Properties

Label 5733.2.a.v.1.1
Level $5733$
Weight $2$
Character 5733.1
Self dual yes
Analytic conductor $45.778$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [5733,2,Mod(1,5733)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(5733, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("5733.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 5733 = 3^{2} \cdot 7^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 5733.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(45.7782354788\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\zeta_{10})^+\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x - 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 91)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Root \(-0.618034\) of defining polynomial
Character \(\chi\) \(=\) 5733.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+0.381966 q^{2} -1.85410 q^{4} +2.23607 q^{5} -1.47214 q^{8} +O(q^{10})\) \(q+0.381966 q^{2} -1.85410 q^{4} +2.23607 q^{5} -1.47214 q^{8} +0.854102 q^{10} +3.00000 q^{11} -1.00000 q^{13} +3.14590 q^{16} +7.47214 q^{17} +3.00000 q^{19} -4.14590 q^{20} +1.14590 q^{22} +3.76393 q^{23} -0.381966 q^{26} +4.47214 q^{29} +5.00000 q^{31} +4.14590 q^{32} +2.85410 q^{34} -8.70820 q^{37} +1.14590 q^{38} -3.29180 q^{40} -4.47214 q^{41} -8.00000 q^{43} -5.56231 q^{44} +1.43769 q^{46} -1.47214 q^{47} +1.85410 q^{52} -1.47214 q^{53} +6.70820 q^{55} +1.70820 q^{58} -7.47214 q^{59} +3.00000 q^{61} +1.90983 q^{62} -4.70820 q^{64} -2.23607 q^{65} -3.00000 q^{67} -13.8541 q^{68} -8.94427 q^{71} +10.7082 q^{73} -3.32624 q^{74} -5.56231 q^{76} +10.7082 q^{79} +7.03444 q^{80} -1.70820 q^{82} +16.7082 q^{85} -3.05573 q^{86} -4.41641 q^{88} +2.23607 q^{89} -6.97871 q^{92} -0.562306 q^{94} +6.70820 q^{95} -17.4164 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 3 q^{2} + 3 q^{4} + 6 q^{8}+O(q^{10}) \) Copy content Toggle raw display \( 2 q + 3 q^{2} + 3 q^{4} + 6 q^{8} - 5 q^{10} + 6 q^{11} - 2 q^{13} + 13 q^{16} + 6 q^{17} + 6 q^{19} - 15 q^{20} + 9 q^{22} + 12 q^{23} - 3 q^{26} + 10 q^{31} + 15 q^{32} - q^{34} - 4 q^{37} + 9 q^{38} - 20 q^{40} - 16 q^{43} + 9 q^{44} + 23 q^{46} + 6 q^{47} - 3 q^{52} + 6 q^{53} - 10 q^{58} - 6 q^{59} + 6 q^{61} + 15 q^{62} + 4 q^{64} - 6 q^{67} - 21 q^{68} + 8 q^{73} + 9 q^{74} + 9 q^{76} + 8 q^{79} - 15 q^{80} + 10 q^{82} + 20 q^{85} - 24 q^{86} + 18 q^{88} + 33 q^{92} + 19 q^{94} - 8 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.381966 0.270091 0.135045 0.990839i \(-0.456882\pi\)
0.135045 + 0.990839i \(0.456882\pi\)
\(3\) 0 0
\(4\) −1.85410 −0.927051
\(5\) 2.23607 1.00000 0.500000 0.866025i \(-0.333333\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(6\) 0 0
\(7\) 0 0
\(8\) −1.47214 −0.520479
\(9\) 0 0
\(10\) 0.854102 0.270091
\(11\) 3.00000 0.904534 0.452267 0.891883i \(-0.350615\pi\)
0.452267 + 0.891883i \(0.350615\pi\)
\(12\) 0 0
\(13\) −1.00000 −0.277350
\(14\) 0 0
\(15\) 0 0
\(16\) 3.14590 0.786475
\(17\) 7.47214 1.81226 0.906130 0.423000i \(-0.139023\pi\)
0.906130 + 0.423000i \(0.139023\pi\)
\(18\) 0 0
\(19\) 3.00000 0.688247 0.344124 0.938924i \(-0.388176\pi\)
0.344124 + 0.938924i \(0.388176\pi\)
\(20\) −4.14590 −0.927051
\(21\) 0 0
\(22\) 1.14590 0.244306
\(23\) 3.76393 0.784834 0.392417 0.919787i \(-0.371639\pi\)
0.392417 + 0.919787i \(0.371639\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) −0.381966 −0.0749097
\(27\) 0 0
\(28\) 0 0
\(29\) 4.47214 0.830455 0.415227 0.909718i \(-0.363702\pi\)
0.415227 + 0.909718i \(0.363702\pi\)
\(30\) 0 0
\(31\) 5.00000 0.898027 0.449013 0.893525i \(-0.351776\pi\)
0.449013 + 0.893525i \(0.351776\pi\)
\(32\) 4.14590 0.732898
\(33\) 0 0
\(34\) 2.85410 0.489474
\(35\) 0 0
\(36\) 0 0
\(37\) −8.70820 −1.43162 −0.715810 0.698295i \(-0.753942\pi\)
−0.715810 + 0.698295i \(0.753942\pi\)
\(38\) 1.14590 0.185889
\(39\) 0 0
\(40\) −3.29180 −0.520479
\(41\) −4.47214 −0.698430 −0.349215 0.937043i \(-0.613552\pi\)
−0.349215 + 0.937043i \(0.613552\pi\)
\(42\) 0 0
\(43\) −8.00000 −1.21999 −0.609994 0.792406i \(-0.708828\pi\)
−0.609994 + 0.792406i \(0.708828\pi\)
\(44\) −5.56231 −0.838549
\(45\) 0 0
\(46\) 1.43769 0.211976
\(47\) −1.47214 −0.214733 −0.107367 0.994220i \(-0.534242\pi\)
−0.107367 + 0.994220i \(0.534242\pi\)
\(48\) 0 0
\(49\) 0 0
\(50\) 0 0
\(51\) 0 0
\(52\) 1.85410 0.257118
\(53\) −1.47214 −0.202213 −0.101107 0.994876i \(-0.532238\pi\)
−0.101107 + 0.994876i \(0.532238\pi\)
\(54\) 0 0
\(55\) 6.70820 0.904534
\(56\) 0 0
\(57\) 0 0
\(58\) 1.70820 0.224298
\(59\) −7.47214 −0.972789 −0.486395 0.873739i \(-0.661688\pi\)
−0.486395 + 0.873739i \(0.661688\pi\)
\(60\) 0 0
\(61\) 3.00000 0.384111 0.192055 0.981384i \(-0.438485\pi\)
0.192055 + 0.981384i \(0.438485\pi\)
\(62\) 1.90983 0.242549
\(63\) 0 0
\(64\) −4.70820 −0.588525
\(65\) −2.23607 −0.277350
\(66\) 0 0
\(67\) −3.00000 −0.366508 −0.183254 0.983066i \(-0.558663\pi\)
−0.183254 + 0.983066i \(0.558663\pi\)
\(68\) −13.8541 −1.68006
\(69\) 0 0
\(70\) 0 0
\(71\) −8.94427 −1.06149 −0.530745 0.847532i \(-0.678088\pi\)
−0.530745 + 0.847532i \(0.678088\pi\)
\(72\) 0 0
\(73\) 10.7082 1.25330 0.626650 0.779301i \(-0.284425\pi\)
0.626650 + 0.779301i \(0.284425\pi\)
\(74\) −3.32624 −0.386667
\(75\) 0 0
\(76\) −5.56231 −0.638040
\(77\) 0 0
\(78\) 0 0
\(79\) 10.7082 1.20477 0.602384 0.798207i \(-0.294218\pi\)
0.602384 + 0.798207i \(0.294218\pi\)
\(80\) 7.03444 0.786475
\(81\) 0 0
\(82\) −1.70820 −0.188640
\(83\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(84\) 0 0
\(85\) 16.7082 1.81226
\(86\) −3.05573 −0.329508
\(87\) 0 0
\(88\) −4.41641 −0.470791
\(89\) 2.23607 0.237023 0.118511 0.992953i \(-0.462188\pi\)
0.118511 + 0.992953i \(0.462188\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) −6.97871 −0.727581
\(93\) 0 0
\(94\) −0.562306 −0.0579974
\(95\) 6.70820 0.688247
\(96\) 0 0
\(97\) −17.4164 −1.76837 −0.884184 0.467139i \(-0.845285\pi\)
−0.884184 + 0.467139i \(0.845285\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 9.00000 0.895533 0.447767 0.894150i \(-0.352219\pi\)
0.447767 + 0.894150i \(0.352219\pi\)
\(102\) 0 0
\(103\) 10.7082 1.05511 0.527555 0.849521i \(-0.323109\pi\)
0.527555 + 0.849521i \(0.323109\pi\)
\(104\) 1.47214 0.144355
\(105\) 0 0
\(106\) −0.562306 −0.0546160
\(107\) 14.2361 1.37625 0.688126 0.725591i \(-0.258433\pi\)
0.688126 + 0.725591i \(0.258433\pi\)
\(108\) 0 0
\(109\) 10.7082 1.02566 0.512830 0.858490i \(-0.328597\pi\)
0.512830 + 0.858490i \(0.328597\pi\)
\(110\) 2.56231 0.244306
\(111\) 0 0
\(112\) 0 0
\(113\) 14.9443 1.40584 0.702919 0.711269i \(-0.251879\pi\)
0.702919 + 0.711269i \(0.251879\pi\)
\(114\) 0 0
\(115\) 8.41641 0.784834
\(116\) −8.29180 −0.769874
\(117\) 0 0
\(118\) −2.85410 −0.262741
\(119\) 0 0
\(120\) 0 0
\(121\) −2.00000 −0.181818
\(122\) 1.14590 0.103745
\(123\) 0 0
\(124\) −9.27051 −0.832516
\(125\) −11.1803 −1.00000
\(126\) 0 0
\(127\) 15.4164 1.36798 0.683992 0.729489i \(-0.260242\pi\)
0.683992 + 0.729489i \(0.260242\pi\)
\(128\) −10.0902 −0.891853
\(129\) 0 0
\(130\) −0.854102 −0.0749097
\(131\) 3.76393 0.328856 0.164428 0.986389i \(-0.447422\pi\)
0.164428 + 0.986389i \(0.447422\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) −1.14590 −0.0989905
\(135\) 0 0
\(136\) −11.0000 −0.943242
\(137\) 3.76393 0.321574 0.160787 0.986989i \(-0.448597\pi\)
0.160787 + 0.986989i \(0.448597\pi\)
\(138\) 0 0
\(139\) 3.41641 0.289776 0.144888 0.989448i \(-0.453718\pi\)
0.144888 + 0.989448i \(0.453718\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) −3.41641 −0.286699
\(143\) −3.00000 −0.250873
\(144\) 0 0
\(145\) 10.0000 0.830455
\(146\) 4.09017 0.338505
\(147\) 0 0
\(148\) 16.1459 1.32718
\(149\) 12.7082 1.04110 0.520548 0.853832i \(-0.325728\pi\)
0.520548 + 0.853832i \(0.325728\pi\)
\(150\) 0 0
\(151\) −6.41641 −0.522160 −0.261080 0.965317i \(-0.584079\pi\)
−0.261080 + 0.965317i \(0.584079\pi\)
\(152\) −4.41641 −0.358218
\(153\) 0 0
\(154\) 0 0
\(155\) 11.1803 0.898027
\(156\) 0 0
\(157\) 7.00000 0.558661 0.279330 0.960195i \(-0.409888\pi\)
0.279330 + 0.960195i \(0.409888\pi\)
\(158\) 4.09017 0.325396
\(159\) 0 0
\(160\) 9.27051 0.732898
\(161\) 0 0
\(162\) 0 0
\(163\) 10.4164 0.815876 0.407938 0.913010i \(-0.366248\pi\)
0.407938 + 0.913010i \(0.366248\pi\)
\(164\) 8.29180 0.647480
\(165\) 0 0
\(166\) 0 0
\(167\) −13.5279 −1.04682 −0.523409 0.852082i \(-0.675340\pi\)
−0.523409 + 0.852082i \(0.675340\pi\)
\(168\) 0 0
\(169\) 1.00000 0.0769231
\(170\) 6.38197 0.489474
\(171\) 0 0
\(172\) 14.8328 1.13099
\(173\) −10.4164 −0.791945 −0.395972 0.918262i \(-0.629592\pi\)
−0.395972 + 0.918262i \(0.629592\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 9.43769 0.711393
\(177\) 0 0
\(178\) 0.854102 0.0640176
\(179\) −20.1246 −1.50418 −0.752092 0.659058i \(-0.770955\pi\)
−0.752092 + 0.659058i \(0.770955\pi\)
\(180\) 0 0
\(181\) 1.41641 0.105281 0.0526404 0.998614i \(-0.483236\pi\)
0.0526404 + 0.998614i \(0.483236\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) −5.54102 −0.408489
\(185\) −19.4721 −1.43162
\(186\) 0 0
\(187\) 22.4164 1.63925
\(188\) 2.72949 0.199069
\(189\) 0 0
\(190\) 2.56231 0.185889
\(191\) 11.1803 0.808981 0.404491 0.914542i \(-0.367449\pi\)
0.404491 + 0.914542i \(0.367449\pi\)
\(192\) 0 0
\(193\) −12.7082 −0.914757 −0.457378 0.889272i \(-0.651211\pi\)
−0.457378 + 0.889272i \(0.651211\pi\)
\(194\) −6.65248 −0.477620
\(195\) 0 0
\(196\) 0 0
\(197\) 26.9443 1.91970 0.959850 0.280514i \(-0.0905049\pi\)
0.959850 + 0.280514i \(0.0905049\pi\)
\(198\) 0 0
\(199\) −7.29180 −0.516902 −0.258451 0.966024i \(-0.583212\pi\)
−0.258451 + 0.966024i \(0.583212\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 3.43769 0.241875
\(203\) 0 0
\(204\) 0 0
\(205\) −10.0000 −0.698430
\(206\) 4.09017 0.284976
\(207\) 0 0
\(208\) −3.14590 −0.218129
\(209\) 9.00000 0.622543
\(210\) 0 0
\(211\) 4.00000 0.275371 0.137686 0.990476i \(-0.456034\pi\)
0.137686 + 0.990476i \(0.456034\pi\)
\(212\) 2.72949 0.187462
\(213\) 0 0
\(214\) 5.43769 0.371713
\(215\) −17.8885 −1.21999
\(216\) 0 0
\(217\) 0 0
\(218\) 4.09017 0.277021
\(219\) 0 0
\(220\) −12.4377 −0.838549
\(221\) −7.47214 −0.502630
\(222\) 0 0
\(223\) −4.00000 −0.267860 −0.133930 0.990991i \(-0.542760\pi\)
−0.133930 + 0.990991i \(0.542760\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 5.70820 0.379704
\(227\) 11.9443 0.792769 0.396385 0.918085i \(-0.370265\pi\)
0.396385 + 0.918085i \(0.370265\pi\)
\(228\) 0 0
\(229\) −16.1246 −1.06554 −0.532772 0.846259i \(-0.678850\pi\)
−0.532772 + 0.846259i \(0.678850\pi\)
\(230\) 3.21478 0.211976
\(231\) 0 0
\(232\) −6.58359 −0.432234
\(233\) 5.94427 0.389422 0.194711 0.980861i \(-0.437623\pi\)
0.194711 + 0.980861i \(0.437623\pi\)
\(234\) 0 0
\(235\) −3.29180 −0.214733
\(236\) 13.8541 0.901825
\(237\) 0 0
\(238\) 0 0
\(239\) 7.41641 0.479728 0.239864 0.970807i \(-0.422897\pi\)
0.239864 + 0.970807i \(0.422897\pi\)
\(240\) 0 0
\(241\) −8.70820 −0.560945 −0.280472 0.959862i \(-0.590491\pi\)
−0.280472 + 0.959862i \(0.590491\pi\)
\(242\) −0.763932 −0.0491074
\(243\) 0 0
\(244\) −5.56231 −0.356090
\(245\) 0 0
\(246\) 0 0
\(247\) −3.00000 −0.190885
\(248\) −7.36068 −0.467404
\(249\) 0 0
\(250\) −4.27051 −0.270091
\(251\) −10.4721 −0.660995 −0.330498 0.943807i \(-0.607217\pi\)
−0.330498 + 0.943807i \(0.607217\pi\)
\(252\) 0 0
\(253\) 11.2918 0.709909
\(254\) 5.88854 0.369480
\(255\) 0 0
\(256\) 5.56231 0.347644
\(257\) 17.9443 1.11933 0.559666 0.828718i \(-0.310929\pi\)
0.559666 + 0.828718i \(0.310929\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 4.14590 0.257118
\(261\) 0 0
\(262\) 1.43769 0.0888210
\(263\) 14.1246 0.870961 0.435480 0.900198i \(-0.356579\pi\)
0.435480 + 0.900198i \(0.356579\pi\)
\(264\) 0 0
\(265\) −3.29180 −0.202213
\(266\) 0 0
\(267\) 0 0
\(268\) 5.56231 0.339772
\(269\) −4.52786 −0.276069 −0.138034 0.990427i \(-0.544078\pi\)
−0.138034 + 0.990427i \(0.544078\pi\)
\(270\) 0 0
\(271\) 6.41641 0.389769 0.194885 0.980826i \(-0.437567\pi\)
0.194885 + 0.980826i \(0.437567\pi\)
\(272\) 23.5066 1.42530
\(273\) 0 0
\(274\) 1.43769 0.0868543
\(275\) 0 0
\(276\) 0 0
\(277\) 26.4164 1.58721 0.793604 0.608435i \(-0.208202\pi\)
0.793604 + 0.608435i \(0.208202\pi\)
\(278\) 1.30495 0.0782658
\(279\) 0 0
\(280\) 0 0
\(281\) −9.05573 −0.540219 −0.270110 0.962830i \(-0.587060\pi\)
−0.270110 + 0.962830i \(0.587060\pi\)
\(282\) 0 0
\(283\) −14.1246 −0.839621 −0.419811 0.907612i \(-0.637903\pi\)
−0.419811 + 0.907612i \(0.637903\pi\)
\(284\) 16.5836 0.984055
\(285\) 0 0
\(286\) −1.14590 −0.0677584
\(287\) 0 0
\(288\) 0 0
\(289\) 38.8328 2.28428
\(290\) 3.81966 0.224298
\(291\) 0 0
\(292\) −19.8541 −1.16187
\(293\) −2.94427 −0.172006 −0.0860031 0.996295i \(-0.527409\pi\)
−0.0860031 + 0.996295i \(0.527409\pi\)
\(294\) 0 0
\(295\) −16.7082 −0.972789
\(296\) 12.8197 0.745128
\(297\) 0 0
\(298\) 4.85410 0.281191
\(299\) −3.76393 −0.217674
\(300\) 0 0
\(301\) 0 0
\(302\) −2.45085 −0.141031
\(303\) 0 0
\(304\) 9.43769 0.541289
\(305\) 6.70820 0.384111
\(306\) 0 0
\(307\) −7.41641 −0.423277 −0.211638 0.977348i \(-0.567880\pi\)
−0.211638 + 0.977348i \(0.567880\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 4.27051 0.242549
\(311\) 32.2361 1.82794 0.913970 0.405782i \(-0.133001\pi\)
0.913970 + 0.405782i \(0.133001\pi\)
\(312\) 0 0
\(313\) −32.4164 −1.83228 −0.916142 0.400854i \(-0.868713\pi\)
−0.916142 + 0.400854i \(0.868713\pi\)
\(314\) 2.67376 0.150889
\(315\) 0 0
\(316\) −19.8541 −1.11688
\(317\) 3.76393 0.211403 0.105702 0.994398i \(-0.466291\pi\)
0.105702 + 0.994398i \(0.466291\pi\)
\(318\) 0 0
\(319\) 13.4164 0.751175
\(320\) −10.5279 −0.588525
\(321\) 0 0
\(322\) 0 0
\(323\) 22.4164 1.24728
\(324\) 0 0
\(325\) 0 0
\(326\) 3.97871 0.220361
\(327\) 0 0
\(328\) 6.58359 0.363518
\(329\) 0 0
\(330\) 0 0
\(331\) −28.4164 −1.56191 −0.780954 0.624589i \(-0.785266\pi\)
−0.780954 + 0.624589i \(0.785266\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) −5.16718 −0.282736
\(335\) −6.70820 −0.366508
\(336\) 0 0
\(337\) 18.0000 0.980522 0.490261 0.871576i \(-0.336901\pi\)
0.490261 + 0.871576i \(0.336901\pi\)
\(338\) 0.381966 0.0207762
\(339\) 0 0
\(340\) −30.9787 −1.68006
\(341\) 15.0000 0.812296
\(342\) 0 0
\(343\) 0 0
\(344\) 11.7771 0.634978
\(345\) 0 0
\(346\) −3.97871 −0.213897
\(347\) 35.0689 1.88260 0.941298 0.337576i \(-0.109607\pi\)
0.941298 + 0.337576i \(0.109607\pi\)
\(348\) 0 0
\(349\) −2.58359 −0.138297 −0.0691483 0.997606i \(-0.522028\pi\)
−0.0691483 + 0.997606i \(0.522028\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 12.4377 0.662931
\(353\) −30.7082 −1.63443 −0.817216 0.576331i \(-0.804484\pi\)
−0.817216 + 0.576331i \(0.804484\pi\)
\(354\) 0 0
\(355\) −20.0000 −1.06149
\(356\) −4.14590 −0.219732
\(357\) 0 0
\(358\) −7.68692 −0.406266
\(359\) 5.94427 0.313727 0.156863 0.987620i \(-0.449862\pi\)
0.156863 + 0.987620i \(0.449862\pi\)
\(360\) 0 0
\(361\) −10.0000 −0.526316
\(362\) 0.541020 0.0284354
\(363\) 0 0
\(364\) 0 0
\(365\) 23.9443 1.25330
\(366\) 0 0
\(367\) 0.708204 0.0369679 0.0184840 0.999829i \(-0.494116\pi\)
0.0184840 + 0.999829i \(0.494116\pi\)
\(368\) 11.8409 0.617252
\(369\) 0 0
\(370\) −7.43769 −0.386667
\(371\) 0 0
\(372\) 0 0
\(373\) −28.4164 −1.47135 −0.735673 0.677337i \(-0.763134\pi\)
−0.735673 + 0.677337i \(0.763134\pi\)
\(374\) 8.56231 0.442746
\(375\) 0 0
\(376\) 2.16718 0.111764
\(377\) −4.47214 −0.230327
\(378\) 0 0
\(379\) 11.4164 0.586421 0.293211 0.956048i \(-0.405276\pi\)
0.293211 + 0.956048i \(0.405276\pi\)
\(380\) −12.4377 −0.638040
\(381\) 0 0
\(382\) 4.27051 0.218498
\(383\) −15.0000 −0.766464 −0.383232 0.923652i \(-0.625189\pi\)
−0.383232 + 0.923652i \(0.625189\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) −4.85410 −0.247067
\(387\) 0 0
\(388\) 32.2918 1.63937
\(389\) 7.47214 0.378852 0.189426 0.981895i \(-0.439337\pi\)
0.189426 + 0.981895i \(0.439337\pi\)
\(390\) 0 0
\(391\) 28.1246 1.42232
\(392\) 0 0
\(393\) 0 0
\(394\) 10.2918 0.518493
\(395\) 23.9443 1.20477
\(396\) 0 0
\(397\) 14.1246 0.708894 0.354447 0.935076i \(-0.384669\pi\)
0.354447 + 0.935076i \(0.384669\pi\)
\(398\) −2.78522 −0.139610
\(399\) 0 0
\(400\) 0 0
\(401\) −9.76393 −0.487587 −0.243794 0.969827i \(-0.578392\pi\)
−0.243794 + 0.969827i \(0.578392\pi\)
\(402\) 0 0
\(403\) −5.00000 −0.249068
\(404\) −16.6869 −0.830205
\(405\) 0 0
\(406\) 0 0
\(407\) −26.1246 −1.29495
\(408\) 0 0
\(409\) −4.70820 −0.232806 −0.116403 0.993202i \(-0.537136\pi\)
−0.116403 + 0.993202i \(0.537136\pi\)
\(410\) −3.81966 −0.188640
\(411\) 0 0
\(412\) −19.8541 −0.978141
\(413\) 0 0
\(414\) 0 0
\(415\) 0 0
\(416\) −4.14590 −0.203269
\(417\) 0 0
\(418\) 3.43769 0.168143
\(419\) −15.0557 −0.735520 −0.367760 0.929921i \(-0.619875\pi\)
−0.367760 + 0.929921i \(0.619875\pi\)
\(420\) 0 0
\(421\) −13.4164 −0.653876 −0.326938 0.945046i \(-0.606017\pi\)
−0.326938 + 0.945046i \(0.606017\pi\)
\(422\) 1.52786 0.0743753
\(423\) 0 0
\(424\) 2.16718 0.105248
\(425\) 0 0
\(426\) 0 0
\(427\) 0 0
\(428\) −26.3951 −1.27586
\(429\) 0 0
\(430\) −6.83282 −0.329508
\(431\) −13.3607 −0.643561 −0.321781 0.946814i \(-0.604281\pi\)
−0.321781 + 0.946814i \(0.604281\pi\)
\(432\) 0 0
\(433\) 2.58359 0.124160 0.0620798 0.998071i \(-0.480227\pi\)
0.0620798 + 0.998071i \(0.480227\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) −19.8541 −0.950839
\(437\) 11.2918 0.540160
\(438\) 0 0
\(439\) −16.1246 −0.769586 −0.384793 0.923003i \(-0.625727\pi\)
−0.384793 + 0.923003i \(0.625727\pi\)
\(440\) −9.87539 −0.470791
\(441\) 0 0
\(442\) −2.85410 −0.135756
\(443\) 2.23607 0.106239 0.0531194 0.998588i \(-0.483084\pi\)
0.0531194 + 0.998588i \(0.483084\pi\)
\(444\) 0 0
\(445\) 5.00000 0.237023
\(446\) −1.52786 −0.0723465
\(447\) 0 0
\(448\) 0 0
\(449\) −10.3607 −0.488951 −0.244475 0.969656i \(-0.578616\pi\)
−0.244475 + 0.969656i \(0.578616\pi\)
\(450\) 0 0
\(451\) −13.4164 −0.631754
\(452\) −27.7082 −1.30328
\(453\) 0 0
\(454\) 4.56231 0.214120
\(455\) 0 0
\(456\) 0 0
\(457\) 34.1246 1.59628 0.798141 0.602471i \(-0.205817\pi\)
0.798141 + 0.602471i \(0.205817\pi\)
\(458\) −6.15905 −0.287794
\(459\) 0 0
\(460\) −15.6049 −0.727581
\(461\) 10.3607 0.482545 0.241272 0.970457i \(-0.422435\pi\)
