587\) − 22.4997i − 0.928664i −0.885661 0.464332i \(-0.846295\pi\)
0.885661 0.464332i \(-0.153705\pi\)
\(588\) − 4.94083i − 0.203757i
\(589\) 0.895256 0.0368884
\(590\) 0 0
\(591\) −17.7976 −0.732096
\(592\) − 29.7216i − 1.22155i
\(593\) 30.8988i 1.26886i 0.772979 + 0.634432i \(0.218766\pi\)
−0.772979 + 0.634432i \(0.781234\pi\)
\(594\) −1.27902 −0.0524788
\(595\) 0 0
\(596\) 29.4292 1.20547
\(597\) 26.7240i 1.09374i
\(598\) − 1.31263i − 0.0536776i
\(599\) 7.34413 0.300073 0.150036 0.988680i \(-0.452061\pi\)
0.150036 + 0.988680i \(0.452061\pi\)
\(600\) 0 0
\(601\) −5.10253 −0.208136 −0.104068 0.994570i \(-0.533186\pi\)
−0.104068 + 0.994570i \(0.533186\pi\)
\(602\) − 2.81323i − 0.114659i
\(603\) 14.4278i 0.587544i
\(604\) 34.3420 1.39735
\(605\) 0 0
\(606\) 5.21757 0.211949
\(607\) 21.4965i 0.872518i 0.899821 + 0.436259i \(0.143697\pi\)
−0.899821 + 0.436259i \(0.856303\pi\)
\(608\) 0.595701i 0.0241589i
\(609\) −31.3186 −1.26909
\(610\) 0 0
\(611\) 5.52970 0.223708
\(612\) − 59.1298i − 2.39018i
\(613\) 44.4369i 1.79479i 0.441227 + 0.897396i \(0.354543\pi\)
−0.441227 + 0.897396i \(0.645457\pi\)
\(614\) −5.07310 −0.204733
\(615\) 0 0
\(616\) −4.16765 −0.167919
\(617\) 25.0662i 1.00913i 0.863375 + 0.504564i \(0.168347\pi\)
−0.863375 + 0.504564i \(0.831653\pi\)
\(618\) 4.96238i 0.199616i
\(619\) 11.6002 0.466252 0.233126 0.972447i \(-0.425105\pi\)
0.233126 + 0.972447i \(0.425105\pi\)
\(620\) 0 0
\(621\) 3.42269 0.137348
\(622\) 3.69265i 0.148062i
\(623\) 37.1377i 1.48789i
\(624\) −65.7378 −2.63162
\(625\) 0 0
\(626\) −2.29957 −0.0919091
\(627\) − 1.25710i − 0.0502039i
\(628\) − 13.9158i − 0.555301i
\(629\) 55.9357 2.23030
\(630\) 0 0
\(631\) −9.17437 −0.365226 −0.182613 0.983185i \(-0.558456\pi\)
−0.182613 + 0.983185i \(0.558456\pi\)
\(632\) 13.2362i 0.526507i
\(633\) 22.4740i 0.893261i
\(634\) 3.18134 0.126347
\(635\) 0 0
\(636\) 66.4652 2.63552
\(637\) − 6.07150i − 0.240562i
\(638\) 1.54091i 0.0610052i
\(639\) 3.63722 0.143886
\(640\) 0 0
\(641\) 3.98400 0.157359 0.0786793 0.996900i \(-0.474930\pi\)
0.0786793 + 0.996900i \(0.474930\pi\)
\(642\) 6.38443i 0.251973i
\(643\) − 13.3005i − 0.524520i −0.964997 0.262260i \(-0.915532\pi\)
0.964997 0.262260i \(-0.0844678\pi\)
\(644\) 5.51876 0.217470
\(645\) 0 0
\(646\) −0.360717 −0.0141922
\(647\) 3.02871i 0.119071i 0.998226 + 0.0595354i \(0.0189619\pi\)
−0.998226 + 0.0595354i \(0.981038\pi\)
\(648\) − 2.86639i − 0.112603i
\(649\) −19.1469 −0.751580
\(650\) 0 0
\(651\) 26.9483 1.05619
\(652\) − 28.5843i − 1.11945i
\(653\) − 24.8569i − 0.972727i −0.873757 0.486363i \(-0.838323\pi\)
0.873757 0.486363i \(-0.161677\pi\)
\(654\) 0.800660 0.0313083
\(655\) 0 0
\(656\) 24.5599 0.958903
\(657\) 41.6591i 1.62528i
\(658\) − 0.485312i − 0.0189194i
\(659\) −30.2901 −1.17994 −0.589968 0.807427i \(-0.700860\pi\)
−0.589968 + 0.807427i \(0.700860\pi\)
\(660\) 0 0
\(661\) −41.7574 −1.62418 −0.812088 0.583535i \(-0.801669\pi\)
−0.812088 + 0.583535i \(0.801669\pi\)
\(662\) 2.54787i 0.0990259i
\(663\) − 123.718i − 4.80479i
\(664\) −0.557862 −0.0216493
\(665\) 0 0
\(666\) −6.83163 −0.264720
\(667\) − 4.12351i − 0.159663i
\(668\) 18.5148i 0.716360i
\(669\) −36.3742 −1.40631
\(670\) 0 0
\(671\) −1.87017 −0.0721971
\(672\) 17.9314i 0.691717i
\(673\) 18.1446i 0.699424i 0.936857 + 0.349712i \(0.113721\pi\)
−0.936857 + 0.349712i \(0.886279\pi\)
\(674\) −3.34631 −0.128895
\(675\) 0 0
\(676\) −57.0719 −2.19507
\(677\) 16.4647i 0.632790i 0.948627 + 0.316395i \(0.102473\pi\)
−0.948627 + 0.316395i \(0.897527\pi\)
\(678\) − 0.888415i − 0.0341194i
\(679\) 15.4563 0.593159
\(680\) 0 0
\(681\) −15.5682 −0.596575
\(682\) − 1.32589i − 0.0507709i
\(683\) − 46.7050i − 1.78712i −0.448948 0.893558i \(-0.648201\pi\)
0.448948 0.893558i \(-0.351799\pi\)
\(684\) −2.11047 −0.0806959
\(685\) 0 0
\(686\) 3.45483 0.131906
\(687\) − 60.1740i − 2.29578i
\(688\) − 18.5499i − 0.707209i
\(689\) 81.6752 3.11158
\(690\) 0 0
\(691\) −11.5366 −0.438872 −0.219436 0.975627i \(-0.570422\pi\)
−0.219436 + 0.975627i \(0.570422\pi\)
\(692\) − 45.6578i − 1.73565i
\(693\) − 22.2242i − 0.844228i
\(694\) 1.70571 0.0647478
\(695\) 0 0
\(696\) 8.90132 0.337404
\(697\) 46.2214i 1.75076i
\(698\) 2.67347i 0.101192i
\(699\) −58.8381 −2.22546
\(700\) 0 0
\(701\) 31.8694 1.20369 0.601845 0.798613i \(-0.294432\pi\)
0.601845 + 0.798613i \(0.294432\pi\)
\(702\) 4.49274i 0.169567i
\(703\) − 1.99647i − 0.0752982i
\(704\) −13.0000 −0.489957
\(705\) 0 0
\(706\) 0.260191 0.00979243
\(707\) 26.9564i 1.01380i
\(708\) 54.7313i 2.05693i
\(709\) −5.06884 −0.190364 −0.0951822 0.995460i \(-0.530343\pi\)
−0.0951822 + 0.995460i \(0.530343\pi\)
\(710\) 0 0
\(711\) −70.5827 −2.64706
\(712\) − 10.5552i − 0.395573i
\(713\) 3.54811i 0.132878i
\(714\) −10.8580 −0.406352
\(715\) 0 0
\(716\) −46.1491 −1.72467
\(717\) 72.0193i 2.68961i
\(718\) − 2.98271i − 0.111314i
\(719\) −6.53346 −0.243657 −0.121828 0.992551i \(-0.538876\pi\)
−0.121828 + 0.992551i \(0.538876\pi\)
\(720\) 0 0
\(721\) −25.6380 −0.954809
\(722\) − 3.82944i − 0.142517i
\(723\) 40.8649i 1.51978i
\(724\) 0.989462 0.0367731
\(725\) 0 0
\(726\) 4.13589 0.153497
\(727\) 46.2193i 1.71418i 0.515169 + 0.857089i \(0.327729\pi\)
−0.515169 + 0.857089i \(0.672271\pi\)
\(728\) 14.6395i 0.542574i
\(729\) 42.9699 1.59148
\(730\) 0 0
\(731\) 34.9107 1.29122
\(732\) 5.34588i 0.197589i
\(733\) − 20.2561i − 0.748177i −0.927393 0.374089i \(-0.877956\pi\)
0.927393 0.374089i \(-0.122044\pi\)
\(734\) −5.24583 −0.193627
\(735\) 0 0
\(736\) −2.36090 −0.0870240
\(737\) 6.24450i 0.230019i
\(738\) − 5.64519i − 0.207802i
\(739\) −0.454209 −0.0167083 −0.00835417 0.999965i \(-0.502659\pi\)
−0.00835417 + 0.999965i \(0.502659\pi\)
\(740\) 0 0
\(741\) −4.41576 −0.162217
\(742\) − 7.16820i − 0.263153i
\(743\) − 17.9525i − 0.658614i −0.944223 0.329307i \(-0.893185\pi\)
0.944223 0.329307i \(-0.106815\pi\)
\(744\) −7.65922 −0.280801
\(745\) 0 0
\(746\) −2.65276 −0.0971243
\(747\) − 2.97483i − 0.108843i
\(748\) − 25.5920i − 0.935736i
\(749\) −32.9849 −1.20524
\(750\) 0 0
\(751\) 14.8866 0.543219 0.271610 0.962408i \(-0.412444\pi\)
0.271610 + 0.962408i \(0.412444\pi\)
\(752\) − 3.20005i − 0.116694i
\(753\) − 35.5967i − 1.29722i
\(754\) 5.41266 0.197118
\(755\) 0 0
\(756\) −18.8890 −0.686986
\(757\) 31.7028i 1.15226i 0.817358 + 0.576129i \(0.195438\pi\)
−0.817358 + 0.576129i \(0.804562\pi\)
\(758\) − 1.94881i − 0.0707840i
\(759\) 4.98220 0.180842
\(760\) 0 0
\(761\) −6.80194 −0.246570 −0.123285 0.992371i \(-0.539343\pi\)
−0.123285 + 0.992371i \(0.539343\pi\)
\(762\) − 4.68505i − 0.169721i
\(763\) 4.13658i 0.149754i
\(764\) 4.92349 0.178126
\(765\) 0 0
\(766\) 3.26789 0.118074
\(767\) 67.2561i 2.42848i
\(768\) 34.5860i 1.24802i
\(769\) −19.2067 −0.692612 −0.346306 0.938122i \(-0.612564\pi\)
−0.346306 + 0.938122i \(0.612564\pi\)
\(770\) 0 0
\(771\) 37.5985 1.35408
\(772\) − 8.17019i − 0.294051i
\(773\) 27.6037i 0.992835i 0.868084 + 0.496418i \(0.165351\pi\)
−0.868084 + 0.496418i \(0.834649\pi\)
\(774\) −4.26377 −0.153258
\(775\) 0 0
\(776\) −4.39297 −0.157699
\(777\) − 60.0962i − 2.15594i
\(778\) − 5.58694i − 0.200302i
\(779\) 1.64974 0.0591082
\(780\) 0 0
\(781\) 1.57423 0.0563303
\(782\) − 1.42961i − 0.0511226i
\(783\) 14.1135i 0.504375i
\(784\) −3.51360 −0.125486
\(785\) 0 0
\(786\) −1.60180 −0.0571344
\(787\) 35.6271i 1.26997i 0.772525 + 0.634984i \(0.218993\pi\)
−0.772525 + 0.634984i \(0.781007\pi\)
\(788\) 12.9321i 0.460686i
\(789\) −58.7455 −2.09139
\(790\) 0 0
\(791\) 4.58997 0.163200
\(792\) 6.31653i 0.224448i
\(793\) 6.56923i 0.233280i
\(794\) 2.17812 0.0772987
\(795\) 0 0
\(796\) 19.4182 0.688258
\(797\) − 9.85579i − 0.349110i −0.984647 0.174555i \(-0.944151\pi\)
0.984647 0.174555i \(-0.0558487\pi\)
\(798\) 0.387547i 0.0137190i
\(799\) 6.02246 0.213059
\(800\) 0 0
\(801\) 56.2863 1.98878
\(802\) − 6.38301i − 0.225392i
\(803\) 18.0305i 0.636282i
\(804\) 17.8499 0.629517
\(805\) 0 0
\(806\) −4.65737 −0.164049
\(807\) − 27.6619i − 0.973745i
\(808\) − 7.66151i − 0.269531i
\(809\) −35.4171 −1.24520 −0.622599 0.782541i \(-0.713923\pi\)
−0.622599 + 0.782541i \(0.713923\pi\)
\(810\) 0 0
\(811\) −23.6023 −0.828790 −0.414395 0.910097i \(-0.636007\pi\)
−0.414395 + 0.910097i \(0.636007\pi\)
\(812\) 22.7567i 0.798603i
\(813\) 11.1053i 0.389480i
\(814\) −2.95680 −0.103636
\(815\) 0 0
\(816\) −71.5958 −2.50635
\(817\) − 1.24604i − 0.0435934i
\(818\) − 3.16337i − 0.110605i
\(819\) −78.0657 −2.72784
\(820\) 0 0
\(821\) −21.1904 −0.739548 −0.369774 0.929122i \(-0.620565\pi\)
−0.369774 + 0.929122i \(0.620565\pi\)
\(822\) − 11.9608i − 0.417180i
\(823\) 28.8463i 1.00552i 0.864427 + 0.502759i \(0.167682\pi\)
−0.864427 + 0.502759i \(0.832318\pi\)
\(824\) 7.28679 0.253847
\(825\) 0 0
\(826\) 5.90271 0.205381
\(827\) − 7.85313i − 0.273080i −0.990635 0.136540i \(-0.956402\pi\)
0.990635 0.136540i \(-0.0435982\pi\)
\(828\) − 8.36430i − 0.290680i
\(829\) 7.58148 0.263316 0.131658 0.991295i \(-0.457970\pi\)
0.131658 + 0.991295i \(0.457970\pi\)
\(830\) 0 0
\(831\) 25.9572 0.900446
\(832\) 45.6644i 1.58313i
\(833\) − 6.61254i − 0.229111i
\(834\) 8.35990 0.289480
\(835\) 0 0
\(836\) −0.913435 −0.0315918
\(837\) − 12.1441i − 0.419760i
\(838\) 2.26089i 0.0781010i
\(839\) −33.2424 −1.14765 −0.573827 0.818977i \(-0.694542\pi\)
−0.573827 + 0.818977i \(0.694542\pi\)
\(840\) 0 0
\(841\) −11.9967 −0.413678
\(842\) 0.133713i 0.00460804i
\(843\) 45.6171i 1.57114i
\(844\) 16.3300 0.562103
\(845\) 0 0
\(846\) −0.735545 −0.0252886
\(847\) 21.3679i 0.734211i
\(848\) − 47.2657i − 1.62311i
\(849\) 20.2585 0.695271
\(850\) 0 0
\(851\) 7.91248 0.271236
\(852\) − 4.49993i − 0.154165i
\(853\) 21.1798i 0.725183i 0.931948 + 0.362591i \(0.118108\pi\)
−0.931948 + 0.362591i \(0.881892\pi\)
\(854\) 0.576546 0.0197290
\(855\) 0 0
\(856\) 9.37493 0.320429
\(857\) 13.2340i 0.452066i 0.974120 + 0.226033i \(0.0725758\pi\)
−0.974120 + 0.226033i \(0.927424\pi\)
\(858\) 6.53980i 0.223265i
\(859\) 31.6863 1.08112 0.540561 0.841305i \(-0.318212\pi\)
0.540561 + 0.841305i \(0.318212\pi\)
\(860\) 0 0
\(861\) 49.6594 1.69239
\(862\) − 3.07944i − 0.104886i
\(863\) − 1.12760i − 0.0383840i −0.999816 0.0191920i \(-0.993891\pi\)
0.999816 0.0191920i \(-0.00610938\pi\)
\(864\) 8.08063 0.274909
\(865\) 0 0
\(866\) 4.50283 0.153013
\(867\) − 88.9070i − 3.01944i
\(868\) − 19.5812i − 0.664628i
