Properties

Label 5733.2.a.bs
Level $5733$
Weight $2$
Character orbit 5733.a
Self dual yes
Analytic conductor $45.778$
Analytic rank $1$
Dimension $6$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [5733,2,Mod(1,5733)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("5733.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(5733, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 5733 = 3^{2} \cdot 7^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 5733.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [6,0,0,4,0,0,0,0,0,-4,0,0,-6] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(13)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(45.7782354788\)
Analytic rank: \(1\)
Dimension: \(6\)
Coefficient field: 6.6.46162368.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - 8x^{4} + 17x^{2} - 7 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 819)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{5}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + \beta_1 q^{2} + (\beta_{2} + 1) q^{4} + \beta_{3} q^{5} + \beta_{3} q^{8} + (\beta_{4} + \beta_{2}) q^{10} + ( - \beta_{5} - \beta_1) q^{11} - q^{13} + (\beta_{4} - \beta_{2} - 2) q^{16} + ( - \beta_{5} - 2 \beta_{3}) q^{17}+ \cdots + (6 \beta_{4} + \beta_{2} + 6) q^{97}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q + 4 q^{4} - 4 q^{10} - 6 q^{13} - 12 q^{16} + 10 q^{19} - 18 q^{22} - 4 q^{25} + 8 q^{31} + 6 q^{34} - 10 q^{37} + 26 q^{40} - 40 q^{43} + 22 q^{46} - 4 q^{52} - 36 q^{58} - 2 q^{61} - 14 q^{64} - 66 q^{67}+ \cdots + 22 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{6} - 8x^{4} + 17x^{2} - 7 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( \nu^{2} - 3 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( \nu^{3} - 4\nu \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( \nu^{4} - 5\nu^{2} + 3 \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( \nu^{5} - 6\nu^{3} + 7\nu \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{2} + 3 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( \beta_{3} + 4\beta_1 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( \beta_{4} + 5\beta_{2} + 12 \) Copy content Toggle raw display
\(\nu^{5}\)\(=\) \( \beta_{5} + 6\beta_{3} + 17\beta_1 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−2.16786
−1.66159
−0.734503
0.734503
1.66159
2.16786
−2.16786 0 2.69963 −1.51670 0 0 −1.51670 0 3.28799
1.2 −1.66159 0 0.760877 2.05891 0 0 2.05891 0 −3.42107
1.3 −0.734503 0 −1.46050 2.54175 0 0 2.54175 0 −1.86693
1.4 0.734503 0 −1.46050 −2.54175 0 0 −2.54175 0 −1.86693
1.5 1.66159 0 0.760877 −2.05891 0 0 −2.05891 0 −3.42107
1.6 2.16786 0 2.69963 1.51670 0 0 1.51670 0 3.28799
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 1.6
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(3\) \( +1 \)
\(7\) \( +1 \)
\(13\) \( +1 \)

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
3.b odd 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 5733.2.a.bs 6
3.b odd 2 1 inner 5733.2.a.bs 6
7.b odd 2 1 5733.2.a.bt 6
7.c even 3 2 819.2.j.i 12
21.c even 2 1 5733.2.a.bt 6
21.h odd 6 2 819.2.j.i 12
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
819.2.j.i 12 7.c even 3 2
819.2.j.i 12 21.h odd 6 2
5733.2.a.bs 6 1.a even 1 1 trivial
5733.2.a.bs 6 3.b odd 2 1 inner
5733.2.a.bt 6 7.b odd 2 1
5733.2.a.bt 6 21.c even 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(5733))\):

\( T_{2}^{6} - 8T_{2}^{4} + 17T_{2}^{2} - 7 \) Copy content Toggle raw display
\( T_{5}^{6} - 13T_{5}^{4} + 52T_{5}^{2} - 63 \) Copy content Toggle raw display
\( T_{11}^{6} - 33T_{11}^{4} + 306T_{11}^{2} - 567 \) Copy content Toggle raw display
\( T_{17}^{6} - 83T_{17}^{4} + 1676T_{17}^{2} - 5887 \) Copy content Toggle raw display
\( T_{19}^{3} - 5T_{19}^{2} - 9T_{19} + 21 \) Copy content Toggle raw display
\( T_{31}^{3} - 4T_{31}^{2} - 59T_{31} - 21 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{6} - 8 T^{4} + \cdots - 7 \) Copy content Toggle raw display
$3$ \( T^{6} \) Copy content Toggle raw display
$5$ \( T^{6} - 13 T^{4} + \cdots - 63 \) Copy content Toggle raw display
$7$ \( T^{6} \) Copy content Toggle raw display
$11$ \( T^{6} - 33 T^{4} + \cdots - 567 \) Copy content Toggle raw display
$13$ \( (T + 1)^{6} \) Copy content Toggle raw display
$17$ \( T^{6} - 83 T^{4} + \cdots - 5887 \) Copy content Toggle raw display
$19$ \( (T^{3} - 5 T^{2} - 9 T + 21)^{2} \) Copy content Toggle raw display
$23$ \( T^{6} - 46 T^{4} + \cdots - 63 \) