Properties

Label 5733.2.a.u.1.1
Level $5733$
Weight $2$
Character 5733.1
Self dual yes
Analytic conductor $45.778$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 5733 = 3^{2} \cdot 7^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 5733.a (trivial)

Newform invariants

Self dual: yes
Analytic conductor: \(45.7782354788\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\zeta_{8})^+\)
Defining polynomial: \(x^{2} - 2\)
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 39)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Root \(-1.41421\) of defining polynomial
Character \(\chi\) \(=\) 5733.1

$q$-expansion

\(f(q)\) \(=\) \(q-0.414214 q^{2} -1.82843 q^{4} -2.82843 q^{5} +1.58579 q^{8} +O(q^{10})\) \(q-0.414214 q^{2} -1.82843 q^{4} -2.82843 q^{5} +1.58579 q^{8} +1.17157 q^{10} +2.00000 q^{11} +1.00000 q^{13} +3.00000 q^{16} +7.65685 q^{17} +2.82843 q^{19} +5.17157 q^{20} -0.828427 q^{22} +4.00000 q^{23} +3.00000 q^{25} -0.414214 q^{26} -2.00000 q^{29} +1.17157 q^{31} -4.41421 q^{32} -3.17157 q^{34} -7.65685 q^{37} -1.17157 q^{38} -4.48528 q^{40} +5.17157 q^{41} -1.65685 q^{43} -3.65685 q^{44} -1.65685 q^{46} -11.6569 q^{47} -1.24264 q^{50} -1.82843 q^{52} +2.00000 q^{53} -5.65685 q^{55} +0.828427 q^{58} +7.65685 q^{59} -13.3137 q^{61} -0.485281 q^{62} -4.17157 q^{64} -2.82843 q^{65} +6.82843 q^{67} -14.0000 q^{68} -2.00000 q^{71} -0.343146 q^{73} +3.17157 q^{74} -5.17157 q^{76} -11.3137 q^{79} -8.48528 q^{80} -2.14214 q^{82} +3.65685 q^{83} -21.6569 q^{85} +0.686292 q^{86} +3.17157 q^{88} +14.8284 q^{89} -7.31371 q^{92} +4.82843 q^{94} -8.00000 q^{95} -3.65685 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 2 q^{2} + 2 q^{4} + 6 q^{8} + O(q^{10}) \) \( 2 q + 2 q^{2} + 2 q^{4} + 6 q^{8} + 8 q^{10} + 4 q^{11} + 2 q^{13} + 6 q^{16} + 4 q^{17} + 16 q^{20} + 4 q^{22} + 8 q^{23} + 6 q^{25} + 2 q^{26} - 4 q^{29} + 8 q^{31} - 6 q^{32} - 12 q^{34} - 4 q^{37} - 8 q^{38} + 8 q^{40} + 16 q^{41} + 8 q^{43} + 4 q^{44} + 8 q^{46} - 12 q^{47} + 6 q^{50} + 2 q^{52} + 4 q^{53} - 4 q^{58} + 4 q^{59} - 4 q^{61} + 16 q^{62} - 14 q^{64} + 8 q^{67} - 28 q^{68} - 4 q^{71} - 12 q^{73} + 12 q^{74} - 16 q^{76} + 24 q^{82} - 4 q^{83} - 32 q^{85} + 24 q^{86} + 12 q^{88} + 24 q^{89} + 8 q^{92} + 4 q^{94} - 16 q^{95} + 4 q^{97} + O(q^{100}) \)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.414214 −0.292893 −0.146447 0.989219i \(-0.546784\pi\)
−0.146447 + 0.989219i \(0.546784\pi\)
\(3\) 0 0
\(4\) −1.82843 −0.914214
\(5\) −2.82843 −1.26491 −0.632456 0.774597i \(-0.717953\pi\)
−0.632456 + 0.774597i \(0.717953\pi\)
\(6\) 0 0
\(7\) 0 0
\(8\) 1.58579 0.560660
\(9\) 0 0
\(10\) 1.17157 0.370484
\(11\) 2.00000 0.603023 0.301511 0.953463i \(-0.402509\pi\)
0.301511 + 0.953463i \(0.402509\pi\)
\(12\) 0 0
\(13\) 1.00000 0.277350
\(14\) 0 0
\(15\) 0 0
\(16\) 3.00000 0.750000
\(17\) 7.65685 1.85706 0.928530 0.371257i \(-0.121073\pi\)
0.928530 + 0.371257i \(0.121073\pi\)
\(18\) 0 0
\(19\) 2.82843 0.648886 0.324443 0.945905i \(-0.394823\pi\)
0.324443 + 0.945905i \(0.394823\pi\)
\(20\) 5.17157 1.15640
\(21\) 0 0
\(22\) −0.828427 −0.176621
\(23\) 4.00000 0.834058 0.417029 0.908893i \(-0.363071\pi\)
0.417029 + 0.908893i \(0.363071\pi\)
\(24\) 0 0
\(25\) 3.00000 0.600000
\(26\) −0.414214 −0.0812340
\(27\) 0 0
\(28\) 0 0
\(29\) −2.00000 −0.371391 −0.185695 0.982607i \(-0.559454\pi\)
−0.185695 + 0.982607i \(0.559454\pi\)
\(30\) 0 0
\(31\) 1.17157 0.210421 0.105210 0.994450i \(-0.466448\pi\)
0.105210 + 0.994450i \(0.466448\pi\)
\(32\) −4.41421 −0.780330
\(33\) 0 0
\(34\) −3.17157 −0.543920
\(35\) 0 0
\(36\) 0 0
\(37\) −7.65685 −1.25878 −0.629390 0.777090i \(-0.716695\pi\)
−0.629390 + 0.777090i \(0.716695\pi\)
\(38\) −1.17157 −0.190054
\(39\) 0 0
\(40\) −4.48528 −0.709185
\(41\) 5.17157 0.807664 0.403832 0.914833i \(-0.367678\pi\)
0.403832 + 0.914833i \(0.367678\pi\)
\(42\) 0 0
\(43\) −1.65685 −0.252668 −0.126334 0.991988i \(-0.540321\pi\)
−0.126334 + 0.991988i \(0.540321\pi\)
\(44\) −3.65685 −0.551292
\(45\) 0 0
\(46\) −1.65685 −0.244290
\(47\) −11.6569 −1.70033 −0.850163 0.526519i \(-0.823497\pi\)
−0.850163 + 0.526519i \(0.823497\pi\)
\(48\) 0 0
\(49\) 0 0
\(50\) −1.24264 −0.175736
\(51\) 0 0
\(52\) −1.82843 −0.253557
\(53\) 2.00000 0.274721 0.137361 0.990521i \(-0.456138\pi\)
0.137361 + 0.990521i \(0.456138\pi\)
\(54\) 0 0
\(55\) −5.65685 −0.762770
\(56\) 0 0
\(57\) 0 0
\(58\) 0.828427 0.108778
\(59\) 7.65685 0.996838 0.498419 0.866936i \(-0.333914\pi\)
0.498419 + 0.866936i \(0.333914\pi\)
\(60\) 0 0
\(61\) −13.3137 −1.70465 −0.852323 0.523016i \(-0.824807\pi\)
−0.852323 + 0.523016i \(0.824807\pi\)
\(62\) −0.485281 −0.0616308
\(63\) 0 0
\(64\) −4.17157 −0.521447
\(65\) −2.82843 −0.350823
\(66\) 0 0
\(67\) 6.82843 0.834225 0.417113 0.908855i \(-0.363042\pi\)
0.417113 + 0.908855i \(0.363042\pi\)
\(68\) −14.0000 −1.69775
\(69\) 0 0
\(70\) 0 0
\(71\) −2.00000 −0.237356 −0.118678 0.992933i \(-0.537866\pi\)
−0.118678 + 0.992933i \(0.537866\pi\)
\(72\) 0 0
\(73\) −0.343146 −0.0401622 −0.0200811 0.999798i \(-0.506392\pi\)
−0.0200811 + 0.999798i \(0.506392\pi\)
\(74\) 3.17157 0.368688
\(75\) 0 0
\(76\) −5.17157 −0.593220
\(77\) 0 0
\(78\) 0 0
\(79\) −11.3137 −1.27289 −0.636446 0.771321i \(-0.719596\pi\)
−0.636446 + 0.771321i \(0.719596\pi\)
\(80\) −8.48528 −0.948683
\(81\) 0 0
\(82\) −2.14214 −0.236559
\(83\) 3.65685 0.401392 0.200696 0.979654i \(-0.435680\pi\)
0.200696 + 0.979654i \(0.435680\pi\)
\(84\) 0 0
\(85\) −21.6569 −2.34902
\(86\) 0.686292 0.0740047
\(87\) 0 0
\(88\) 3.17157 0.338091
\(89\) 14.8284 1.57181 0.785905 0.618347i \(-0.212197\pi\)
0.785905 + 0.618347i \(0.212197\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) −7.31371 −0.762507
\(93\) 0 0
\(94\) 4.82843 0.498014
\(95\) −8.00000 −0.820783
\(96\) 0 0
\(97\) −3.65685 −0.371297 −0.185649 0.982616i \(-0.559439\pi\)
−0.185649 + 0.982616i \(0.559439\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) −5.48528 −0.548528
\(101\) 7.65685 0.761885 0.380943 0.924599i \(-0.375599\pi\)
0.380943 + 0.924599i \(0.375599\pi\)
\(102\) 0 0
\(103\) −2.34315 −0.230877 −0.115439 0.993315i \(-0.536827\pi\)
−0.115439 + 0.993315i \(0.536827\pi\)
\(104\) 1.58579 0.155499
\(105\) 0 0
\(106\) −0.828427 −0.0804640
\(107\) 11.3137 1.09374 0.546869 0.837218i \(-0.315820\pi\)
0.546869 + 0.837218i \(0.315820\pi\)
\(108\) 0 0
\(109\) 5.31371 0.508961 0.254480 0.967078i \(-0.418096\pi\)
0.254480 + 0.967078i \(0.418096\pi\)
\(110\) 2.34315 0.223410
\(111\) 0 0
\(112\) 0 0
\(113\) 5.31371 0.499872 0.249936 0.968262i \(-0.419590\pi\)
0.249936 + 0.968262i \(0.419590\pi\)
\(114\) 0 0
\(115\) −11.3137 −1.05501
\(116\) 3.65685 0.339530
\(117\) 0 0
\(118\) −3.17157 −0.291967
\(119\) 0 0
\(120\) 0 0
\(121\) −7.00000 −0.636364
\(122\) 5.51472 0.499279
\(123\) 0 0
\(124\) −2.14214 −0.192369
\(125\) 5.65685 0.505964
\(126\) 0 0
\(127\) 5.65685 0.501965 0.250982 0.967992i \(-0.419246\pi\)
0.250982 + 0.967992i \(0.419246\pi\)
\(128\) 10.5563 0.933058
\(129\) 0 0
\(130\) 1.17157 0.102754
\(131\) −8.00000 −0.698963 −0.349482 0.936943i \(-0.613642\pi\)
−0.349482 + 0.936943i \(0.613642\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) −2.82843 −0.244339
\(135\) 0 0
\(136\) 12.1421 1.04118
\(137\) 10.8284 0.925135 0.462567 0.886584i \(-0.346928\pi\)
0.462567 + 0.886584i \(0.346928\pi\)
\(138\) 0 0
\(139\) 7.31371 0.620341 0.310170 0.950681i \(-0.399614\pi\)
0.310170 + 0.950681i \(0.399614\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0.828427 0.0695201
\(143\) 2.00000 0.167248
\(144\) 0 0
\(145\) 5.65685 0.469776
\(146\) 0.142136 0.0117632
\(147\) 0 0
\(148\) 14.0000 1.15079
\(149\) 9.17157 0.751365 0.375682 0.926749i \(-0.377408\pi\)
0.375682 + 0.926749i \(0.377408\pi\)
\(150\) 0 0
\(151\) −3.51472 −0.286024 −0.143012 0.989721i \(-0.545679\pi\)
−0.143012 + 0.989721i \(0.545679\pi\)
\(152\) 4.48528 0.363804
\(153\) 0 0
\(154\) 0 0
\(155\) −3.31371 −0.266163
\(156\) 0 0
\(157\) 10.0000 0.798087 0.399043 0.916932i \(-0.369342\pi\)
0.399043 + 0.916932i \(0.369342\pi\)
\(158\) 4.68629 0.372821
\(159\) 0 0
\(160\) 12.4853 0.987048
\(161\) 0 0
\(162\) 0 0
\(163\) 18.8284 1.47476 0.737378 0.675480i \(-0.236064\pi\)
0.737378 + 0.675480i \(0.236064\pi\)
\(164\) −9.45584 −0.738377
\(165\) 0 0
\(166\) −1.51472 −0.117565
\(167\) −3.65685 −0.282976 −0.141488 0.989940i \(-0.545189\pi\)
−0.141488 + 0.989940i \(0.545189\pi\)
\(168\) 0 0
\(169\) 1.00000 0.0769231
\(170\) 8.97056 0.688011
\(171\) 0 0
\(172\) 3.02944 0.230992
\(173\) −11.6569 −0.886254 −0.443127 0.896459i \(-0.646131\pi\)
−0.443127 + 0.896459i \(0.646131\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 6.00000 0.452267
\(177\) 0 0
\(178\) −6.14214 −0.460373
\(179\) 23.3137 1.74255 0.871274 0.490797i \(-0.163294\pi\)
0.871274 + 0.490797i \(0.163294\pi\)
\(180\) 0 0
\(181\) −14.0000 −1.04061 −0.520306 0.853980i \(-0.674182\pi\)
−0.520306 + 0.853980i \(0.674182\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 6.34315 0.467623
\(185\) 21.6569 1.59224
\(186\) 0 0
\(187\) 15.3137 1.11985
\(188\) 21.3137 1.55446
\(189\) 0 0
\(190\) 3.31371 0.240402
\(191\) −3.31371 −0.239772 −0.119886 0.992788i \(-0.538253\pi\)
−0.119886 + 0.992788i \(0.538253\pi\)
\(192\) 0 0
\(193\) 5.31371 0.382489 0.191245 0.981542i \(-0.438748\pi\)
0.191245 + 0.981542i \(0.438748\pi\)
\(194\) 1.51472 0.108750
\(195\) 0 0
\(196\) 0 0
\(197\) −0.485281 −0.0345749 −0.0172874 0.999851i \(-0.505503\pi\)
−0.0172874 + 0.999851i \(0.505503\pi\)
\(198\) 0 0
\(199\) −21.6569 −1.53521 −0.767607 0.640921i \(-0.778553\pi\)
−0.767607 + 0.640921i \(0.778553\pi\)
\(200\) 4.75736 0.336396
\(201\) 0 0
\(202\) −3.17157 −0.223151
\(203\) 0 0
\(204\) 0 0
\(205\) −14.6274 −1.02162
\(206\) 0.970563 0.0676223
\(207\) 0 0
\(208\) 3.00000 0.208013
\(209\) 5.65685 0.391293
\(210\) 0 0
\(211\) −12.0000 −0.826114 −0.413057 0.910705i \(-0.635539\pi\)
−0.413057 + 0.910705i \(0.635539\pi\)
\(212\) −3.65685 −0.251154
\(213\) 0 0
\(214\) −4.68629 −0.320348
\(215\) 4.68629 0.319602
\(216\) 0 0
\(217\) 0 0
\(218\) −2.20101 −0.149071
\(219\) 0 0
\(220\) 10.3431 0.697335
\(221\) 7.65685 0.515056
\(222\) 0 0
\(223\) 12.4853 0.836076 0.418038 0.908429i \(-0.362718\pi\)
0.418038 + 0.908429i \(0.362718\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) −2.20101 −0.146409
\(227\) −17.3137 −1.14915 −0.574576 0.818452i \(-0.694833\pi\)
−0.574576 + 0.818452i \(0.694833\pi\)
\(228\) 0 0
\(229\) 1.31371 0.0868123 0.0434062 0.999058i \(-0.486179\pi\)
0.0434062 + 0.999058i \(0.486179\pi\)
\(230\) 4.68629 0.309005
\(231\) 0 0
\(232\) −3.17157 −0.208224
\(233\) −6.97056 −0.456657 −0.228328 0.973584i \(-0.573326\pi\)
−0.228328 + 0.973584i \(0.573326\pi\)
\(234\) 0 0
\(235\) 32.9706 2.15076
\(236\) −14.0000 −0.911322
\(237\) 0 0
\(238\) 0 0
\(239\) −2.00000 −0.129369 −0.0646846 0.997906i \(-0.520604\pi\)
−0.0646846 + 0.997906i \(0.520604\pi\)
\(240\) 0 0
\(241\) −0.343146 −0.0221040 −0.0110520 0.999939i \(-0.503518\pi\)
−0.0110520 + 0.999939i \(0.503518\pi\)
\(242\) 2.89949 0.186387
\(243\) 0 0
\(244\) 24.3431 1.55841
\(245\) 0 0
\(246\) 0 0
\(247\) 2.82843 0.179969
\(248\) 1.85786 0.117975
\(249\) 0 0
\(250\) −2.34315 −0.148194
\(251\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(252\) 0 0
\(253\) 8.00000 0.502956
\(254\) −2.34315 −0.147022
\(255\) 0 0
\(256\) 3.97056 0.248160
\(257\) −4.34315 −0.270918 −0.135459 0.990783i \(-0.543251\pi\)
−0.135459 + 0.990783i \(0.543251\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 5.17157 0.320727
\(261\) 0 0
\(262\) 3.31371 0.204722
\(263\) −12.0000 −0.739952 −0.369976 0.929041i \(-0.620634\pi\)
−0.369976 + 0.929041i \(0.620634\pi\)
\(264\) 0 0
\(265\) −5.65685 −0.347498
\(266\) 0 0
\(267\) 0 0
\(268\) −12.4853 −0.762660
\(269\) 18.0000 1.09748 0.548740 0.835993i \(-0.315108\pi\)
0.548740 + 0.835993i \(0.315108\pi\)
\(270\) 0 0
\(271\) 27.7990 1.68867 0.844334 0.535817i \(-0.179996\pi\)
0.844334 + 0.535817i \(0.179996\pi\)
\(272\) 22.9706 1.39279
\(273\) 0 0
\(274\) −4.48528 −0.270966
\(275\) 6.00000 0.361814
\(276\) 0 0
\(277\) −2.00000 −0.120168 −0.0600842 0.998193i \(-0.519137\pi\)
−0.0600842 + 0.998193i \(0.519137\pi\)
\(278\) −3.02944 −0.181694
\(279\) 0 0
\(280\) 0 0
\(281\) −21.1716 −1.26299 −0.631495 0.775380i \(-0.717558\pi\)
−0.631495 + 0.775380i \(0.717558\pi\)
\(282\) 0 0
\(283\) −28.9706 −1.72212 −0.861061 0.508502i \(-0.830199\pi\)
−0.861061 + 0.508502i \(0.830199\pi\)
\(284\) 3.65685 0.216994
\(285\) 0 0
\(286\) −0.828427 −0.0489859
\(287\) 0 0
\(288\) 0 0
\(289\) 41.6274 2.44867
\(290\) −2.34315 −0.137594
\(291\) 0 0
\(292\) 0.627417 0.0367168
\(293\) 2.14214 0.125145 0.0625724 0.998040i \(-0.480070\pi\)
0.0625724 + 0.998040i \(0.480070\pi\)
\(294\) 0 0
\(295\) −21.6569 −1.26091
\(296\) −12.1421 −0.705747
\(297\) 0 0
\(298\) −3.79899 −0.220070
\(299\) 4.00000 0.231326
\(300\) 0 0
\(301\) 0 0
\(302\) 1.45584 0.0837744
\(303\) 0 0
\(304\) 8.48528 0.486664
\(305\) 37.6569 2.15623
\(306\) 0 0
\(307\) 22.8284 1.30289 0.651444 0.758697i \(-0.274164\pi\)
0.651444 + 0.758697i \(0.274164\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 1.37258 0.0779575
\(311\) −10.6274 −0.602626 −0.301313 0.953525i \(-0.597425\pi\)
−0.301313 + 0.953525i \(0.597425\pi\)
\(312\) 0 0
\(313\) −6.00000 −0.339140 −0.169570 0.985518i \(-0.554238\pi\)
−0.169570 + 0.985518i \(0.554238\pi\)
\(314\) −4.14214 −0.233754
\(315\) 0 0
\(316\) 20.6863 1.16369
\(317\) −8.48528 −0.476581 −0.238290 0.971194i \(-0.576587\pi\)
−0.238290 + 0.971194i \(0.576587\pi\)
\(318\) 0 0
\(319\) −4.00000 −0.223957
\(320\) 11.7990 0.659584
\(321\) 0 0
\(322\) 0 0
\(323\) 21.6569 1.20502
\(324\) 0 0
\(325\) 3.00000 0.166410
\(326\) −7.79899 −0.431946
\(327\) 0 0
\(328\) 8.20101 0.452825
\(329\) 0 0
\(330\) 0 0
\(331\) 26.1421 1.43690 0.718451 0.695578i \(-0.244852\pi\)
0.718451 + 0.695578i \(0.244852\pi\)
\(332\) −6.68629 −0.366958
\(333\) 0 0
\(334\) 1.51472 0.0828817
\(335\) −19.3137 −1.05522
\(336\) 0 0
\(337\) 9.31371 0.507350 0.253675 0.967290i \(-0.418361\pi\)
0.253675 + 0.967290i \(0.418361\pi\)
\(338\) −0.414214 −0.0225302
\(339\) 0 0
\(340\) 39.5980 2.14750