0.241272 + 0.970457i \(0.422435\pi\)
\(462\) 0 0
\(463\) −24.0000 −1.11537 −0.557687 0.830051i \(-0.688311\pi\)
−0.557687 + 0.830051i \(0.688311\pi\)
\(464\) 14.0689 0.653132
\(465\) 0 0
\(466\) 2.27051 0.105179
\(467\) 21.6525 1.00196 0.500979 0.865460i \(-0.332974\pi\)
0.500979 + 0.865460i \(0.332974\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) −1.25735 −0.0579974
\(471\) 0 0
\(472\) 11.0000 0.506316
\(473\) −24.0000 −1.10352
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) 0 0
\(478\) 2.83282 0.129570
\(479\) 29.8328 1.36310 0.681548 0.731773i \(-0.261307\pi\)
0.681548 + 0.731773i \(0.261307\pi\)
\(480\) 0 0
\(481\) 8.70820 0.397060
\(482\) −3.32624 −0.151506
\(483\) 0 0
\(484\) 3.70820 0.168555
\(485\) −38.9443 −1.76837
\(486\) 0 0
\(487\) 31.8328 1.44248 0.721241 0.692684i \(-0.243572\pi\)
0.721241 + 0.692684i \(0.243572\pi\)
\(488\) −4.41641 −0.199921
\(489\) 0 0
\(490\) 0 0
\(491\) 34.4721 1.55571 0.777853 0.628446i \(-0.216309\pi\)
0.777853 + 0.628446i \(0.216309\pi\)
\(492\) 0 0
\(493\) 33.4164 1.50500
\(494\) −1.14590 −0.0515564
\(495\) 0 0
\(496\) 15.7295 0.706275
\(497\) 0 0
\(498\) 0 0
\(499\) −0.416408 −0.0186410 −0.00932049 0.999957i \(-0.502967\pi\)
−0.00932049 + 0.999957i \(0.502967\pi\)
\(500\) 20.7295 0.927051
\(501\) 0 0
\(502\) −4.00000 −0.178529
\(503\) −3.05573 −0.136248 −0.0681241 0.997677i \(-0.521701\pi\)
−0.0681241 + 0.997677i \(0.521701\pi\)
\(504\) 0 0
\(505\) 20.1246 0.895533
\(506\) 4.31308 0.191740
\(507\) 0 0
\(508\) −28.5836 −1.26819
\(509\) 15.7639 0.698724 0.349362 0.936988i \(-0.386398\pi\)
0.349362 + 0.936988i \(0.386398\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 22.3050 0.985749
\(513\) 0 0
\(514\) 6.85410 0.302321
\(515\) 23.9443 1.05511
\(516\) 0 0
\(517\) −4.41641 −0.194233
\(518\) 0 0
\(519\) 0 0
\(520\) 3.29180 0.144355
\(521\) 0.0557281 0.00244149 0.00122075 0.999999i \(-0.499611\pi\)
0.00122075 + 0.999999i \(0.499611\pi\)
\(522\) 0 0
\(523\) 19.2918 0.843571 0.421786 0.906696i \(-0.361403\pi\)
0.421786 + 0.906696i \(0.361403\pi\)
\(524\) −6.97871 −0.304867
\(525\) 0 0
\(526\) 5.39512 0.235238
\(527\) 37.3607 1.62746
\(528\) 0 0
\(529\) −8.83282 −0.384035
\(530\) −1.25735 −0.0546160
\(531\) 0 0
\(532\) 0 0
\(533\) 4.47214 0.193710
\(534\) 0 0
\(535\) 31.8328 1.37625
\(536\) 4.41641 0.190760
\(537\) 0 0
\(538\) −1.72949 −0.0745636
\(539\) 0 0
\(540\) 0 0
\(541\) 14.7082 0.632355 0.316178 0.948700i \(-0.397600\pi\)
0.316178 + 0.948700i \(0.397600\pi\)
\(542\) 2.45085 0.105273
\(543\) 0 0
\(544\) 30.9787 1.32820
\(545\) 23.9443 1.02566
\(546\) 0 0
\(547\) −31.4164 −1.34327 −0.671634 0.740883i \(-0.734407\pi\)
−0.671634 + 0.740883i \(0.734407\pi\)
\(548\) −6.97871 −0.298116
\(549\) 0 0
\(550\) 0 0
\(551\) 13.4164 0.571558
\(552\) 0 0
\(553\) 0 0
\(554\) 10.0902 0.428690
\(555\) 0 0
\(556\) −6.33437 −0.268637
\(557\) 5.29180 0.224221 0.112110 0.993696i \(-0.464239\pi\)
0.112110 + 0.993696i \(0.464239\pi\)
\(558\) 0 0
\(559\) 8.00000 0.338364
\(560\) 0 0
\(561\) 0 0
\(562\) −3.45898 −0.145908
\(563\) 36.5967 1.54237 0.771185 0.636612i \(-0.219665\pi\)
0.771185 + 0.636612i \(0.219665\pi\)
\(564\) 0 0
\(565\) 33.4164 1.40584
\(566\) −5.39512 −0.226774
\(567\) 0 0
\(568\) 13.1672 0.552483
\(569\) −16.5279 −0.692884 −0.346442 0.938071i \(-0.612610\pi\)
−0.346442 + 0.938071i \(0.612610\pi\)
\(570\) 0 0
\(571\) 4.12461 0.172610 0.0863048 0.996269i \(-0.472494\pi\)
0.0863048 + 0.996269i \(0.472494\pi\)
\(572\) 5.56231 0.232572
\(573\) 0 0
\(574\) 0 0
\(575\) 0 0
\(576\) 0 0
\(577\) −32.7082 −1.36166 −0.680830 0.732441i \(-0.738381\pi\)
−0.680830 + 0.732441i \(0.738381\pi\)
\(578\) 14.8328 0.616964
\(579\) 0 0
\(580\) −18.5410 −0.769874
\(581\) 0 0
\(582\) 0 0
\(583\) −4.41641 −0.182909
\(584\) −15.7639 −0.652316
\(585\) 0 0
\(586\) −1.12461 −0.0464573
\(587\) 41.8885 1.72893 0.864463 0.502697i \(-0.167659\pi\)
0.864463 + 0.502697i \(0.167659\pi\)
\(588\) 0 0
\(589\) 15.0000 0.618064
\(590\) −6.38197 −0.262741
\(591\) 0 0
\(592\) −27.3951 −1.12593
\(593\) −32.2361 −1.32378 −0.661888 0.749602i \(-0.730245\pi\)
−0.661888 + 0.749602i \(0.730245\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) −23.5623 −0.965150
\(597\) 0 0
\(598\) −1.43769 −0.0587917
\(599\) −41.0689 −1.67803 −0.839015 0.544109i \(-0.816868\pi\)
−0.839015 + 0.544109i \(0.816868\pi\)
\(600\) 0 0
\(601\) −22.0000 −0.897399 −0.448699 0.893683i \(-0.648113\pi\)
−0.448699 + 0.893683i \(0.648113\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 11.8967 0.484069
