Properties

Label 5733.2.a.bu.1.5
Level $5733$
Weight $2$
Character 5733.1
Self dual yes
Analytic conductor $45.778$
Analytic rank $0$
Dimension $6$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [5733,2,Mod(1,5733)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(5733, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("5733.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 5733 = 3^{2} \cdot 7^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 5733.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(45.7782354788\)
Analytic rank: \(0\)
Dimension: \(6\)
Coefficient field: 6.6.4507648.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - 2x^{5} - 5x^{4} + 8x^{3} + 7x^{2} - 6x - 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 637)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.5
Root \(2.35100\) of defining polynomial
Character \(\chi\) \(=\) 5733.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.17619 q^{2} -0.616586 q^{4} +3.14862 q^{5} -3.07759 q^{8} +O(q^{10})\) \(q+1.17619 q^{2} -0.616586 q^{4} +3.14862 q^{5} -3.07759 q^{8} +3.70337 q^{10} +0.773390 q^{11} -1.00000 q^{13} -2.38665 q^{16} -5.75340 q^{17} +1.22298 q^{19} -1.94140 q^{20} +0.909650 q^{22} +2.99182 q^{23} +4.91383 q^{25} -1.17619 q^{26} +2.46882 q^{29} +6.13487 q^{31} +3.34804 q^{32} -6.76707 q^{34} +4.99933 q^{37} +1.43845 q^{38} -9.69018 q^{40} -2.55981 q^{41} -2.73150 q^{43} -0.476861 q^{44} +3.51894 q^{46} +5.37169 q^{47} +5.77958 q^{50} +0.616586 q^{52} +9.79015 q^{53} +2.43511 q^{55} +2.90379 q^{58} +2.50456 q^{59} +10.9167 q^{61} +7.21575 q^{62} +8.71122 q^{64} -3.14862 q^{65} +4.32518 q^{67} +3.54746 q^{68} -10.6649 q^{71} +5.17450 q^{73} +5.88014 q^{74} -0.754072 q^{76} -0.542038 q^{79} -7.51467 q^{80} -3.01081 q^{82} +15.2259 q^{83} -18.1153 q^{85} -3.21275 q^{86} -2.38018 q^{88} +9.23208 q^{89} -1.84471 q^{92} +6.31811 q^{94} +3.85070 q^{95} +1.26291 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q + 4 q^{4} + 6 q^{5}+O(q^{10}) \) Copy content Toggle raw display \( 6 q + 4 q^{4} + 6 q^{5} - 4 q^{10} - 4 q^{11} - 6 q^{13} + 16 q^{17} - 2 q^{19} + 16 q^{20} - 12 q^{22} + 6 q^{23} - 4 q^{25} + 6 q^{29} - 6 q^{31} + 20 q^{32} + 8 q^{38} - 4 q^{40} - 8 q^{41} + 2 q^{43} + 4 q^{44} + 8 q^{46} + 30 q^{47} - 8 q^{50} - 4 q^{52} + 14 q^{53} + 8 q^{55} - 8 q^{58} + 24 q^{59} + 28 q^{62} - 20 q^{64} - 6 q^{65} + 16 q^{67} + 28 q^{68} - 8 q^{71} + 6 q^{73} + 12 q^{74} + 16 q^{76} - 22 q^{79} - 28 q^{80} + 40 q^{82} + 50 q^{83} - 8 q^{85} + 16 q^{86} - 44 q^{88} + 26 q^{89} - 20 q^{92} + 32 q^{94} + 6 q^{95} + 14 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.17619 0.831689 0.415845 0.909436i \(-0.363486\pi\)
0.415845 + 0.909436i \(0.363486\pi\)
\(3\) 0 0
\(4\) −0.616586 −0.308293
\(5\) 3.14862 1.40811 0.704054 0.710147i \(-0.251371\pi\)
0.704054 + 0.710147i \(0.251371\pi\)
\(6\) 0 0
\(7\) 0 0
\(8\) −3.07759 −1.08809
\(9\) 0 0
\(10\) 3.70337 1.17111
\(11\) 0.773390 0.233186 0.116593 0.993180i \(-0.462803\pi\)
0.116593 + 0.993180i \(0.462803\pi\)
\(12\) 0 0
\(13\) −1.00000 −0.277350
\(14\) 0 0
\(15\) 0 0
\(16\) −2.38665 −0.596663
\(17\) −5.75340 −1.39540 −0.697702 0.716388i \(-0.745794\pi\)
−0.697702 + 0.716388i \(0.745794\pi\)
\(18\) 0 0
\(19\) 1.22298 0.280571 0.140285 0.990111i \(-0.455198\pi\)
0.140285 + 0.990111i \(0.455198\pi\)
\(20\) −1.94140 −0.434109
\(21\) 0 0
\(22\) 0.909650 0.193938
\(23\) 2.99182 0.623838 0.311919 0.950109i \(-0.399028\pi\)
0.311919 + 0.950109i \(0.399028\pi\)
\(24\) 0 0
\(25\) 4.91383 0.982767
\(26\) −1.17619 −0.230669
\(27\) 0 0
\(28\) 0 0
\(29\) 2.46882 0.458449 0.229224 0.973374i \(-0.426381\pi\)
0.229224 + 0.973374i \(0.426381\pi\)
\(30\) 0 0
\(31\) 6.13487 1.10185 0.550927 0.834553i \(-0.314274\pi\)
0.550927 + 0.834553i \(0.314274\pi\)
\(32\) 3.34804 0.591855
\(33\) 0 0
\(34\) −6.76707 −1.16054
\(35\) 0 0
\(36\) 0 0
\(37\) 4.99933 0.821884 0.410942 0.911661i \(-0.365200\pi\)
0.410942 + 0.911661i \(0.365200\pi\)
\(38\) 1.43845 0.233348
\(39\) 0 0
\(40\) −9.69018 −1.53215
\(41\) −2.55981 −0.399774 −0.199887 0.979819i \(-0.564058\pi\)
−0.199887 + 0.979819i \(0.564058\pi\)
\(42\) 0 0
\(43\) −2.73150 −0.416550 −0.208275 0.978070i \(-0.566785\pi\)
−0.208275 + 0.978070i \(0.566785\pi\)
\(44\) −0.476861 −0.0718895
\(45\) 0 0
\(46\) 3.51894 0.518839
\(47\) 5.37169 0.783542 0.391771 0.920063i \(-0.371863\pi\)
0.391771 + 0.920063i \(0.371863\pi\)
\(48\) 0 0
\(49\) 0 0
\(50\) 5.77958 0.817357
\(51\) 0 0
\(52\) 0.616586 0.0855050
\(53\) 9.79015 1.34478 0.672390 0.740197i \(-0.265268\pi\)