\(341\) 2.34315 0.126888
\(342\) 0 0
\(343\) 0 0
\(344\) −2.62742 −0.141661
\(345\) 0 0
\(346\) 4.82843 0.259578
\(347\) 8.68629 0.466305 0.233152 0.972440i \(-0.425096\pi\)
0.233152 + 0.972440i \(0.425096\pi\)
\(348\) 0 0
\(349\) −3.65685 −0.195747 −0.0978735 0.995199i \(-0.531204\pi\)
−0.0978735 + 0.995199i \(0.531204\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) −8.82843 −0.470557
\(353\) −33.4558 −1.78067 −0.890337 0.455301i \(-0.849532\pi\)
−0.890337 + 0.455301i \(0.849532\pi\)
\(354\) 0 0
\(355\) 5.65685 0.300235
\(356\) −27.1127 −1.43697
\(357\) 0 0
\(358\) −9.65685 −0.510381
\(359\) −34.9706 −1.84568 −0.922838 0.385189i \(-0.874136\pi\)
−0.922838 + 0.385189i \(0.874136\pi\)
\(360\) 0 0
\(361\) −11.0000 −0.578947
\(362\) 5.79899 0.304788
\(363\) 0 0
\(364\) 0 0
\(365\) 0.970563 0.0508016
\(366\) 0 0
\(367\) 24.0000 1.25279 0.626395 0.779506i \(-0.284530\pi\)
0.626395 + 0.779506i \(0.284530\pi\)
\(368\) 12.0000 0.625543
\(369\) 0 0
\(370\) −8.97056 −0.466357
\(371\) 0 0
\(372\) 0 0
\(373\) 10.0000 0.517780 0.258890 0.965907i \(-0.416643\pi\)
0.258890 + 0.965907i \(0.416643\pi\)
\(374\) −6.34315 −0.327996
\(375\) 0 0
\(376\) −18.4853 −0.953306
\(377\) −2.00000 −0.103005
\(378\) 0 0
\(379\) 0.485281 0.0249272 0.0124636 0.999922i \(-0.496033\pi\)
0.0124636 + 0.999922i \(0.496033\pi\)
\(380\) 14.6274 0.750371
\(381\) 0 0
\(382\) 1.37258 0.0702275
\(383\) 30.9706 1.58252 0.791261 0.611479i \(-0.209425\pi\)
0.791261 + 0.611479i \(0.209425\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) −2.20101 −0.112028
\(387\) 0 0
\(388\) 6.68629 0.339445
\(389\) 26.9706 1.36746 0.683731 0.729734i \(-0.260356\pi\)
0.683731 + 0.729734i \(0.260356\pi\)
\(390\) 0 0
\(391\) 30.6274 1.54890
\(392\) 0 0
\(393\) 0 0
\(394\) 0.201010 0.0101267
\(395\) 32.0000 1.61009
\(396\) 0 0
\(397\) −30.9706 −1.55437 −0.777184 0.629273i \(-0.783353\pi\)
−0.777184 + 0.629273i \(0.783353\pi\)
\(398\) 8.97056 0.449654
\(399\) 0 0
\(400\) 9.00000 0.450000
\(401\) −26.1421 −1.30548 −0.652738 0.757584i \(-0.726380\pi\)
−0.652738 + 0.757584i \(0.726380\pi\)
\(402\) 0 0
\(403\) 1.17157 0.0583602
\(404\) −14.0000 −0.696526
\(405\) 0 0
\(406\) 0 0
\(407\) −15.3137 −0.759072
\(408\) 0 0
\(409\) 34.9706 1.72918 0.864592 0.502475i \(-0.167577\pi\)
0.864592 + 0.502475i \(0.167577\pi\)
\(410\) 6.05887 0.299226
\(411\) 0 0
\(412\) 4.28427 0.211071
\(413\) 0 0
\(414\) 0 0
\(415\) −10.3431 −0.507725
\(416\) −4.41421 −0.216425
\(417\) 0 0
\(418\) −2.34315 −0.114607
\(419\) 14.6274 0.714596 0.357298 0.933990i \(-0.383698\pi\)
0.357298 + 0.933990i \(0.383698\pi\)
\(420\) 0 0
\(421\) 37.3137 1.81856 0.909279 0.416186i \(-0.136634\pi\)
0.909279 + 0.416186i \(0.136634\pi\)
\(422\) 4.97056 0.241963
\(423\) 0 0
\(424\) 3.17157 0.154025
\(425\) 22.9706 1.11424
\(426\) 0 0
\(427\) 0 0
\(428\) −20.6863 −0.999910
\(429\) 0 0
\(430\) −1.94113 −0.0936094
\(431\) −8.34315 −0.401875 −0.200938 0.979604i \(-0.564399\pi\)
−0.200938 + 0.979604i \(0.564399\pi\)
\(432\) 0 0
\(433\) 21.3137 1.02427 0.512136 0.858905i \(-0.328854\pi\)
0.512136 + 0.858905i \(0.328854\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) −9.71573 −0.465299
\(437\) 11.3137 0.541208
\(438\) 0 0
\(439\) −16.9706 −0.809961 −0.404980 0.914325i \(-0.632722\pi\)
−0.404980 + 0.914325i \(0.632722\pi\)
\(440\) −8.97056 −0.427655
\(441\) 0 0
\(442\) −3.17157 −0.150856
\(443\) 25.9411 1.23250 0.616250 0.787551i \(-0.288651\pi\)
0.616250 + 0.787551i \(0.288651\pi\)
\(444\) 0 0
\(445\) −41.9411 −1.98820
\(446\) −5.17157 −0.244881
\(447\) 0 0
\(448\) 0 0
\(449\) 31.7990 1.50069 0.750344 0.661048i \(-0.229888\pi\)
0.750344 + 0.661048i \(0.229888\pi\)
\(450\) 0 0
\(451\) 10.3431 0.487040
\(452\) −9.71573 −0.456989
\(453\) 0 0
\(454\) 7.17157 0.336579
\(455\) 0 0
\(456\) 0 0
\(457\) −7.65685 −0.358173 −0.179086 0.983833i \(-0.557314\pi\)
−0.179086 + 0.983833i \(0.557314\pi\)
\(458\) −0.544156 −0.0254267
\(459\) 0 0
\(460\) 20.6863 0.964503
\(461\) 5.17157 0.240864 0.120432 0.992722i \(-0.461572\pi\)
0.120432 + 0.992722i \(0.461572\pi\)
\(462\) 0 0
\(463\) −24.4853 −1.13793 −0.568964 0.822363i \(-0.692656\pi\)
−0.568964 + 0.822363i \(0.692656\pi\)
\(464\) −6.00000 −0.278543
\(465\) 0 0
\(466\) 2.88730 0.133752
\(467\) −8.00000 −0.370196 −0.185098 0.982720i \(-0.559260\pi\)
−0.185098 + 0.982720i \(0.559260\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) −13.6569 −0.629944
\(471\) 0 0
\(472\) 12.1421 0.558887
\(473\) −3.31371 −0.152364
\(474\) 0 0
\(475\) 8.48528 0.389331
\(476\) 0 0
\(477\) 0 0
\(478\) 0.828427 0.0378914
\(479\) 25.3137 1.15661 0.578306 0.815820i \(-0.303714\pi\)
0.578306 + 0.815820i \(0.303714\pi\)
\(480\) 0 0
\(481\) −7.65685 −0.349123
\(482\) 0.142136 0.00647410
\(483\) 0 0
\(484\) 12.7990 0.581772
\(485\) 10.3431 0.469658
\(486\) 0 0
\(487\) −7.79899 −0.353406 −0.176703 0.984264i \(-0.556543\pi\)
−0.176703 + 0.984264i \(0.556543\pi\)
\(488\) −21.1127 −0.955727
\(489\) 0 0
\(490\) 0 0
\(491\) −30.6274 −1.38220 −0.691098 0.722761i \(-0.742873\pi\)
−0.691098 + 0.722761i \(0.742873\pi\)
\(492\) 0 0
\(493\) −15.3137 −0.689695
\(494\) −1.17157 −0.0527116
\(495\) 0 0
\(496\) 3.51472 0.157816
\(497\) 0 0
\(498\) 0 0
\(499\) 26.1421 1.17028 0.585141 0.810931i \(-0.301039\pi\)
0.585141 + 0.810931i \(0.301039\pi\)
\(500\) −10.3431 −0.462560
\(501\) 0 0
\(502\) 0 0
\(503\) −7.31371 −0.326102 −0.163051 0.986618i \(-0.552134\pi\)
−0.163051 + 0.986618i \(0.552134\pi\)
\(504\) 0 0
\(505\) −21.6569 −0.963717
\(506\) −3.31371 −0.147312
\(507\) 0 0
\(508\) −10.3431 −0.458903
\(509\) 11.7990 0.522981 0.261491 0.965206i \(-0.415786\pi\)
0.261491 + 0.965206i \(0.415786\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) −22.7574 −1.00574
\(513\) 0 0
\(514\) 1.79899 0.0793500
\(515\) 6.62742 0.292039
\(516\) 0 0
\(517\) −23.3137 −1.02534
\(518\) 0 0
\(519\) 0 0
\(520\) −4.48528 −0.196693
\(521\) 25.3137 1.10901 0.554507 0.832179i \(-0.312907\pi\)
0.554507 + 0.832179i \(0.312907\pi\)
\(522\) 0 0
\(523\) 15.3137 0.669622 0.334811 0.942285i \(-0.391328\pi\)
0.334811 + 0.942285i \(0.391328\pi\)
\(524\) 14.6274 0.639002
\(525\) 0 0
\(526\) 4.97056 0.216727
\(527\) 8.97056 0.390764
\(528\) 0 0
\(529\) −7.00000 −0.304348
\(530\) 2.34315 0.101780
\(531\) 0 0
\(532\) 0 0
\(533\) 5.17157 0.224006
\(534\) 0 0
\(535\) −32.0000 −1.38348
\(536\) 10.8284 0.467717
\(537\) 0 0
\(538\) −7.45584 −0.321444
\(539\) 0 0
\(540\) 0 0
\(541\) 10.0000 0.429934 0.214967 0.976621i \(-0.431036\pi\)
0.214967 + 0.976621i \(0.431036\pi\)
\(542\) −11.5147 −0.494600
\(543\) 0 0
\(544\) −33.7990 −1.44912
\(545\) −15.0294 −0.643790
\(546\) 0 0
\(547\) 23.3137 0.996822 0.498411 0.866941i \(-0.333917\pi\)
0.498411 + 0.866941i \(0.333917\pi\)
\(548\) −19.7990 −0.845771
\(549\) 0 0
\(550\) −2.48528 −0.105973
\(551\) −5.65685 −0.240990
\(552\) 0 0
\(553\) 0 0
\(554\) 0.828427 0.0351965
\(555\) 0 0
\(556\) −13.3726 −0.567124
\(557\) 7.79899 0.330454 0.165227 0.986256i \(-0.447164\pi\)
0.165227 + 0.986256i \(0.447164\pi\)
\(558\) 0 0
\(559\) −1.65685 −0.0700775
\(560\) 0 0
\(561\) 0 0
\(562\) 8.76955 0.369921
\(563\) 4.00000 0.168580 0.0842900 0.996441i \(-0.473138\pi\)
0.0842900 + 0.996441i \(0.473138\pi\)
\(564\) 0 0
\(565\) −15.0294 −0.632293
\(566\) 12.0000 0.504398
\(567\) 0 0
\(568\) −3.17157 −0.133076
\(569\) 42.9706 1.80142 0.900710 0.434421i \(-0.143047\pi\)
0.900710 + 0.434421i \(0.143047\pi\)
\(570\) 0 0
\(571\) −12.9706 −0.542801 −0.271401 0.962466i \(-0.587487\pi\)
−0.271401 + 0.962466i \(0.587487\pi\)
\(572\) −3.65685 −0.152901
\(573\) 0 0
\(574\) 0 0
\(575\) 12.0000 0.500435
\(576\) 0 0
\(577\) 31.9411 1.32973 0.664863 0.746965i \(-0.268490\pi\)
0.664863 + 0.746965i \(0.268490\pi\)
\(578\) −17.2426 −0.717199
\(579\) 0 0
\(580\) −10.3431 −0.429476
\(581\) 0 0
\(582\) 0 0
\(583\) 4.00000 0.165663
\(584\) −0.544156 −0.0225173
\(585\) 0 0
\(586\) −0.887302 −0.0366541
\(587\) −10.9706 −0.452804 −0.226402 0.974034i \(-0.572696\pi\)
−0.226402 + 0.974034i \(0.572696\pi\)
\(588\) 0 0
\(589\) 3.31371 0.136539
\(590\) 8.97056 0.369312
\(591\) 0 0
\(592\) −22.9706 −0.944084
\(593\) −20.4853 −0.841230 −0.420615 0.907239i \(-0.638186\pi\)
−0.420615 + 0.907239i \(0.638186\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) −16.7696 −0.686908
\(597\) 0 0
\(598\) −1.65685 −0.0677538
\(599\) 23.3137 0.952572 0.476286 0.879290i \(-0.341983\pi\)
0.476286 + 0.879290i \(0.341983\pi\)
\(600\) 0 0
\(601\) 0.627417 0.0255929 0.0127964 0.999918i \(-0.495927\pi\)
0.0127964 + 0.999918i \(0.495927\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 6.42641 0.261487
\(605\) 19.7990 0.804943
\(606\) 0 0
\(607\) −41.9411 −1.70234 −0.851169 0.524892i \(-0.824106\pi\)
−0.851169 + 0.524892i \(0.824106\pi\)
\(608\) −12.4853 −0.506345
\(609\) 0 0
\(610\) −15.5980 −0.631544
\(611\) −11.6569 −0.471586
\(612\) 0 0
\(613\) −47.6569 −1.92484 −0.962421 0.271561i \(-0.912460\pi\)
−0.962421 + 0.271561i \(0.912460\pi\)
\(614\) −9.45584 −0.381607
\(615\) 0 0
\(616\) 0 0
\(617\) 34.8284 1.40214 0.701070 0.713093i \(-0.252706\pi\)
0.701070 + 0.713093i \(0.252706\pi\)
\(618\) 0 0
\(619\) −23.7990 −0.956562 −0.478281 0.878207i \(-0.658740\pi\)
−0.478281 + 0.878207i \(0.658740\pi\)
\(620\) 6.05887 0.243330
\(621\) 0 0
\(622\) 4.40202 0.176505
\(623\) 0 0
\(624\) 0 0
\(625\) −31.0000 −1.24000
\(626\) 2.48528 0.0993318
\(627\) 0 0
\(628\) −18.2843 −0.729622
\(629\) −58.6274 −2.33763