\(605\) −4.47214 −0.181818
\(606\) 0 0
\(607\) −16.1246 −0.654478 −0.327239 0.944942i \(-0.606118\pi\)
−0.327239 + 0.944942i \(0.606118\pi\)
\(608\) 12.4377 0.504415
\(609\) 0 0
\(610\) 2.56231 0.103745
\(611\) 1.47214 0.0595562
\(612\) 0 0
\(613\) 22.1246 0.893605 0.446802 0.894633i \(-0.352563\pi\)
0.446802 + 0.894633i \(0.352563\pi\)
\(614\) −2.83282 −0.114323
\(615\) 0 0
\(616\) 0 0
\(617\) −4.47214 −0.180041 −0.0900207 0.995940i \(-0.528693\pi\)
−0.0900207 + 0.995940i \(0.528693\pi\)
\(618\) 0 0
\(619\) 17.0000 0.683288 0.341644 0.939829i \(-0.389016\pi\)
0.341644 + 0.939829i \(0.389016\pi\)
\(620\) −20.7295 −0.832516
\(621\) 0 0
\(622\) 12.3131 0.493710
\(623\) 0 0
\(624\) 0 0
\(625\) −25.0000 −1.00000
\(626\) −12.3820 −0.494883
\(627\) 0 0
\(628\) −12.9787 −0.517907
\(629\) −65.0689 −2.59447
\(630\) 0 0
\(631\) −30.8328 −1.22744 −0.613718 0.789526i \(-0.710327\pi\)
−0.613718 + 0.789526i \(0.710327\pi\)
\(632\) −15.7639 −0.627056
\(633\) 0 0
\(634\) 1.43769 0.0570981
\(635\) 34.4721 1.36798
\(636\) 0 0
\(637\) 0 0
\(638\) 5.12461 0.202885
\(639\) 0 0
\(640\) −22.5623 −0.891853
\(641\) 5.94427 0.234785 0.117392 0.993086i \(-0.462547\pi\)
0.117392 + 0.993086i \(0.462547\pi\)
\(642\) 0 0
\(643\) −18.8328 −0.742694 −0.371347 0.928494i \(-0.621104\pi\)
−0.371347 + 0.928494i \(0.621104\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 8.56231 0.336879
\(647\) −15.7639 −0.619744 −0.309872 0.950778i \(-0.600286\pi\)
−0.309872 + 0.950778i \(0.600286\pi\)
\(648\) 0 0
\(649\) −22.4164 −0.879921
\(650\) 0 0
\(651\) 0 0
\(652\) −19.3131 −0.756359
\(653\) −13.4721 −0.527205 −0.263603 0.964631i \(-0.584911\pi\)
−0.263603 + 0.964631i \(0.584911\pi\)
\(654\) 0 0
\(655\) 8.41641 0.328856
\(656\) −14.0689 −0.549298
\(657\) 0 0
\(658\) 0 0
\(659\) −8.94427 −0.348419 −0.174210 0.984709i \(-0.555737\pi\)
−0.174210 + 0.984709i \(0.555737\pi\)
\(660\) 0 0
\(661\) 6.70820 0.260919 0.130459 0.991454i \(-0.458355\pi\)
0.130459 + 0.991454i \(0.458355\pi\)
\(662\) −10.8541 −0.421857
\(663\) 0 0
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 16.8328 0.651769
\(668\) 25.0820 0.970453
\(669\) 0 0
\(670\) −2.56231 −0.0989905
\(671\) 9.00000 0.347441
\(672\) 0 0
\(673\) 17.4164 0.671353 0.335677 0.941977i \(-0.391035\pi\)
0.335677 + 0.941977i \(0.391035\pi\)
\(674\) 6.87539 0.264830
\(675\) 0 0
\(676\) −1.85410 −0.0713116
\(677\) −32.8885 −1.26401 −0.632005 0.774965i \(-0.717768\pi\)
−0.632005 + 0.774965i \(0.717768\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) −24.5967 −0.943242
\(681\) 0 0
\(682\) 5.72949 0.219394
\(683\) 4.52786 0.173254 0.0866270 0.996241i \(-0.472391\pi\)
0.0866270 + 0.996241i \(0.472391\pi\)
\(684\) 0 0
\(685\) 8.41641 0.321574
\(686\) 0 0
\(687\) 0 0
\(688\) −25.1672 −0.959490
\(689\) 1.47214 0.0560839
\(690\) 0 0
\(691\) 1.83282 0.0697236 0.0348618 0.999392i \(-0.488901\pi\)
0.0348618 + 0.999392i \(0.488901\pi\)
\(692\) 19.3131 0.734173
\(693\) 0 0
\(694\) 13.3951 0.508472
\(695\) 7.63932 0.289776
\(696\) 0 0
\(697\) −33.4164 −1.26574
\(698\) −0.986844 −0.0373526
\(699\) 0 0
\(700\) 0 0
\(701\) −22.3607 −0.844551 −0.422276 0.906467i \(-0.638769\pi\)
−0.422276 + 0.906467i \(0.638769\pi\)
\(702\) 0 0
\(703\) −26.1246 −0.985308
\(704\) −14.1246 −0.532341
\(705\) 0 0
\(706\) −11.7295 −0.441445
\(707\) 0 0
\(708\) 0 0
\(709\) −9.87539 −0.370878 −0.185439 0.982656i \(-0.559371\pi\)
−0.185439 + 0.982656i \(0.559371\pi\)
\(710\) −7.63932 −0.286699
\(711\) 0 0
\(712\) −3.29180 −0.123365
\(713\) 18.8197 0.704802
\(714\) 0 0
\(715\) −6.70820 −0.250873
\(716\) 37.3131 1.39446
\(717\) 0 0
\(718\) 2.27051 0.0847347
\(719\) −11.2918 −0.421113 −0.210556 0.977582i \(-0.567528\pi\)
−0.210556 + 0.977582i \(0.567528\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) −3.81966 −0.142153
\(723\) 0 0
\(724\) −2.62616 −0.0976006
\(725\) 0 0
\(726\) 0 0
\(727\) 14.8328 0.550119 0.275059 0.961427i \(-0.411302\pi\)
0.275059 + 0.961427i \(0.411302\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 9.14590 0.338505
\(731\) −59.7771 −2.21094
\(732\) 0 0
\(733\) 15.2918 0.564815 0.282408 0.959294i \(-0.408867\pi\)
0.282408 + 0.959294i \(0.408867\pi\)
\(734\) 0.270510 0.00998470
\(735\) 0 0
\(736\) 15.6049 0.575203
\(737\) −9.00000 −0.331519
\(738\) 0 0
\(739\) 35.8328 1.31813 0.659066 0.752085i \(-0.270952\pi\)
0.659066 + 0.752085i \(0.270952\pi\)
\(740\) 36.1033 1.32718
\(741\) 0 0
\(742\) 0 0
\(743\) −15.0557 −0.552341 −0.276171 0.961109i \(-0.589065\pi\)
−0.276171 + 0.961109i \(0.589065\pi\)