0.672390 + 0.740197i \(0.265268\pi\)
\(54\) 0 0
\(55\) 2.43511 0.328351
\(56\) 0 0
\(57\) 0 0
\(58\) 2.90379 0.381287
\(59\) 2.50456 0.326066 0.163033 0.986621i \(-0.447872\pi\)
0.163033 + 0.986621i \(0.447872\pi\)
\(60\) 0 0
\(61\) 10.9167 1.39774 0.698870 0.715248i \(-0.253686\pi\)
0.698870 + 0.715248i \(0.253686\pi\)
\(62\) 7.21575 0.916401
\(63\) 0 0
\(64\) 8.71122 1.08890
\(65\) −3.14862 −0.390539
\(66\) 0 0
\(67\) 4.32518 0.528404 0.264202 0.964467i \(-0.414891\pi\)
0.264202 + 0.964467i \(0.414891\pi\)
\(68\) 3.54746 0.430193
\(69\) 0 0
\(70\) 0 0
\(71\) −10.6649 −1.26570 −0.632848 0.774276i \(-0.718114\pi\)
−0.632848 + 0.774276i \(0.718114\pi\)
\(72\) 0 0
\(73\) 5.17450 0.605630 0.302815 0.953049i \(-0.402074\pi\)
0.302815 + 0.953049i \(0.402074\pi\)
\(74\) 5.88014 0.683552
\(75\) 0 0
\(76\) −0.754072 −0.0864979
\(77\) 0 0
\(78\) 0 0
\(79\) −0.542038 −0.0609841 −0.0304920 0.999535i \(-0.509707\pi\)
−0.0304920 + 0.999535i \(0.509707\pi\)
\(80\) −7.51467 −0.840165
\(81\) 0 0
\(82\) −3.01081 −0.332488
\(83\) 15.2259 1.67125 0.835627 0.549297i \(-0.185104\pi\)
0.835627 + 0.549297i \(0.185104\pi\)
\(84\) 0 0
\(85\) −18.1153 −1.96488
\(86\) −3.21275 −0.346440
\(87\) 0 0
\(88\) −2.38018 −0.253728
\(89\) 9.23208 0.978599 0.489299 0.872116i \(-0.337253\pi\)
0.489299 + 0.872116i \(0.337253\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) −1.84471 −0.192325
\(93\) 0 0
\(94\) 6.31811 0.651663
\(95\) 3.85070 0.395074
\(96\) 0 0
\(97\) 1.26291 0.128229 0.0641145 0.997943i \(-0.479578\pi\)
0.0641145 + 0.997943i \(0.479578\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) −3.02980 −0.302980
\(101\) 0.605447 0.0602443 0.0301221 0.999546i \(-0.490410\pi\)
0.0301221 + 0.999546i \(0.490410\pi\)
\(102\) 0 0
\(103\) −7.64804 −0.753584 −0.376792 0.926298i \(-0.622973\pi\)
−0.376792 + 0.926298i \(0.622973\pi\)
\(104\) 3.07759 0.301783
\(105\) 0 0
\(106\) 11.5150 1.11844
\(107\) −4.82965 −0.466900 −0.233450 0.972369i \(-0.575001\pi\)
−0.233450 + 0.972369i \(0.575001\pi\)
\(108\) 0 0
\(109\) 7.23092 0.692596 0.346298 0.938125i \(-0.387439\pi\)
0.346298 + 0.938125i \(0.387439\pi\)
\(110\) 2.86415 0.273086
\(111\) 0 0
\(112\) 0 0
\(113\) 9.19375 0.864875 0.432438 0.901664i \(-0.357654\pi\)
0.432438 + 0.901664i \(0.357654\pi\)
\(114\) 0 0
\(115\) 9.42012 0.878430
\(116\) −1.52224 −0.141336
\(117\) 0 0
\(118\) 2.94583 0.271186
\(119\) 0 0
\(120\) 0 0
\(121\) −10.4019 −0.945624
\(122\) 12.8401 1.16249
\(123\) 0 0
\(124\) −3.78267 −0.339694
\(125\) −0.271305 −0.0242663
\(126\) 0 0
\(127\) −11.2118 −0.994888 −0.497444 0.867496i \(-0.665728\pi\)
−0.497444 + 0.867496i \(0.665728\pi\)
\(128\) 3.54994 0.313773
\(129\) 0 0
\(130\) −3.70337 −0.324807
\(131\) 15.7380 1.37503 0.687517 0.726169i \(-0.258701\pi\)
0.687517 + 0.726169i \(0.258701\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 5.08721 0.439468
\(135\) 0 0
\(136\) 17.7066 1.51833
\(137\) 18.6210 1.59090 0.795449 0.606020i \(-0.207235\pi\)
0.795449 + 0.606020i \(0.207235\pi\)
\(138\) 0 0
\(139\) 11.9137 1.01050 0.505252 0.862972i \(-0.331399\pi\)
0.505252 + 0.862972i \(0.331399\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) −12.5440 −1.05267
\(143\) −0.773390 −0.0646741
\(144\) 0 0
\(145\) 7.77339 0.645545
\(146\) 6.08618 0.503696
\(147\) 0 0
\(148\) −3.08251 −0.253381
\(149\) −11.3753 −0.931904 −0.465952 0.884810i \(-0.654288\pi\)
−0.465952 + 0.884810i \(0.654288\pi\)
\(150\) 0 0
\(151\) −3.69250 −0.300492 −0.150246 0.988649i \(-0.548007\pi\)
−0.150246 + 0.988649i \(0.548007\pi\)
\(152\) −3.76383 −0.305287
\(153\) 0 0
\(154\) 0 0
\(155\) 19.3164 1.55153
\(156\) 0 0
\(157\) −1.12065 −0.0894374 −0.0447187 0.999000i \(-0.514239\pi\)
−0.0447187 + 0.999000i \(0.514239\pi\)
\(158\) −0.637538 −0.0507198
\(159\) 0 0
\(160\) 10.5417 0.833396
\(161\) 0 0
\(162\) 0 0
\(163\) −20.3435 −1.59342 −0.796712 0.604359i \(-0.793429\pi\)
−0.796712 + 0.604359i \(0.793429\pi\)
\(164\) 1.57834 0.123248
\(165\) 0 0
\(166\) 17.9084 1.38996
\(167\) 13.0063 1.00646 0.503228 0.864154i \(-0.332146\pi\)
0.503228 + 0.864154i \(0.332146\pi\)
\(168\) 0 0
\(169\) 1.00000 0.0769231
\(170\) −21.3070 −1.63417
\(171\) 0 0
\(172\) 1.68420 0.128419
\(173\) −25.9110 −1.96998 −0.984989 0.172616i \(-0.944778\pi\)
−0.984989 + 0.172616i \(0.944778\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) −1.84581 −0.139133
\(177\) 0 0
\(178\) 10.8587 0.813890
\(179\) −9.64163 −0.720649 −0.360325 0.932827i \(-0.617334\pi\)
−0.360325 + 0.932827i \(0.617334\pi\)
\(180\) 0 0