\(869\) −30.5490 −1.03630
\(870\) 0 0
\(871\) 21.9347 0.743228
\(872\) − 1.17569i − 0.0398140i
\(873\) − 23.4258i − 0.792843i
\(874\) −0.0510258 −0.00172597
\(875\) 0 0
\(876\) 51.5402 1.74138
\(877\) 30.9499i 1.04510i 0.852608 + 0.522552i \(0.175020\pi\)
−0.852608 + 0.522552i \(0.824980\pi\)
\(878\) − 4.27692i − 0.144339i
\(879\) −42.5791 −1.43616
\(880\) 0 0
\(881\) 45.9333 1.54753 0.773765 0.633472i \(-0.218371\pi\)
0.773765 + 0.633472i \(0.218371\pi\)
\(882\) 0.807614i 0.0271938i
\(883\) − 14.0404i − 0.472496i −0.971693 0.236248i \(-0.924082\pi\)
0.971693 0.236248i \(-0.0759177\pi\)
\(884\) −89.8955 −3.02351
\(885\) 0 0
\(886\) 2.01160 0.0675809
\(887\) − 33.4833i − 1.12426i −0.827049 0.562129i \(-0.809982\pi\)
0.827049 0.562129i \(-0.190018\pi\)
\(888\) 17.0805i 0.573183i
\(889\) 24.2051 0.811814
\(890\) 0 0
\(891\) 6.61560 0.221631
\(892\) 26.4302i 0.884947i
\(893\) − 0.214955i − 0.00719319i
\(894\) −8.19053 −0.273932
\(895\) 0 0
\(896\) 17.3090 0.578252
\(897\) − 17.5007i − 0.584331i
\(898\) 1.68429i 0.0562055i
\(899\) −14.6307 −0.487960
\(900\) 0 0
\(901\) 88.9534 2.96347
\(902\) − 2.44330i − 0.0813529i
\(903\) − 37.5074i − 1.24817i
\(904\) −1.30455 −0.0433888
\(905\) 0 0
\(906\) −9.55780 −0.317537
\(907\) 22.0732i 0.732929i 0.930432 + 0.366464i \(0.119432\pi\)
−0.930432 + 0.366464i \(0.880568\pi\)
\(908\) 11.3122i 0.375407i
\(909\) 40.8555 1.35509
\(910\) 0 0
\(911\) −29.9624 −0.992699 −0.496349 0.868123i \(-0.665327\pi\)
−0.496349 + 0.868123i \(0.665327\pi\)
\(912\) 2.55541i 0.0846181i
\(913\) − 1.28754i − 0.0426113i
\(914\) 6.72605 0.222478
\(915\) 0 0
\(916\) −43.7235 −1.44467
\(917\) − 8.27565i − 0.273286i
\(918\) 4.89309i 0.161496i
\(919\) −27.8980 −0.920269 −0.460134 0.887849i \(-0.652199\pi\)
−0.460134 + 0.887849i \(0.652199\pi\)
\(920\) 0 0
\(921\) −67.6370 −2.22871
\(922\) 3.00269i 0.0988883i
\(923\) − 5.52970i − 0.182012i
\(924\) −27.4956 −0.904538
\(925\) 0 0
\(926\) −3.16328 −0.103952
\(927\) 38.8573i 1.27624i
\(928\) − 9.73521i − 0.319574i
\(929\) 25.6063 0.840115 0.420057 0.907498i \(-0.362010\pi\)
0.420057 + 0.907498i \(0.362010\pi\)
\(930\) 0 0
\(931\) −0.236016 −0.00773512
\(932\) 42.7529i 1.40042i
\(933\) 49.2322i 1.61179i
\(934\) 1.06571 0.0348711
\(935\) 0 0
\(936\) 22.1877 0.725229
\(937\) − 23.1946i − 0.757736i −0.925451 0.378868i \(-0.876313\pi\)
0.925451 0.378868i \(-0.123687\pi\)
\(938\) − 1.92509i − 0.0628564i
\(939\) −30.6589 −1.00052
\(940\) 0 0
\(941\) 8.04530 0.262269 0.131135 0.991365i \(-0.458138\pi\)
0.131135 + 0.991365i \(0.458138\pi\)
\(942\) 3.87294i 0.126187i