\(630\) 0 0
\(631\) 43.1127 1.71629 0.858145 0.513408i \(-0.171617\pi\)
0.858145 + 0.513408i \(0.171617\pi\)
\(632\) −17.9411 −0.713660
\(633\) 0 0
\(634\) 3.51472 0.139587
\(635\) −16.0000 −0.634941
\(636\) 0 0
\(637\) 0 0
\(638\) 1.65685 0.0655955
\(639\) 0 0
\(640\) −29.8579 −1.18024
\(641\) −30.2843 −1.19616 −0.598078 0.801438i \(-0.704069\pi\)
−0.598078 + 0.801438i \(0.704069\pi\)
\(642\) 0 0
\(643\) −22.8284 −0.900265 −0.450133 0.892962i \(-0.648623\pi\)
−0.450133 + 0.892962i \(0.648623\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) −8.97056 −0.352942
\(647\) 11.3137 0.444788 0.222394 0.974957i \(-0.428613\pi\)
0.222394 + 0.974957i \(0.428613\pi\)
\(648\) 0 0
\(649\) 15.3137 0.601116
\(650\) −1.24264 −0.0487404
\(651\) 0 0
\(652\) −34.4264 −1.34824
\(653\) 25.3137 0.990602 0.495301 0.868721i \(-0.335058\pi\)
0.495301 + 0.868721i \(0.335058\pi\)
\(654\) 0 0
\(655\) 22.6274 0.884126
\(656\) 15.5147 0.605748
\(657\) 0 0
\(658\) 0 0
\(659\) 47.3137 1.84308 0.921540 0.388283i \(-0.126932\pi\)
0.921540 + 0.388283i \(0.126932\pi\)
\(660\) 0 0
\(661\) 34.9706 1.36020 0.680099 0.733121i \(-0.261937\pi\)
0.680099 + 0.733121i \(0.261937\pi\)
\(662\) −10.8284 −0.420859
\(663\) 0 0
\(664\) 5.79899 0.225044
\(665\) 0 0
\(666\) 0 0
\(667\) −8.00000 −0.309761
\(668\) 6.68629 0.258700
\(669\) 0 0
\(670\) 8.00000 0.309067
\(671\) −26.6274 −1.02794
\(672\) 0 0
\(673\) 16.6274 0.640940 0.320470 0.947259i \(-0.396159\pi\)
0.320470 + 0.947259i \(0.396159\pi\)
\(674\) −3.85786 −0.148599
\(675\) 0 0
\(676\) −1.82843 −0.0703241
\(677\) 26.6863 1.02564 0.512819 0.858497i \(-0.328601\pi\)
0.512819 + 0.858497i \(0.328601\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) −34.3431 −1.31700
\(681\) 0 0
\(682\) −0.970563 −0.0371648
\(683\) −47.9411 −1.83442 −0.917208 0.398408i \(-0.869563\pi\)
−0.917208 + 0.398408i \(0.869563\pi\)
\(684\) 0 0
\(685\) −30.6274 −1.17021
\(686\) 0 0
\(687\) 0 0
\(688\) −4.97056 −0.189501
\(689\) 2.00000 0.0761939
\(690\) 0 0
\(691\) 5.85786 0.222844 0.111422 0.993773i \(-0.464460\pi\)
0.111422 + 0.993773i \(0.464460\pi\)
\(692\) 21.3137 0.810226
\(693\) 0 0
\(694\) −3.59798 −0.136577
\(695\) −20.6863 −0.784676
\(696\) 0 0
\(697\) 39.5980 1.49988
\(698\) 1.51472 0.0573329
\(699\) 0 0
\(700\) 0 0
\(701\) −5.02944 −0.189959 −0.0949796 0.995479i \(-0.530279\pi\)
−0.0949796 + 0.995479i \(0.530279\pi\)
\(702\) 0 0
\(703\) −21.6569 −0.816804
\(704\) −8.34315 −0.314444
\(705\) 0 0
\(706\) 13.8579 0.521548
\(707\) 0 0
\(708\) 0 0
\(709\) −4.62742 −0.173786 −0.0868931 0.996218i \(-0.527694\pi\)
−0.0868931 + 0.996218i \(0.527694\pi\)
\(710\) −2.34315 −0.0879367
\(711\) 0 0
\(712\) 23.5147 0.881251
\(713\) 4.68629 0.175503
\(714\) 0 0
\(715\) −5.65685 −0.211554
\(716\) −42.6274 −1.59306
\(717\) 0 0
\(718\) 14.4853 0.540586
\(719\) −29.9411 −1.11662 −0.558308 0.829634i \(-0.688549\pi\)
−0.558308 + 0.829634i \(0.688549\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 4.55635 0.169570
\(723\) 0 0
\(724\) 25.5980 0.951341
\(725\) −6.00000 −0.222834
\(726\) 0 0
\(727\) 10.3431 0.383606 0.191803 0.981433i \(-0.438567\pi\)
0.191803 + 0.981433i \(0.438567\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) −0.402020 −0.0148794
\(731\) −12.6863 −0.469219
\(732\) 0 0
\(733\) 36.6274 1.35286 0.676432 0.736505i \(-0.263525\pi\)
0.676432 + 0.736505i \(0.263525\pi\)
\(734\) −9.94113 −0.366934
\(735\) 0 0
\(736\) −17.6569 −0.650840
\(737\) 13.6569 0.503057
\(738\) 0 0
\(739\) −18.1421 −0.667369 −0.333685 0.942685i \(-0.608292\pi\)
−0.333685 + 0.942685i \(0.608292\pi\)
\(740\) −39.5980 −1.45565
\(741\) 0 0
\(742\) 0 0
\(743\) −2.00000 −0.0733729 −0.0366864 0.999327i \(-0.511680\pi\)
−0.0366864 + 0.999327i \(0.511680\pi\)
\(744\) 0 0
\(745\) −25.9411 −0.950409
\(746\) −4.14214 −0.151654
\(747\) 0 0
\(748\) −28.0000 −1.02378
\(749\) 0 0
\(750\) 0 0
\(751\) −0.970563 −0.0354163 −0.0177082 0.999843i \(-0.505637\pi\)
−0.0177082 + 0.999843i \(0.505637\pi\)
\(752\) −34.9706 −1.27525
\(753\) 0 0
\(754\) 0.828427 0.0301695
\(755\) 9.94113 0.361795
\(756\) 0 0
\(757\) 51.9411 1.88783 0.943916 0.330185i \(-0.107111\pi\)
0.943916 + 0.330185i \(0.107111\pi\)
\(758\) −0.201010 −0.00730102
\(759\) 0 0
\(760\) −12.6863 −0.460180
\(761\) 32.4853 1.17759 0.588795 0.808282i \(-0.299602\pi\)
0.588795 + 0.808282i \(0.299602\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 6.05887 0.219202
\(765\) 0 0
\(766\) −12.8284 −0.463510
\(767\) 7.65685 0.276473
\(768\) 0 0
\(769\) −42.0000 −1.51456 −0.757279 0.653091i \(-0.773472\pi\)
−0.757279 + 0.653091i \(0.773472\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) −9.71573 −0.349677
\(773\) 34.1421 1.22801 0.614004 0.789303i \(-0.289558\pi\)
0.614004 + 0.789303i \(0.289558\pi\)
\(774\) 0 0
\(775\) 3.51472 0.126252
\(776\) −5.79899 −0.208172
\(777\) 0 0
\(778\) −11.1716 −0.400520
\(779\) 14.6274 0.524082
\(780\) 0 0
\(781\) −4.00000 −0.143131
\(782\) −12.6863 −0.453661
\(783\) 0 0
\(784\) 0 0
\(785\) −28.2843 −1.00951
\(786\) 0 0
\(787\) 40.7696 1.45328 0.726639 0.687020i \(-0.241081\pi\)
0.726639 + 0.687020i \(0.241081\pi\)
\(788\) 0.887302 0.0316088
\(789\) 0 0
\(790\) −13.2548 −0.471586
\(791\) 0 0
\(792\) 0 0
\(793\) −13.3137 −0.472784
\(794\) 12.8284 0.455264
\(795\) 0 0
\(796\) 39.5980 1.40351
\(797\) 24.3431 0.862278 0.431139 0.902285i \(-0.358112\pi\)
0.431139 + 0.902285i \(0.358112\pi\)
\(798\) 0 0
\(799\) −89.2548 −3.15761
\(800\) −13.2426 −0.468198
\(801\) 0 0
\(802\) 10.8284 0.382365
\(803\) −0.686292 −0.0242187
\(804\) 0 0
\(805\) 0 0
\(806\) −0.485281 −0.0170933
\(807\) 0 0
\(808\) 12.1421 0.427159
\(809\) −18.6863 −0.656975 −0.328488 0.944508i \(-0.606539\pi\)
−0.328488 + 0.944508i \(0.606539\pi\)
\(810\) 0 0
\(811\) 30.1421 1.05843 0.529217 0.848487i \(-0.322486\pi\)
0.529217 + 0.848487i \(0.322486\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 6.34315 0.222327
\(815\) −53.2548 −1.86544
\(816\) 0 0
\(817\) −4.68629 −0.163953
\(818\) −14.4853 −0.506466
\(819\) 0 0
\(820\) 26.7452 0.933982
\(821\) 23.7990 0.830590 0.415295 0.909687i \(-0.363678\pi\)
0.415295 + 0.909687i \(0.363678\pi\)
\(822\) 0 0
\(823\) 15.0294 0.523893 0.261947 0.965082i \(-0.415636\pi\)
0.261947 + 0.965082i \(0.415636\pi\)
\(824\) −3.71573 −0.129444
\(825\) 0 0
\(826\) 0 0
\(827\) 26.0000 0.904109 0.452054 0.891990i \(-0.350691\pi\)
0.452054 + 0.891990i \(0.350691\pi\)
\(828\) 0 0
\(829\) 17.3137 0.601330 0.300665 0.953730i \(-0.402791\pi\)
0.300665 + 0.953730i \(0.402791\pi\)
\(830\) 4.28427 0.148709
\(831\) 0 0
\(832\) −4.17157 −0.144623
\(833\) 0 0
\(834\) 0 0
\(835\) 10.3431 0.357939
\(836\) −10.3431 −0.357725
\(837\) 0 0
\(838\) −6.05887 −0.209300
\(839\) 43.2548 1.49332 0.746661 0.665204i \(-0.231656\pi\)
0.746661 + 0.665204i \(0.231656\pi\)
\(840\) 0 0
\(841\) −25.0000 −0.862069
\(842\) −15.4558 −0.532644
\(843\) 0 0
\(844\) 21.9411 0.755245
\(845\) −2.82843 −0.0973009
\(846\) 0 0
\(847\) 0 0
\(848\) 6.00000 0.206041
\(849\) 0 0
\(850\) −9.51472 −0.326352
\(851\) −30.6274 −1.04989
\(852\) 0 0
\(853\) −3.65685 −0.125208 −0.0626042 0.998038i \(-0.519941\pi\)
−0.0626042 + 0.998038i \(0.519941\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 17.9411 0.613215
\(857\) −49.5980 −1.69423 −0.847117 0.531406i \(-0.821664\pi\)
−0.847117 + 0.531406i \(0.821664\pi\)
\(858\) 0 0
\(859\) 0.686292 0.0234160 0.0117080 0.999931i \(-0.496273\pi\)
0.0117080 + 0.999931i \(0.496273\pi\)
\(860\) −8.56854 −0.292185
\(861\) 0 0
\(862\) 3.45584 0.117707
\(863\) 28.3431 0.964812 0.482406 0.875948i \(-0.339763\pi\)
0.482406 + 0.875948i \(0.339763\pi\)
\(864\) 0 0
\(865\) 32.9706 1.12103
\(866\) −8.82843 −0.300002
\(867\) 0 0
\(868\) 0 0
\(869\) −22.6274 −0.767583
\(870\) 0 0
\(871\) 6.82843 0.231372
\(872\) 8.42641 0.285354
\(873\) 0 0
\(874\) −4.68629 −0.158516
\(875\) 0 0
\(876\) 0 0
\(877\) 42.2843 1.42784 0.713919 0.700228i \(-0.246918\pi\)
0.713919 + 0.700228i \(0.246918\pi\)
\(878\) 7.02944 0.237232
\(879\) 0 0
\(880\) −16.9706 −0.572078
\(881\) −25.5980 −0.862418 −0.431209 0.902252i \(-0.641913\pi\)
−0.431209 + 0.902252i \(0.641913\pi\)
\(882\) 0 0
\(883\) 27.5980 0.928746 0.464373 0.885640i \(-0.346280\pi\)
0.464373 + 0.885640i \(0.346280\pi\)
\(884\) −14.0000 −0.470871
\(885\) 0 0
\(886\) −10.7452 −0.360991
\(887\) −8.00000 −0.268614 −0.134307 0.990940i \(-0.542881\pi\)
−0.134307 + 0.990940i \(0.542881\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 17.3726 0.582330
\(891\) 0 0
\(892\) −22.8284 −0.764352
\(893\) −32.9706 −1.10332
\(894\) 0 0
\(895\) −65.9411 −2.20417
\(896\) 0 0
\(897\) 0 0
\(898\) −13.1716 −0.439541
\(899\) −2.34315 −0.0781483
\(900\) 0 0
\(901\) 15.3137 0.510174
\(902\) −4.28427 −0.142651
\(903\) 0 0
\(904\) 8.42641 0.280258
\(905\) 39.5980 1.31628
\(906\) 0 0
\(907\) −12.9706 −0.430680 −0.215340 0.976539i \(-0.569086\pi\)
−0.215340 + 0.976539i \(0.569086\pi\)
\(908\) 31.6569 1.05057
\(909\) 0 0
\(910\) 0 0
\(911\) 40.0000 1.32526 0.662630 0.748947i \(-0.269440\pi\)
0.662630 + 0.748947i \(0.269440\pi\)
\(912\) 0 0
\(913\) 7.31371 0.242048
\(914\) 3.17157 0.104906
\(915\) 0 0
\(916\) −2.40202 −0.0793650
\(917\) 0 0
\(918\) 0 0
\(919\) 3.31371 0.109309 0.0546546 0.998505i \(-0.482594\pi\)
0.0546546 + 0.998505i \(0.482594\pi\)
\(920\) −17.9411 −0.591501
\(921\) 0 0
\(922\) −2.14214 −0.0705475
\(923\) −2.00000 −0.0658308
\(924\) 0 0
\(925\) −22.9706 −0.755267
\(926\) 10.1421 0.333291