\(744\) 0 0
\(745\) 28.4164 1.04110
\(746\) −10.8541 −0.397397
\(747\) 0 0
\(748\) −41.5623 −1.51967
\(749\) 0 0
\(750\) 0 0
\(751\) 30.1246 1.09926 0.549631 0.835407i \(-0.314768\pi\)
0.549631 + 0.835407i \(0.314768\pi\)
\(752\) −4.63119 −0.168882
\(753\) 0 0
\(754\) −1.70820 −0.0622091
\(755\) −14.3475 −0.522160
\(756\) 0 0
\(757\) 0.832816 0.0302692 0.0151346 0.999885i \(-0.495182\pi\)
0.0151346 + 0.999885i \(0.495182\pi\)
\(758\) 4.36068 0.158387
\(759\) 0 0
\(760\) −9.87539 −0.358218
\(761\) −33.5410 −1.21586 −0.607931 0.793990i \(-0.708000\pi\)
−0.607931 + 0.793990i \(0.708000\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) −20.7295 −0.749967
\(765\) 0 0
\(766\) −5.72949 −0.207015
\(767\) 7.47214 0.269803
\(768\) 0 0
\(769\) 46.0000 1.65880 0.829401 0.558653i \(-0.188682\pi\)
0.829401 + 0.558653i \(0.188682\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 23.5623 0.848026
\(773\) −11.0689 −0.398120 −0.199060 0.979987i \(-0.563789\pi\)
−0.199060 + 0.979987i \(0.563789\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 25.6393 0.920398
\(777\) 0 0
\(778\) 2.85410 0.102325
\(779\) −13.4164 −0.480693
\(780\) 0 0
\(781\) −26.8328 −0.960154
\(782\) 10.7426 0.384156
\(783\) 0 0
\(784\) 0 0
\(785\) 15.6525 0.558661
\(786\) 0 0
\(787\) −6.41641 −0.228720 −0.114360 0.993439i \(-0.536482\pi\)
−0.114360 + 0.993439i \(0.536482\pi\)
\(788\) −49.9574 −1.77966
\(789\) 0 0
\(790\) 9.14590 0.325396
\(791\) 0 0
\(792\) 0 0
\(793\) −3.00000 −0.106533
\(794\) 5.39512 0.191466
\(795\) 0 0
\(796\) 13.5197 0.479194
\(797\) −26.9443 −0.954415 −0.477208 0.878791i \(-0.658351\pi\)
−0.477208 + 0.878791i \(0.658351\pi\)
\(798\) 0 0
\(799\) −11.0000 −0.389152
\(800\) 0 0
\(801\) 0 0
\(802\) −3.72949 −0.131693
\(803\) 32.1246 1.13365
\(804\) 0 0
\(805\) 0 0
\(806\) −1.90983 −0.0672709
\(807\) 0 0
\(808\) −13.2492 −0.466106
\(809\) 4.41641 0.155273 0.0776363 0.996982i \(-0.475263\pi\)
0.0776363 + 0.996982i \(0.475263\pi\)
\(810\) 0 0
\(811\) 38.8328 1.36360 0.681802 0.731536i \(-0.261196\pi\)
0.681802 + 0.731536i \(0.261196\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) −9.97871 −0.349754
\(815\) 23.2918 0.815876
\(816\) 0 0
\(817\) −24.0000 −0.839654
\(818\) −1.79837 −0.0628787
\(819\) 0 0
\(820\) 18.5410 0.647480
\(821\) −33.7639 −1.17837 −0.589185 0.807998i \(-0.700551\pi\)
−0.589185 + 0.807998i \(0.700551\pi\)
\(822\) 0 0
\(823\) −6.12461 −0.213491 −0.106745 0.994286i \(-0.534043\pi\)
−0.106745 + 0.994286i \(0.534043\pi\)
\(824\) −15.7639 −0.549163
\(825\) 0 0
\(826\) 0 0
\(827\) 26.8328 0.933068 0.466534 0.884503i \(-0.345502\pi\)
0.466534 + 0.884503i \(0.345502\pi\)
\(828\) 0 0
\(829\) −25.0000 −0.868286 −0.434143 0.900844i \(-0.642949\pi\)
−0.434143 + 0.900844i \(0.642949\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 4.70820 0.163228
\(833\) 0 0
\(834\) 0 0
\(835\) −30.2492 −1.04682
\(836\) −16.6869 −0.577129
\(837\) 0 0
\(838\) −5.75078 −0.198657
\(839\) −29.8885 −1.03187 −0.515934 0.856629i \(-0.672555\pi\)
−0.515934 + 0.856629i \(0.672555\pi\)
\(840\) 0 0
\(841\) −9.00000 −0.310345
\(842\) −5.12461 −0.176606
\(843\) 0 0
\(844\) −7.41641 −0.255283
\(845\) 2.23607 0.0769231
\(846\) 0 0
\(847\) 0 0
\(848\) −4.63119 −0.159036
\(849\) 0 0
\(850\) 0 0
\(851\) −32.7771 −1.12358
\(852\) 0 0
\(853\) 28.2492 0.967235 0.483617 0.875279i \(-0.339323\pi\)
0.483617 + 0.875279i \(0.339323\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) −20.9574 −0.716310
\(857\) −43.3607 −1.48117 −0.740586 0.671961i \(-0.765452\pi\)
−0.740586 + 0.671961i \(0.765452\pi\)
\(858\) 0 0
\(859\) 7.29180 0.248793 0.124396 0.992233i \(-0.460301\pi\)
0.124396 + 0.992233i \(0.460301\pi\)
\(860\) 33.1672 1.13099
\(861\) 0 0
\(862\) −5.10333 −0.173820
\(863\) −6.05573 −0.206139 −0.103070 0.994674i \(-0.532866\pi\)
−0.103070 + 0.994674i \(0.532866\pi\)
\(864\) 0 0
\(865\) −23.2918 −0.791945
\(866\) 0.986844 0.0335343
\(867\) 0 0
\(868\) 0 0
\(869\) 32.1246 1.08975
\(870\) 0 0
\(871\) 3.00000 0.101651
\(872\) −15.7639 −0.533834
\(873\) 0 0
\(874\) 4.31308 0.145892
\(875\) 0 0
\(876\) 0 0
\(877\) −8.12461 −0.274349 −0.137174 0.990547i \(-0.543802\pi\)
−0.137174 + 0.990547i \(0.543802\pi\)
\(878\) −6.15905 −0.207858
\(879\) 0 0
\(880\) 21.1033 0.711393
\(881\) 19.3050 0.650400 0.325200 0.945645i \(-0.394568\pi\)
0.325200 + 0.945645i \(0.394568\pi\)
\(882\) 0 0
\(883\) 20.0000 0.673054 0.336527 0.941674i \(-0.390748\pi\)
0.336527 + 0.941674i \(0.390748\pi\)
\(884\) 13.8541 0.465964
\(885\) 0 0