\(943\) 6.53833i 0.212917i
\(944\) 38.9213 1.26678
\(945\) 0 0
\(946\) −1.84541 −0.0599993
\(947\) − 42.2271i − 1.37220i −0.727509 0.686098i \(-0.759322\pi\)
0.727509 0.686098i \(-0.240678\pi\)
\(948\) 87.3242i 2.83616i
\(949\) 63.3347 2.05593
\(950\) 0 0
\(951\) 42.4152 1.37541
\(952\) 15.9440i 0.516748i
\(953\) − 13.3175i − 0.431396i −0.976460 0.215698i \(-0.930797\pi\)
0.976460 0.215698i \(-0.0692027\pi\)
\(954\) −10.8642 −0.351742
\(955\) 0 0
\(956\) 52.3306 1.69249
\(957\) 20.5442i 0.664098i
\(958\) − 0.0817852i − 0.00264236i
\(959\) 61.7950 1.99546
\(960\) 0 0
\(961\) −18.4109 −0.593901
\(962\) 10.3862i 0.334864i
\(963\) 49.9924i 1.61098i
\(964\) 29.6932 0.956355
\(965\) 0 0
\(966\) −1.53594 −0.0494181
\(967\) − 42.9969i − 1.38269i −0.722526 0.691344i \(-0.757019\pi\)
0.722526 0.691344i \(-0.242981\pi\)
\(968\) − 6.07316i − 0.195199i
\(969\) −4.80925 −0.154495
\(970\) 0 0
\(971\) −9.01250 −0.289225 −0.144612 0.989488i \(-0.546194\pi\)
−0.144612 + 0.989488i \(0.546194\pi\)
\(972\) − 39.0269i − 1.25179i
\(973\) 43.1911i 1.38464i
\(974\) 3.44614 0.110421
\(975\) 0 0
\(976\) 3.80164 0.121687
\(977\) − 41.1074i − 1.31514i −0.753392 0.657571i \(-0.771584\pi\)
0.753392 0.657571i \(-0.228416\pi\)
\(978\) 7.95537i 0.254385i
\(979\) 24.3613 0.778591
\(980\) 0 0
\(981\) 6.26945 0.200168
\(982\) − 1.90664i − 0.0608434i
\(983\) − 59.8861i − 1.91007i −0.296493 0.955035i \(-0.595817\pi\)
0.296493 0.955035i \(-0.404183\pi\)
\(984\) −14.1141 −0.449942
\(985\) 0 0
\(986\) 5.89499 0.187735
\(987\) − 6.47042i − 0.205956i
\(988\) 3.20857i 0.102078i
\(989\) 4.93835 0.157030
\(990\) 0 0
\(991\) 20.8275 0.661607 0.330804 0.943700i \(-0.392680\pi\)
0.330804 + 0.943700i \(0.392680\pi\)
\(992\) 8.37674i 0.265962i
\(993\) 33.9695i 1.07799i
\(994\) −0.485312 −0.0153932
\(995\) 0 0
\(996\) −3.68043 −0.116619
\(997\) 12.7634i 0.404222i 0.979363 + 0.202111i \(0.0647801\pi\)
−0.979363 + 0.202111i \(0.935220\pi\)
\(998\) 5.21662i 0.165129i
\(999\) −27.0819 −0.856834
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 575.2.b.f.24.8 14
5.2 odd 4 575.2.a.l.1.4 yes 7
5.3 odd 4 575.2.a.k.1.4 7
5.4 even 2 inner 575.2.b.f.24.7 14
15.2 even 4 5175.2.a.cb.1.4 7
15.8 even 4 5175.2.a.cg.1.4 7
20.3 even 4 9200.2.a.da.1.6 7
20.7 even 4 9200.2.a.db.1.2 7
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
575.2.a.k.1.4 7 5.3 odd 4
575.2.a.l.1.4 yes 7 5.2 odd 4
575.2.b.f.24.7 14 5.4 even 2 inner
575.2.b.f.24.8 14 1.1 even 1 trivial
5175.2.a.cb.1.4 7 15.2 even 4
5175.2.a.cg.1.4 7 15.8 even 4
9200.2.a.da.1.6 7 20.3 even 4
9200.2.a.db.1.2 7 20.7 even 4