\(927\) 0 0
\(928\) 8.82843 0.289807
\(929\) 11.7990 0.387112 0.193556 0.981089i \(-0.437998\pi\)
0.193556 + 0.981089i \(0.437998\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 12.7452 0.417482
\(933\) 0 0
\(934\) 3.31371 0.108428
\(935\) −43.3137 −1.41651
\(936\) 0 0
\(937\) 21.3137 0.696289 0.348144 0.937441i \(-0.386812\pi\)
0.348144 + 0.937441i \(0.386812\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) −60.2843 −1.96626
\(941\) 34.1421 1.11300 0.556501 0.830847i \(-0.312144\pi\)
0.556501 + 0.830847i \(0.312144\pi\)
\(942\) 0 0
\(943\) 20.6863 0.673638
\(944\) 22.9706 0.747628
\(945\) 0 0
\(946\) 1.37258 0.0446265
\(947\) 21.0294 0.683365 0.341682 0.939815i \(-0.389003\pi\)
0.341682 + 0.939815i \(0.389003\pi\)
\(948\) 0 0
\(949\) −0.343146 −0.0111390
\(950\) −3.51472 −0.114033
\(951\) 0 0
\(952\) 0 0
\(953\) −40.3431 −1.30684 −0.653421 0.756994i \(-0.726667\pi\)
−0.653421 + 0.756994i \(0.726667\pi\)
\(954\) 0 0
\(955\) 9.37258 0.303290
\(956\) 3.65685 0.118271
\(957\) 0 0
\(958\) −10.4853 −0.338764
\(959\) 0 0
\(960\) 0 0
\(961\) −29.6274 −0.955723
\(962\) 3.17157 0.102256
\(963\) 0 0
\(964\) 0.627417 0.0202077
\(965\) −15.0294 −0.483815
\(966\) 0 0
\(967\) 18.1421 0.583412 0.291706 0.956508i \(-0.405777\pi\)
0.291706 + 0.956508i \(0.405777\pi\)
\(968\) −11.1005 −0.356784
\(969\) 0 0
\(970\) −4.28427 −0.137560
\(971\) −15.3137 −0.491440 −0.245720 0.969341i \(-0.579024\pi\)
−0.245720 + 0.969341i \(0.579024\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) 3.23045 0.103510
\(975\) 0 0
\(976\) −39.9411 −1.27848
\(977\) −42.1421 −1.34825 −0.674123 0.738619i \(-0.735478\pi\)
−0.674123 + 0.738619i \(0.735478\pi\)
\(978\) 0 0
\(979\) 29.6569 0.947837
\(980\) 0 0
\(981\) 0 0
\(982\) 12.6863 0.404836
\(983\) 25.3137 0.807382 0.403691 0.914895i \(-0.367727\pi\)
0.403691 + 0.914895i \(0.367727\pi\)
\(984\) 0 0
\(985\) 1.37258 0.0437341
\(986\) 6.34315 0.202007
\(987\) 0 0
\(988\) −5.17157 −0.164530
\(989\) −6.62742 −0.210740
\(990\) 0 0
\(991\) 4.68629 0.148865 0.0744325 0.997226i \(-0.476285\pi\)
0.0744325 + 0.997226i \(0.476285\pi\)
\(992\) −5.17157 −0.164198
\(993\) 0 0
\(994\) 0 0
\(995\) 61.2548 1.94191
\(996\) 0 0
\(997\) 39.2548 1.24321 0.621607 0.783330i \(-0.286480\pi\)
0.621607 + 0.783330i \(0.286480\pi\)
\(998\) −10.8284 −0.342768
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 5733.2.a.u.1.1 2
3.2 odd 2 1911.2.a.h.1.2 2
7.6 odd 2 117.2.a.c.1.1 2
21.20 even 2 39.2.a.b.1.2 2
28.27 even 2 1872.2.a.w.1.2 2
35.13 even 4 2925.2.c.u.2224.3 4
35.27 even 4 2925.2.c.u.2224.2 4
35.34 odd 2 2925.2.a.v.1.2 2
56.13 odd 2 7488.2.a.cl.1.1 2
56.27 even 2 7488.2.a.co.1.1 2
63.13 odd 6 1053.2.e.e.703.2 4
63.20 even 6 1053.2.e.m.352.1 4
63.34 odd 6 1053.2.e.e.352.2 4
63.41 even 6 1053.2.e.m.703.1 4
84.83 odd 2 624.2.a.k.1.1 2
91.34 even 4 1521.2.b.j.1351.2 4
91.83 even 4 1521.2.b.j.1351.3 4
91.90 odd 2 1521.2.a.f.1.2 2
105.62 odd 4 975.2.c.h.274.3 4
105.83 odd 4 975.2.c.h.274.2 4
105.104 even 2 975.2.a.l.1.1 2
168.83 odd 2 2496.2.a.bi.1.2 2
168.125 even 2 2496.2.a.bf.1.2 2
231.230 odd 2 4719.2.a.p.1.1 2
273.20 odd 12 507.2.j.f.361.3 8
273.41 odd 12 507.2.j.f.316.3 8
273.62 even 6 507.2.e.d.22.2 4
273.83 odd 4 507.2.b.e.337.2 4
273.125 odd 4 507.2.b.e.337.3 4
273.146 even 6 507.2.e.h.22.1 4
273.167 odd 12 507.2.j.f.316.2 8
273.188 odd 12 507.2.j.f.361.2 8
273.230 even 6 507.2.e.h.484.1 4
273.251 even 6 507.2.e.d.484.2 4
273.272 even 2 507.2.a.h.1.1 2
1092.1091 odd 2 8112.2.a.bm.1.2 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
39.2.a.b.1.2 2 21.20 even 2
117.2.a.c.1.1 2 7.6 odd 2
507.2.a.h.1.1 2 273.272 even 2
507.2.b.e.337.2 4 273.83 odd 4
507.2.b.e.337.3 4 273.125 odd 4
507.2.e.d.22.2 4 273.62 even 6
507.2.e.d.484.2 4 273.251 even 6
507.2.e.h.22.1 4 273.146 even 6
507.2.e.h.484.1 4 273.230 even 6
507.2.j.f.316.2 8 273.167 odd 12
507.2.j.f.316.3 8 273.41 odd 12
507.2.j.f.361.2 8 273.188 odd 12
507.2.j.f.361.3 8 273.20 odd 12
624.2.a.k.1.1 2 84.83 odd 2
975.2.a.l.1.1 2 105.104 even 2
975.2.c.h.274.2 4 105.83 odd 4
975.2.c.h.274.3 4 105.62 odd 4
1053.2.e.e.352.2 4 63.34 odd 6
1053.2.e.e.703.2 4 63.13 odd 6
1053.2.e.m.352.1 4 63.20 even 6
1053.2.e.m.703.1 4 63.41 even 6
1521.2.a.f.1.2 2 91.90 odd 2
1521.2.b.j.1351.2 4 91.34 even 4
1521.2.b.j.1351.3 4 91.83 even 4
1872.2.a.w.1.2 2 28.27 even 2
1911.2.a.h.1.2 2 3.2 odd 2
2496.2.a.bf.1.2 2 168.125 even 2
2496.2.a.bi.1.2 2 168.83 odd 2
2925.2.a.v.1.2 2 35.34 odd 2
2925.2.c.u.2224.2 4 35.27 even 4
2925.2.c.u.2224.3 4 35.13 even 4
4719.2.a.p.1.1 2 231.230 odd 2
5733.2.a.u.1.1 2 1.1 even 1 trivial
7488.2.a.cl.1.1 2 56.13 odd 2
7488.2.a.co.1.1 2 56.27 even 2
8112.2.a.bm.1.2 2 1092.1091 odd 2