\(886\) 0.854102 0.0286941
\(887\) 15.7639 0.529301 0.264651 0.964344i \(-0.414743\pi\)
0.264651 + 0.964344i \(0.414743\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 1.90983 0.0640176
\(891\) 0 0
\(892\) 7.41641 0.248320
\(893\) −4.41641 −0.147789
\(894\) 0 0
\(895\) −45.0000 −1.50418
\(896\) 0 0
\(897\) 0 0
\(898\) −3.95743 −0.132061
\(899\) 22.3607 0.745770
\(900\) 0 0
\(901\) −11.0000 −0.366463
\(902\) −5.12461 −0.170631
\(903\) 0 0
\(904\) −22.0000 −0.731709
\(905\) 3.16718 0.105281
\(906\) 0 0
\(907\) 5.29180 0.175711 0.0878556 0.996133i \(-0.471999\pi\)
0.0878556 + 0.996133i \(0.471999\pi\)
\(908\) −22.1459 −0.734937
\(909\) 0 0
\(910\) 0 0
\(911\) −46.2492 −1.53231 −0.766153 0.642659i \(-0.777831\pi\)
−0.766153 + 0.642659i \(0.777831\pi\)
\(912\) 0 0
\(913\) 0 0
\(914\) 13.0344 0.431141
\(915\) 0 0
\(916\) 29.8967 0.987814
\(917\) 0 0
\(918\) 0 0
\(919\) −20.1246 −0.663850 −0.331925 0.943306i \(-0.607698\pi\)
−0.331925 + 0.943306i \(0.607698\pi\)
\(920\) −12.3901 −0.408489
\(921\) 0 0
\(922\) 3.95743 0.130331
\(923\) 8.94427 0.294404
\(924\) 0 0
\(925\) 0 0
\(926\) −9.16718 −0.301252
\(927\) 0 0
\(928\) 18.5410 0.608639
\(929\) 47.1803 1.54794 0.773968 0.633224i \(-0.218269\pi\)
0.773968 + 0.633224i \(0.218269\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) −11.0213 −0.361014
\(933\) 0 0
\(934\) 8.27051 0.270619
\(935\) 50.1246 1.63925
\(936\) 0 0
\(937\) −1.41641 −0.0462720 −0.0231360 0.999732i \(-0.507365\pi\)
−0.0231360 + 0.999732i \(0.507365\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 6.10333 0.199069
\(941\) −45.7639 −1.49186 −0.745931 0.666023i \(-0.767995\pi\)
−0.745931 + 0.666023i \(0.767995\pi\)
\(942\) 0 0
\(943\) −16.8328 −0.548152
\(944\) −23.5066 −0.765074
\(945\) 0 0
\(946\) −9.16718 −0.298051
\(947\) 31.4721 1.02271 0.511354 0.859370i \(-0.329144\pi\)
0.511354 + 0.859370i \(0.329144\pi\)
\(948\) 0 0
\(949\) −10.7082 −0.347603
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) −29.7771 −0.964574 −0.482287 0.876013i \(-0.660194\pi\)
−0.482287 + 0.876013i \(0.660194\pi\)
\(954\) 0 0
\(955\) 25.0000 0.808981
\(956\) −13.7508 −0.444732
\(957\) 0 0
\(958\) 11.3951 0.368160
\(959\) 0 0
\(960\) 0 0
\(961\) −6.00000 −0.193548
\(962\) 3.32624 0.107242
\(963\) 0 0
\(964\) 16.1459 0.520024
\(965\) −28.4164 −0.914757
\(966\) 0 0
\(967\) 43.4164 1.39618 0.698089 0.716011i \(-0.254034\pi\)
0.698089 + 0.716011i \(0.254034\pi\)
\(968\) 2.94427 0.0946325
\(969\) 0 0
\(970\) −14.8754 −0.477620
\(971\) 24.7082 0.792924 0.396462 0.918051i \(-0.370238\pi\)
0.396462 + 0.918051i \(0.370238\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) 12.1591 0.389601
\(975\) 0 0
\(976\) 9.43769 0.302093
\(977\) 33.6525 1.07664 0.538319 0.842741i \(-0.319060\pi\)
0.538319 + 0.842741i \(0.319060\pi\)
\(978\) 0 0
\(979\) 6.70820 0.214395
\(980\) 0 0
\(981\) 0 0
\(982\) 13.1672 0.420182
\(983\) 1.47214 0.0469538 0.0234769 0.999724i \(-0.492526\pi\)
0.0234769 + 0.999724i \(0.492526\pi\)
\(984\) 0 0
\(985\) 60.2492 1.91970
\(986\) 12.7639 0.406486
\(987\) 0 0
\(988\) 5.56231 0.176961
\(989\) −30.1115 −0.957489
\(990\) 0 0
\(991\) 17.2918 0.549292 0.274646 0.961545i \(-0.411439\pi\)
0.274646 + 0.961545i \(0.411439\pi\)
\(992\) 20.7295 0.658162
\(993\) 0 0
\(994\) 0 0
\(995\) −16.3050 −0.516902
\(996\) 0 0
\(997\) −0.416408 −0.0131878 −0.00659388 0.999978i \(-0.502099\pi\)
−0.00659388 + 0.999978i \(0.502099\pi\)
\(998\) −0.159054 −0.00503476
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 5733.2.a.v.1.1 2
3.2 odd 2 637.2.a.f.1.2 2
7.2 even 3 819.2.j.c.235.2 4
7.4 even 3 819.2.j.c.352.2 4
7.6 odd 2 5733.2.a.w.1.1 2
21.2 odd 6 91.2.e.b.53.1 4
21.5 even 6 637.2.e.h.508.1 4
21.11 odd 6 91.2.e.b.79.1 yes 4
21.17 even 6 637.2.e.h.79.1 4
21.20 even 2 637.2.a.e.1.2 2
39.38 odd 2 8281.2.a.z.1.1 2
84.11 even 6 1456.2.r.j.625.2 4
84.23 even 6 1456.2.r.j.417.2 4
273.116 odd 6 1183.2.e.d.170.2 4
273.233 odd 6 1183.2.e.d.508.2 4
273.272 even 2 8281.2.a.ba.1.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
91.2.e.b.53.1 4 21.2 odd 6
91.2.e.b.79.1 yes 4 21.11 odd 6
637.2.a.e.1.2 2 21.20 even 2
637.2.a.f.1.2 2 3.2 odd 2
637.2.e.h.79.1 4 21.17 even 6
637.2.e.h.508.1 4 21.5 even 6
819.2.j.c.235.2 4 7.2 even 3
819.2.j.c.352.2 4 7.4 even 3
1183.2.e.d.170.2 4 273.116 odd 6
1183.2.e.d.508.2 4 273.233 odd 6
1456.2.r.j.417.2 4 84.23 even 6
1456.2.r.j.625.2 4 84.11 even 6
5733.2.a.v.1.1 2 1.1 even 1 trivial
5733.2.a.w.1.1 2 7.6 odd 2
8281.2.a.z.1.1 2 39.38 odd 2
8281.2.a.ba.1.1 2 273.272 even 2