\(181\) 2.92683 0.217550 0.108775 0.994066i \(-0.465307\pi\)
0.108775 + 0.994066i \(0.465307\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) −9.20760 −0.678793
\(185\) 15.7410 1.15730
\(186\) 0 0
\(187\) −4.44962 −0.325388
\(188\) −3.31211 −0.241560
\(189\) 0 0
\(190\) 4.52914 0.328579
\(191\) 16.1364 1.16759 0.583796 0.811901i \(-0.301567\pi\)
0.583796 + 0.811901i \(0.301567\pi\)
\(192\) 0 0
\(193\) −0.0863817 −0.00621789 −0.00310894 0.999995i \(-0.500990\pi\)
−0.00310894 + 0.999995i \(0.500990\pi\)
\(194\) 1.48542 0.106647
\(195\) 0 0
\(196\) 0 0
\(197\) −15.0589 −1.07290 −0.536451 0.843932i \(-0.680235\pi\)
−0.536451 + 0.843932i \(0.680235\pi\)
\(198\) 0 0
\(199\) −15.4466 −1.09498 −0.547492 0.836811i \(-0.684417\pi\)
−0.547492 + 0.836811i \(0.684417\pi\)
\(200\) −15.1228 −1.06934
\(201\) 0 0
\(202\) 0.712119 0.0501045
\(203\) 0 0
\(204\) 0 0
\(205\) −8.05987 −0.562925
\(206\) −8.99552 −0.626748
\(207\) 0 0
\(208\) 2.38665 0.165484
\(209\) 0.945840 0.0654251
\(210\) 0 0
\(211\) −25.0561 −1.72493 −0.862466 0.506115i \(-0.831081\pi\)
−0.862466 + 0.506115i \(0.831081\pi\)
\(212\) −6.03647 −0.414586
\(213\) 0 0
\(214\) −5.68057 −0.388316
\(215\) −8.60047 −0.586547
\(216\) 0 0
\(217\) 0 0
\(218\) 8.50491 0.576025
\(219\) 0 0
\(220\) −1.50146 −0.101228
\(221\) 5.75340 0.387015
\(222\) 0 0
\(223\) 20.6640 1.38376 0.691881 0.722012i \(-0.256782\pi\)
0.691881 + 0.722012i \(0.256782\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 10.8136 0.719307
\(227\) 0.982378 0.0652027 0.0326013 0.999468i \(-0.489621\pi\)
0.0326013 + 0.999468i \(0.489621\pi\)
\(228\) 0 0
\(229\) 14.2742 0.943269 0.471634 0.881794i \(-0.343664\pi\)
0.471634 + 0.881794i \(0.343664\pi\)
\(230\) 11.0798 0.730581
\(231\) 0 0
\(232\) −7.59802 −0.498835
\(233\) −1.39534 −0.0914119 −0.0457060 0.998955i \(-0.514554\pi\)
−0.0457060 + 0.998955i \(0.514554\pi\)
\(234\) 0 0
\(235\) 16.9134 1.10331
\(236\) −1.54428 −0.100524
\(237\) 0 0
\(238\) 0 0
\(239\) −2.54875 −0.164865 −0.0824326 0.996597i \(-0.526269\pi\)
−0.0824326 + 0.996597i \(0.526269\pi\)
\(240\) 0 0
\(241\) −29.6746 −1.91151 −0.955755 0.294164i \(-0.904959\pi\)
−0.955755 + 0.294164i \(0.904959\pi\)
\(242\) −12.2345 −0.786466
\(243\) 0 0
\(244\) −6.73108 −0.430913
\(245\) 0 0
\(246\) 0 0
\(247\) −1.22298 −0.0778163
\(248\) −18.8806 −1.19892
\(249\) 0 0
\(250\) −0.319106 −0.0201820
\(251\) 18.0858 1.14157 0.570784 0.821100i \(-0.306639\pi\)
0.570784 + 0.821100i \(0.306639\pi\)
\(252\) 0 0
\(253\) 2.31384 0.145470
\(254\) −13.1872 −0.827437
\(255\) 0 0
\(256\) −13.2470 −0.827940
\(257\) 14.7403 0.919473 0.459737 0.888055i \(-0.347944\pi\)
0.459737 + 0.888055i \(0.347944\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 1.94140 0.120400
\(261\) 0 0
\(262\) 18.5108 1.14360
\(263\) 8.15922 0.503119 0.251560 0.967842i \(-0.419057\pi\)
0.251560 + 0.967842i \(0.419057\pi\)
\(264\) 0 0
\(265\) 30.8255 1.89360
\(266\) 0 0
\(267\) 0 0
\(268\) −2.66684 −0.162903
\(269\) 0.442582 0.0269847 0.0134924 0.999909i \(-0.495705\pi\)
0.0134924 + 0.999909i \(0.495705\pi\)
\(270\) 0 0
\(271\) 21.0831 1.28071 0.640354 0.768080i \(-0.278788\pi\)
0.640354 + 0.768080i \(0.278788\pi\)
\(272\) 13.7314 0.832586
\(273\) 0 0
\(274\) 21.9018 1.32313
\(275\) 3.80031 0.229167
\(276\) 0 0
\(277\) 3.59421 0.215955 0.107977 0.994153i \(-0.465563\pi\)
0.107977 + 0.994153i \(0.465563\pi\)
\(278\) 14.0127 0.840426
\(279\) 0 0
\(280\) 0 0
\(281\) 9.01252 0.537642 0.268821 0.963190i \(-0.413366\pi\)
0.268821 + 0.963190i \(0.413366\pi\)
\(282\) 0 0
\(283\) −27.7411 −1.64904 −0.824520 0.565833i \(-0.808555\pi\)
−0.824520 + 0.565833i \(0.808555\pi\)
\(284\) 6.57585 0.390205
\(285\) 0 0
\(286\) −0.909650 −0.0537887
\(287\) 0 0
\(288\) 0 0
\(289\) 16.1016 0.947153
\(290\) 9.14296 0.536893
\(291\) 0 0
\(292\) −3.19052 −0.186711
\(293\) 12.7409 0.744333 0.372167 0.928166i \(-0.378615\pi\)
0.372167 + 0.928166i \(0.378615\pi\)
\(294\) 0 0
\(295\) 7.88593 0.459137
\(296\) −15.3859 −0.894287
\(297\) 0 0
\(298\) −13.3795 −0.775055
\(299\) −2.99182 −0.173021
\(300\) 0 0
\(301\) 0 0
\(302\) −4.34307 −0.249916
\(303\) 0 0
\(304\) −2.91883 −0.167406
\(305\) 34.3726 1.96817
\(306\) 0 0
\(307\) −10.1384 −0.578626 −0.289313 0.957235i \(-0.593427\pi\)
−0.289313 + 0.957235i \(0.593427\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 22.7197 1.29039
\(311\) 20.6013 1.16819 0.584096 0.811685i \(-0.301449\pi\)
0.584096 + 0.811685i \(0.301449\pi\)
\(312\) 0 0
\(313\) −16.5456 −0.935213 −0.467606 0.883937i \(-0.654883\pi\)
−0.467606 + 0.883937i \(0.654883\pi\)
\(314\) −1.31809 −0.0743841
\(315\) 0 0
\(316\) 0.334213 0.0188010
\(317\) 21.2340 1.19262 0.596310 0.802754i \(-0.296633\pi\)
0.596310 + 0.802754i \(0.296633\pi\)
\(318\) 0 0
\(319\) 1.90936 0.106904
\(320\) 27.4284 1.53329
\(321\) 0 0
\(322\) 0 0
\(323\) −7.03629 −0.391510
\(324\) 0 0
\(325\) −4.91383 −0.272570
\(326\) −23.9277 −1.32523
\(327\) 0 0
\(328\) 7.87804 0.434992
\(329\) 0 0
\(330\) 0 0
\(331\) 16.2415 0.892712 0.446356 0.894855i \(-0.352721\pi\)
0.446356 + 0.894855i \(0.352721\pi\)
\(332\) −9.38804 −0.515236
\(333\) 0 0
\(334\) 15.2978 0.837058
\(335\) 13.6184 0.744050
\(336\) 0 0
\(337\) 6.42141 0.349797 0.174898 0.984586i \(-0.444040\pi\)
0.174898 + 0.984586i \(0.444040\pi\)
\(338\) 1.17619 0.0639761
\(339\) 0 0
\(340\) 11.1696 0.605758
\(341\) 4.74464 0.256937
\(342\) 0 0
\(343\) 0 0
\(344\) 8.40645 0.453245
\(345\) 0 0
\(346\) −30.4762 −1.63841
\(347\) −14.4809 −0.777376 −0.388688 0.921369i \(-0.627072\pi\)
−0.388688 + 0.921369i \(0.627072\pi\)
\(348\) 0 0
\(349\) −1.74500 −0.0934079 −0.0467040 0.998909i \(-0.514872\pi\)
−0.0467040 + 0.998909i \(0.514872\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 2.58934 0.138012
\(353\) 15.9580 0.849358 0.424679 0.905344i \(-0.360387\pi\)
0.424679 + 0.905344i \(0.360387\pi\)
\(354\) 0 0
\(355\) −33.5799 −1.78224
\(356\) −5.69237 −0.301695
\(357\) 0 0
\(358\) −11.3404 −0.599356
\(359\) −8.81400 −0.465185 −0.232593 0.972574i \(-0.574721\pi\)
−0.232593 + 0.972574i \(0.574721\pi\)
\(360\) 0 0
\(361\) −17.5043 −0.921280
\(362\) 3.44250 0.180934
\(363\) 0 0
\(364\) 0 0
\(365\) 16.2926 0.852792
\(366\) 0 0
\(367\) 19.7080 1.02875 0.514374 0.857566i \(-0.328024\pi\)
0.514374 + 0.857566i \(0.328024\pi\)
\(368\) −7.14043 −0.372221
\(369\) 0 0
\(370\) 18.5144 0.962515
\(371\) 0 0
\(372\) 0 0
\(373\) −0.365792 −0.0189400 −0.00947000 0.999955i \(-0.503014\pi\)
−0.00947000 + 0.999955i \(0.503014\pi\)
\(374\) −5.23358 −0.270622
\(375\) 0 0
\(376\) −16.5319 −0.852566
\(377\) −2.46882 −0.127151
\(378\) 0 0
\(379\) 7.39215 0.379709 0.189855 0.981812i \(-0.439198\pi\)
0.189855 + 0.981812i \(0.439198\pi\)
\(380\) −2.37429 −0.121798
\(381\) 0 0
\(382\) 18.9795 0.971073
\(383\) −3.35364 −0.171363 −0.0856814 0.996323i \(-0.527307\pi\)
−0.0856814 + 0.996323i \(0.527307\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) −0.101601 −0.00517135
\(387\) 0 0
\(388\) −0.778692 −0.0395321
\(389\) 2.59344 0.131492 0.0657462 0.997836i \(-0.479057\pi\)
0.0657462 + 0.997836i \(0.479057\pi\)
\(390\) 0 0
\(391\) −17.2131 −0.870506
\(392\) 0 0
\(393\) 0 0
\(394\) −17.7121 −0.892321
\(395\) −1.70668 −0.0858721
\(396\) 0 0
\(397\) 33.4914 1.68088 0.840441 0.541902i \(-0.182296\pi\)
0.840441 + 0.541902i \(0.182296\pi\)
\(398\) −18.1681 −0.910686
\(399\) 0 0
\(400\) −11.7276 −0.586380
\(401\) −39.5156 −1.97331 −0.986657 0.162811i \(-0.947944\pi\)
−0.986657 + 0.162811i \(0.947944\pi\)
\(402\) 0 0
\(403\) −6.13487 −0.305599
\(404\) −0.373310 −0.0185729
\(405\) 0 0
\(406\) 0 0
\(407\) 3.86643 0.191652
\(408\) 0 0
\(409\) 10.9799 0.542922 0.271461 0.962449i \(-0.412493\pi\)
0.271461 + 0.962449i \(0.412493\pi\)
\(410\) −9.47990 −0.468179
\(411\) 0 0
\(412\) 4.71567 0.232324
\(413\) 0 0
\(414\) 0 0
\(415\) 47.9405 2.35331
\(416\) −3.34804 −0.164151
\(417\) 0 0
\(418\) 1.11248 0.0544134
\(419\) 31.5621 1.54191 0.770954 0.636891i \(-0.219780\pi\)
0.770954 + 0.636891i \(0.219780\pi\)
\(420\) 0 0
\(421\) −17.7055 −0.862914 −0.431457 0.902134i \(-0.642000\pi\)
−0.431457 + 0.902134i \(0.642000\pi\)
\(422\) −29.4706 −1.43461
\(423\) 0 0
\(424\) −30.1301 −1.46325
\(425\) −28.2712 −1.37136
\(426\) 0 0
\(427\) 0 0
\(428\) 2.97789 0.143942
\(429\) 0 0
\(430\) −10.1158 −0.487825
\(431\) 21.4816 1.03473 0.517367 0.855764i \(-0.326912\pi\)
0.517367 + 0.855764i \(0.326912\pi\)
\(432\) 0 0
\(433\) −34.7200 −1.66854 −0.834269 0.551358i \(-0.814110\pi\)
−0.834269 + 0.551358i \(0.814110\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) −4.45848 −0.213522
\(437\) 3.65894 0.175031
\(438\) 0 0
\(439\) −0.728505 −0.0347697 −0.0173848 0.999849i \(-0.505534\pi\)
−0.0173848 + 0.999849i \(0.505534\pi\)
\(440\) −7.49428 −0.357276
\(441\) 0 0
\(442\) 6.76707 0.321877
\(443\) −0.837291 −0.0397809 −0.0198904 0.999802i \(-0.506332\pi\)
−0.0198904 + 0.999802i \(0.506332\pi\)
\(444\) 0 0
\(445\) 29.0684 1.37797
\(446\) 24.3047 1.15086
\(447\) 0 0
\(448\) 0 0
\(449\) −26.4312 −1.24737 −0.623683 0.781677i \(-0.714365\pi\)
−0.623683 + 0.781677i \(0.714365\pi\)
\(450\) 0 0
\(451\) −1.97973 −0.0932217
\(452\) −5.66873 −0.266635
\(453\) 0 0
\(454\) 1.15546 0.0542284
\(455\) 0 0
\(456\) 0 0
\(457\) −2.40475 −0.112489 −0.0562447 0.998417i \(-0.517913\pi\)
−0.0562447 + 0.998417i \(0.517913\pi\)
\(458\) 16.7892 0.784507
\(459\) 0 0
\(460\) −5.80831 −0.270814
\(461\) −22.2702 −1.03722 −0.518612 0.855010i \(-0.673551\pi\)
−0.518612 + 0.855010i \(0.673551\pi\)
\(462\) 0 0
\(463\) 32.3085 1.50151 0.750753 0.660583i \(-0.229691\pi\)
0.750753 + 0.660583i \(0.229691\pi\)
\(464\) −5.89221 −0.273539
\(465\) 0 0
\(466\) −1.64118 −0.0760263
\(467\) −12.8744 −0.595756 −0.297878 0.954604i \(-0.596279\pi\)
−0.297878 + 0.954604i \(0.596279\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 19.8934 0.917612
\(471\) 0 0
\(472\) −7.70802 −0.354791
\(473\) −2.11251 −0.0971335
\(474\) 0 0
\(475\) 6.00952 0.275736
\(476\) 0 0
\(477\) 0 0
\(478\) −2.99781 −0.137117
\(479\) 10.5419 0.481670 0.240835 0.970566i \(-0.422579\pi\)
0.240835 + 0.970566i \(0.422579\pi\)
\(480\) 0 0
\(481\) −4.99933 −0.227950
\(482\) −34.9029 −1.58978
\(483\) 0 0
\(484\) 6.41364 0.291529
\(485\) 3.97643 0.180560
\(486\) 0 0
\(487\) 38.2416 1.73289 0.866446 0.499271i \(-0.166399\pi\)
0.866446 + 0.499271i \(0.166399\pi\)
\(488\) −33.5972 −1.52087
\(489\) 0 0
\(490\) 0 0
\(491\) 15.4291 0.696306 0.348153 0.937438i \(-0.386809\pi\)
0.348153 + 0.937438i \(0.386809\pi\)
\(492\) 0 0
\(493\) −14.2041 −0.639721
\(494\) −1.43845 −0.0647190
\(495\) 0 0
\(496\) −14.6418 −0.657436
\(497\) 0 0
\(498\) 0 0
\(499\) −38.8212 −1.73788 −0.868938 0.494921i \(-0.835197\pi\)
−0.868938 + 0.494921i \(0.835197\pi\)
\(500\) 0.167283 0.00748112
\(501\) 0 0
\(502\) 21.2723 0.949430
\(503\) −27.0935 −1.20804 −0.604020 0.796969i \(-0.706435\pi\)
−0.604020 + 0.796969i \(0.706435\pi\)
\(504\) 0 0
\(505\) 1.90633 0.0848304
\(506\) 2.72151 0.120986
\(507\) 0 0
\(508\) 6.91304 0.306717
\(509\) −15.7693 −0.698961 −0.349480 0.936944i \(-0.613642\pi\)
−0.349480 + 0.936944i \(0.613642\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) −22.6809 −1.00236
\(513\) 0 0
\(514\) 17.3373 0.764716
\(515\) −24.0808 −1.06113
\(516\) 0 0
\(517\) 4.15441 0.182711
\(518\) 0 0
\(519\) 0 0
\(520\) 9.69018 0.424943
\(521\) 7.30737 0.320142 0.160071 0.987106i \(-0.448828\pi\)
0.160071 + 0.987106i \(0.448828\pi\)
\(522\) 0 0
\(523\) −14.0826 −0.615788 −0.307894 0.951421i \(-0.599624\pi\)
−0.307894 + 0.951421i \(0.599624\pi\)
\(524\) −9.70381 −0.423913
\(525\) 0 0
\(526\) 9.59677 0.418439
\(527\) −35.2963 −1.53753
\(528\) 0 0
\(529\) −14.0490 −0.610827
\(530\) 36.2565 1.57488
\(531\) 0 0
\(532\) 0 0
\(533\) 2.55981 0.110877
\(534\) 0 0
\(535\) −15.2067 −0.657445
\(536\) −13.3111 −0.574953
\(537\) 0 0
\(538\) 0.520559 0.0224429
\(539\) 0 0
\(540\) 0 0
\(541\) −39.1750 −1.68426 −0.842132 0.539271i \(-0.818700\pi\)
−0.842132 + 0.539271i \(0.818700\pi\)
\(542\) 24.7977 1.06515
\(543\) 0 0
\(544\) −19.2626 −0.825877
\(545\) 22.7674 0.975250
\(546\) 0 0
\(547\) 38.7917 1.65862 0.829308 0.558792i \(-0.188735\pi\)
0.829308 + 0.558792i \(0.188735\pi\)
\(548\) −11.4814 −0.490463
\(549\) 0 0
\(550\) 4.46987 0.190596
\(551\) 3.01932 0.128627
\(552\) 0 0
\(553\) 0 0
\(554\) 4.22746 0.179607
\(555\) 0 0
\(556\) −7.34580 −0.311531
\(557\) 27.4693 1.16391 0.581956 0.813220i \(-0.302287\pi\)
0.581956 + 0.813220i \(0.302287\pi\)
\(558\) 0 0
\(559\) 2.73150 0.115530
\(560\) 0 0
\(561\) 0 0
\(562\) 10.6004 0.447151
\(563\) 14.1210 0.595129 0.297565 0.954702i \(-0.403826\pi\)
0.297565 + 0.954702i \(0.403826\pi\)
\(564\) 0 0
\(565\) 28.9477 1.21784
\(566\) −32.6288 −1.37149
\(567\) 0 0
\(568\) 32.8223 1.37720
\(569\) 8.28649 0.347388 0.173694 0.984800i \(-0.444430\pi\)
0.173694 + 0.984800i \(0.444430\pi\)
\(570\) 0 0
\(571\) −23.5274 −0.984591 −0.492295 0.870428i \(-0.663842\pi\)
−0.492295 + 0.870428i \(0.663842\pi\)
\(572\) 0.476861 0.0199386
\(573\) 0 0
\(574\) 0 0
\(575\) 14.7013 0.613087
\(576\) 0 0
\(577\) 17.7732 0.739906 0.369953 0.929050i \(-0.379374\pi\)
0.369953 + 0.929050i \(0.379374\pi\)
\(578\) 18.9385 0.787737
\(579\) 0 0
\(580\) −4.79296 −0.199017
\(581\) 0 0
\(582\) 0 0
\(583\) 7.57160 0.313584
\(584\) −15.9250 −0.658982
\(585\) 0 0
\(586\) 14.9857 0.619054
\(587\) −6.64096 −0.274102 −0.137051 0.990564i \(-0.543762\pi\)
−0.137051 + 0.990564i \(0.543762\pi\)
\(588\) 0 0
\(589\) 7.50282 0.309148
\(590\) 9.27532 0.381859
\(591\) 0 0
\(592\) −11.9317 −0.490388
\(593\) 34.0504 1.39828 0.699141 0.714984i \(-0.253566\pi\)
0.699141 + 0.714984i \(0.253566\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 7.01387 0.287299
\(597\) 0 0
\(598\) −3.51894 −0.143900
\(599\) −9.38441 −0.383437 −0.191718 0.981450i \(-0.561406\pi\)
−0.191718 + 0.981450i \(0.561406\pi\)
\(600\) 0 0
\(601\) −8.80294 −0.359079 −0.179540 0.983751i \(-0.557461\pi\)
−0.179540 + 0.983751i \(0.557461\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 2.27675 0.0926394
\(605\) −32.7516 −1.33154
\(606\) 0 0
\(607\) −17.7720 −0.721342 −0.360671 0.932693i \(-0.617452\pi\)
−0.360671 + 0.932693i \(0.617452\pi\)
\(608\) 4.09458 0.166057
\(609\) 0 0
\(610\) 40.4286 1.63691
\(611\) −5.37169 −0.217315
\(612\) 0 0
\(613\) 10.6081 0.428457 0.214228 0.976784i \(-0.431276\pi\)
0.214228 + 0.976784i \(0.431276\pi\)
\(614\) −11.9246 −0.481237
\(615\) 0 0
\(616\) 0 0
\(617\) −49.3483 −1.98669 −0.993344 0.115188i \(-0.963253\pi\)
−0.993344 + 0.115188i \(0.963253\pi\)
\(618\) 0 0
\(619\) −7.42203 −0.298317 −0.149158 0.988813i \(-0.547656\pi\)
−0.149158 + 0.988813i \(0.547656\pi\)
\(620\) −11.9102 −0.478325
\(621\) 0 0
\(622\) 24.2309 0.971573
\(623\) 0 0
\(624\) 0 0
\(625\) −25.4234 −1.01694
\(626\) −19.4607 −0.777806
\(627\) 0 0
\(628\) 0.690975 0.0275729
\(629\) −28.7631 −1.14686
\(630\) 0 0
\(631\) 35.5184 1.41396 0.706982 0.707231i \(-0.250056\pi\)
0.706982 + 0.707231i \(0.250056\pi\)
\(632\) 1.66817 0.0663564
\(633\) 0 0
\(634\) 24.9752 0.991890
\(635\) −35.3018 −1.40091
\(636\) 0 0
\(637\) 0 0
\(638\) 2.24576 0.0889106
\(639\) 0 0
\(640\) 11.1774 0.441827
\(641\) −37.1554 −1.46755 −0.733775 0.679393i \(-0.762243\pi\)
−0.733775 + 0.679393i \(0.762243\pi\)
\(642\) 0 0
\(643\) −39.7694 −1.56835 −0.784176 0.620538i \(-0.786914\pi\)
−0.784176 + 0.620538i \(0.786914\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) −8.27599 −0.325614
\(647\) 22.9754 0.903256 0.451628 0.892206i \(-0.350843\pi\)
0.451628 + 0.892206i \(0.350843\pi\)
\(648\) 0 0
\(649\) 1.93700 0.0760340
\(650\) −5.77958 −0.226694
\(651\) 0 0
\(652\) 12.5435 0.491241
\(653\) −18.1757 −0.711268 −0.355634 0.934625i \(-0.615735\pi\)
−0.355634 + 0.934625i \(0.615735\pi\)
\(654\) 0 0
\(655\) 49.5530 1.93619
\(656\) 6.10936 0.238531
\(657\) 0 0
\(658\) 0 0
\(659\) −14.1044 −0.549431 −0.274716 0.961526i \(-0.588584\pi\)
−0.274716 + 0.961526i \(0.588584\pi\)
\(660\) 0 0
\(661\) 12.8557 0.500027 0.250013 0.968242i \(-0.419565\pi\)
0.250013 + 0.968242i \(0.419565\pi\)
\(662\) 19.1030 0.742459
\(663\) 0 0
\(664\) −46.8590 −1.81848
\(665\) 0 0
\(666\) 0 0
\(667\) 7.38627 0.285997
\(668\) −8.01948 −0.310283
\(669\) 0 0
\(670\) 16.0177 0.618819
\(671\) 8.44287 0.325933
\(672\) 0 0
\(673\) −45.6138 −1.75828 −0.879141 0.476561i \(-0.841883\pi\)
−0.879141 + 0.476561i \(0.841883\pi\)
\(674\) 7.55278 0.290922
\(675\) 0 0
\(676\) −0.616586 −0.0237148
\(677\) 10.2469 0.393821 0.196910 0.980421i \(-0.436909\pi\)
0.196910 + 0.980421i \(0.436909\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 55.7515 2.13797
\(681\) 0 0
\(682\) 5.58058 0.213692
\(683\) −2.90040 −0.110981 −0.0554904 0.998459i \(-0.517672\pi\)
−0.0554904 + 0.998459i \(0.517672\pi\)
\(684\) 0 0
\(685\) 58.6305 2.24016
\(686\) 0 0
\(687\) 0 0
\(688\) 6.51914 0.248540
\(689\) −9.79015 −0.372975
\(690\) 0 0
\(691\) −6.91470 −0.263048 −0.131524 0.991313i \(-0.541987\pi\)
−0.131524 + 0.991313i \(0.541987\pi\)
\(692\) 15.9764 0.607330
\(693\) 0 0
\(694\) −17.0323 −0.646536
\(695\) 37.5117 1.42290
\(696\) 0 0
\(697\) 14.7276 0.557847
\(698\) −2.05245 −0.0776864
\(699\) 0 0
\(700\) 0 0
\(701\) 26.0973 0.985682 0.492841 0.870119i \(-0.335958\pi\)
0.492841 + 0.870119i \(0.335958\pi\)
\(702\) 0 0
\(703\) 6.11408 0.230597
\(704\) 6.73717 0.253916
\(705\) 0 0
\(706\) 18.7696 0.706402
\(707\) 0 0
\(708\) 0 0
\(709\) −3.38472 −0.127116 −0.0635580 0.997978i \(-0.520245\pi\)
−0.0635580 + 0.997978i \(0.520245\pi\)
\(710\) −39.4962 −1.48227
\(711\) 0 0
\(712\) −28.4126 −1.06481
\(713\) 18.3544 0.687378
\(714\) 0 0
\(715\) −2.43511 −0.0910681
\(716\) 5.94489 0.222171
\(717\) 0 0
\(718\) −10.3669 −0.386890
\(719\) −2.41574 −0.0900918 −0.0450459 0.998985i \(-0.514343\pi\)
−0.0450459 + 0.998985i \(0.514343\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) −20.5883 −0.766219
\(723\) 0 0
\(724\) −1.80464 −0.0670691
\(725\) 12.1314 0.450548
\(726\) 0 0
\(727\) −17.0150 −0.631050 −0.315525 0.948917i \(-0.602181\pi\)
−0.315525 + 0.948917i \(0.602181\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 19.1631 0.709258
\(731\) 15.7154 0.581256
\(732\) 0 0
\(733\) −4.18453 −0.154559 −0.0772795 0.997009i \(-0.524623\pi\)
−0.0772795 + 0.997009i \(0.524623\pi\)
\(734\) 23.1803 0.855599
\(735\) 0 0
\(736\) 10.0167 0.369221
\(737\) 3.34505 0.123216
\(738\) 0 0
\(739\) −28.0794 −1.03292 −0.516458 0.856312i \(-0.672750\pi\)
−0.516458 + 0.856312i \(0.672750\pi\)
\(740\) −9.70567 −0.356788
\(741\) 0 0
\(742\) 0 0
\(743\) 26.5210 0.972961 0.486481 0.873691i \(-0.338280\pi\)
0.486481 + 0.873691i \(0.338280\pi\)
\(744\) 0 0
\(745\) −35.8167 −1.31222
\(746\) −0.430240 −0.0157522
\(747\) 0 0
\(748\) 2.74357 0.100315
\(749\) 0 0
\(750\) 0 0
\(751\) −23.7162 −0.865418 −0.432709 0.901534i \(-0.642442\pi\)
−0.432709 + 0.901534i \(0.642442\pi\)
\(752\) −12.8204 −0.467510
\(753\) 0 0
\(754\) −2.90379 −0.105750
\(755\) −11.6263 −0.423125
\(756\) 0 0
\(757\) −52.3661 −1.90328 −0.951639 0.307219i \(-0.900602\pi\)
−0.951639 + 0.307219i \(0.900602\pi\)
\(758\) 8.69454 0.315800
\(759\) 0 0
\(760\) −11.8509 −0.429877
\(761\) 23.8695 0.865268 0.432634 0.901570i \(-0.357584\pi\)
0.432634 + 0.901570i \(0.357584\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) −9.94949 −0.359960
\(765\) 0 0
\(766\) −3.94450 −0.142521
\(767\) −2.50456 −0.0904345
\(768\) 0 0
\(769\) −41.7599 −1.50590 −0.752950 0.658077i \(-0.771370\pi\)
−0.752950 + 0.658077i \(0.771370\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0.0532617 0.00191693
\(773\) 2.97178 0.106888 0.0534438 0.998571i \(-0.482980\pi\)
0.0534438 + 0.998571i \(0.482980\pi\)
\(774\) 0 0
\(775\) 30.1457 1.08287
\(776\) −3.88672 −0.139525
\(777\) 0 0
\(778\) 3.05037 0.109361
\(779\) −3.13059 −0.112165
\(780\) 0 0
\(781\) −8.24815 −0.295142
\(782\) −20.2459 −0.723990
\(783\) 0 0
\(784\) 0 0
\(785\) −3.52850 −0.125937
\(786\) 0 0
\(787\) 48.6142 1.73291 0.866454 0.499256i \(-0.166393\pi\)
0.866454 + 0.499256i \(0.166393\pi\)
\(788\) 9.28509 0.330768
\(789\) 0 0
\(790\) −2.00737 −0.0714189
\(791\) 0 0
\(792\) 0 0
\(793\) −10.9167 −0.387664
\(794\) 39.3921 1.39797
\(795\) 0 0
\(796\) 9.52418 0.337576
\(797\) 25.6470 0.908463 0.454232 0.890884i \(-0.349914\pi\)
0.454232 + 0.890884i \(0.349914\pi\)
\(798\) 0 0
\(799\) −30.9055 −1.09336
\(800\) 16.4517 0.581655
\(801\) 0 0
\(802\) −46.4777 −1.64118
\(803\) 4.00191 0.141224
\(804\) 0 0
\(805\) 0 0
\(806\) −7.21575 −0.254164
\(807\) 0 0
\(808\) −1.86332 −0.0655514
\(809\) 11.9205 0.419101 0.209550 0.977798i \(-0.432800\pi\)
0.209550 + 0.977798i \(0.432800\pi\)
\(810\) 0 0
\(811\) 10.5564 0.370685 0.185343 0.982674i \(-0.440661\pi\)
0.185343 + 0.982674i \(0.440661\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 4.54764 0.159395
\(815\) −64.0540 −2.24371
\(816\) 0 0
\(817\) −3.34057 −0.116872
\(818\) 12.9144 0.451543
\(819\) 0 0
\(820\) 4.96960 0.173546
\(821\) 46.2139 1.61288 0.806438 0.591319i \(-0.201393\pi\)
0.806438 + 0.591319i \(0.201393\pi\)
\(822\) 0 0
\(823\) 41.2171 1.43674 0.718368 0.695663i \(-0.244889\pi\)
0.718368 + 0.695663i \(0.244889\pi\)
\(824\) 23.5375 0.819969
\(825\) 0 0
\(826\) 0 0
\(827\) −5.94430 −0.206704 −0.103352 0.994645i \(-0.532957\pi\)
−0.103352 + 0.994645i \(0.532957\pi\)
\(828\) 0 0
\(829\) −34.8106 −1.20902 −0.604511 0.796596i \(-0.706632\pi\)
−0.604511 + 0.796596i \(0.706632\pi\)
\(830\) 56.3869 1.95722
\(831\) 0 0
\(832\) −8.71122 −0.302007
\(833\) 0 0
\(834\) 0 0
\(835\) 40.9519 1.41720
\(836\) −0.583191 −0.0201701
\(837\) 0 0
\(838\) 37.1229 1.28239
\(839\) 10.7896 0.372500 0.186250 0.982502i \(-0.440367\pi\)
0.186250 + 0.982502i \(0.440367\pi\)
\(840\) 0 0
\(841\) −22.9049 −0.789825
\(842\) −20.8250 −0.717676
\(843\) 0 0
\(844\) 15.4492 0.531784
\(845\) 3.14862 0.108316
\(846\) 0 0
\(847\) 0 0
\(848\) −23.3657 −0.802381
\(849\) 0 0
\(850\) −33.2523 −1.14054
\(851\) 14.9571 0.512722
\(852\) 0 0
\(853\) −39.1053 −1.33894 −0.669470 0.742839i \(-0.733479\pi\)
−0.669470 + 0.742839i \(0.733479\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 14.8637 0.508030
\(857\) −33.3654 −1.13974 −0.569870 0.821735i \(-0.693006\pi\)
−0.569870 + 0.821735i \(0.693006\pi\)
\(858\) 0 0
\(859\) 29.4914 1.00623 0.503116 0.864219i \(-0.332187\pi\)
0.503116 + 0.864219i \(0.332187\pi\)
\(860\) 5.30293 0.180828
\(861\) 0 0
\(862\) 25.2664 0.860578
\(863\) 24.6224 0.838157 0.419079 0.907950i \(-0.362353\pi\)
0.419079 + 0.907950i \(0.362353\pi\)
\(864\) 0 0
\(865\) −81.5841 −2.77394
\(866\) −40.8372 −1.38771
\(867\) 0 0
\(868\) 0 0
\(869\) −0.419207 −0.0142206
\(870\) 0 0
\(871\) −4.32518 −0.146553
\(872\) −22.2538 −0.753609
\(873\) 0 0
\(874\) 4.30359 0.145571
\(875\) 0 0
\(876\) 0 0
\(877\) −4.62556 −0.156194 −0.0780971 0.996946i \(-0.524884\pi\)
−0.0780971 + 0.996946i \(0.524884\pi\)
\(878\) −0.856858 −0.0289176
\(879\) 0 0
\(880\) −5.81177 −0.195915
\(881\) −42.1720 −1.42081 −0.710405 0.703793i \(-0.751488\pi\)
−0.710405 + 0.703793i \(0.751488\pi\)
\(882\) 0 0
\(883\) 20.7992 0.699950 0.349975 0.936759i \(-0.386190\pi\)
0.349975 + 0.936759i \(0.386190\pi\)
\(884\) −3.54746 −0.119314
\(885\) 0 0
\(886\) −0.984810 −0.0330853
\(887\) 34.4889 1.15802 0.579012 0.815319i \(-0.303438\pi\)
0.579012 + 0.815319i \(0.303438\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 34.1898 1.14605
\(891\) 0 0
\(892\) −12.7411 −0.426604
\(893\) 6.56947 0.219839
\(894\) 0 0
\(895\) −30.3579 −1.01475
\(896\) 0 0
\(897\) 0 0
\(898\) −31.0880 −1.03742
\(899\) 15.1459 0.505144
\(900\) 0 0
\(901\) −56.3267 −1.87651
\(902\) −2.32853 −0.0775315
\(903\) 0 0
\(904\) −28.2946 −0.941065
\(905\) 9.21550 0.306334
\(906\) 0 0
\(907\) 13.3619 0.443675 0.221838 0.975084i \(-0.428795\pi\)
0.221838 + 0.975084i \(0.428795\pi\)
\(908\) −0.605720 −0.0201015
\(909\) 0 0
\(910\) 0 0
\(911\) −5.29058 −0.175285 −0.0876424 0.996152i \(-0.527933\pi\)
−0.0876424 + 0.996152i \(0.527933\pi\)
\(912\) 0 0
\(913\) 11.7755 0.389713
\(914\) −2.82843 −0.0935562
\(915\) 0 0
\(916\) −8.80129 −0.290803
\(917\) 0 0
\(918\) 0 0
\(919\) −18.8306 −0.621164 −0.310582 0.950547i \(-0.600524\pi\)
−0.310582 + 0.950547i \(0.600524\pi\)
\(920\) −28.9913 −0.955814
\(921\) 0 0
\(922\) −26.1939 −0.862649
\(923\) 10.6649 0.351041
\(924\) 0 0
\(925\) 24.5659 0.807721
\(926\) 38.0009 1.24879
\(927\) 0 0
\(928\) 8.26571 0.271335
\(929\) −44.9537 −1.47488 −0.737442 0.675411i \(-0.763966\pi\)
−0.737442 + 0.675411i \(0.763966\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 0.860348 0.0281816
\(933\) 0 0
\(934\) −15.1427 −0.495484
\(935\) −14.0102 −0.458182
\(936\) 0 0
\(937\) −37.9272 −1.23903 −0.619514 0.784986i \(-0.712670\pi\)
−0.619514 + 0.784986i \(0.712670\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) −10.4286 −0.340143
\(941\) 35.7869 1.16662 0.583310 0.812250i \(-0.301757\pi\)
0.583310 + 0.812250i \(0.301757\pi\)
\(942\) 0 0
\(943\) −7.65848 −0.249394
\(944\) −5.97752 −0.194552
\(945\) 0 0
\(946\) −2.48471 −0.0807849
\(947\) 14.7443 0.479125 0.239563 0.970881i \(-0.422996\pi\)
0.239563 + 0.970881i \(0.422996\pi\)
\(948\) 0 0
\(949\) −5.17450 −0.167971
\(950\) 7.06831 0.229326
\(951\) 0 0
\(952\) 0 0
\(953\) −0.649669 −0.0210448 −0.0105224 0.999945i \(-0.503349\pi\)
−0.0105224 + 0.999945i \(0.503349\pi\)
\(954\) 0 0
\(955\) 50.8076 1.64409
\(956\) 1.57153 0.0508268
\(957\) 0 0
\(958\) 12.3992 0.400600
\(959\) 0 0
\(960\) 0 0
\(961\) 6.63659 0.214083
\(962\) −5.88014 −0.189583
\(963\) 0 0
\(964\) 18.2969 0.589305
\(965\) −0.271983 −0.00875545
\(966\) 0 0
\(967\) −13.0802 −0.420632 −0.210316 0.977633i \(-0.567449\pi\)
−0.210316 + 0.977633i \(0.567449\pi\)
\(968\) 32.0127 1.02893
\(969\) 0 0
\(970\) 4.67702 0.150170
\(971\) −29.1203 −0.934515 −0.467258 0.884121i \(-0.654758\pi\)
−0.467258 + 0.884121i \(0.654758\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) 44.9792 1.44123
\(975\) 0 0
\(976\) −26.0544 −0.833980
\(977\) 18.5000 0.591868 0.295934 0.955208i \(-0.404369\pi\)
0.295934 + 0.955208i \(0.404369\pi\)
\(978\) 0 0
\(979\) 7.14000 0.228195
\(980\) 0 0
\(981\) 0 0
\(982\) 18.1475 0.579111
\(983\) −11.0462 −0.352318 −0.176159 0.984362i \(-0.556367\pi\)
−0.176159 + 0.984362i \(0.556367\pi\)
\(984\) 0 0
\(985\) −47.4148 −1.51076
\(986\) −16.7067 −0.532049
\(987\) 0 0
\(988\) 0.754072 0.0239902
\(989\) −8.17216 −0.259860
\(990\) 0 0
\(991\) −40.4757 −1.28575 −0.642877 0.765969i \(-0.722259\pi\)
−0.642877 + 0.765969i \(0.722259\pi\)
\(992\) 20.5398 0.652138
\(993\) 0 0
\(994\) 0 0
\(995\) −48.6357 −1.54185
\(996\) 0 0
\(997\) 12.0623 0.382018 0.191009 0.981588i \(-0.438824\pi\)
0.191009 + 0.981588i \(0.438824\pi\)
\(998\) −45.6610 −1.44537
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 5733.2.a.bu.1.5 6
3.2 odd 2 637.2.a.m.1.2 6
7.6 odd 2 5733.2.a.br.1.5 6
21.2 odd 6 637.2.e.o.508.5 12
21.5 even 6 637.2.e.n.508.5 12
21.11 odd 6 637.2.e.o.79.5 12
21.17 even 6 637.2.e.n.79.5 12
21.20 even 2 637.2.a.n.1.2 yes 6
39.38 odd 2 8281.2.a.cc.1.5 6
273.272 even 2 8281.2.a.cd.1.5 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
637.2.a.m.1.2 6 3.2 odd 2
637.2.a.n.1.2 yes 6 21.20 even 2
637.2.e.n.79.5 12 21.17 even 6
637.2.e.n.508.5 12 21.5 even 6
637.2.e.o.79.5 12 21.11 odd 6
637.2.e.o.508.5 12 21.2 odd 6
5733.2.a.br.1.5 6 7.6 odd 2
5733.2.a.bu.1.5 6 1.1 even 1 trivial
8281.2.a.cc.1.5 6 39.38 odd 2
8281.2.a.cd.1.5 6 273.272 even 2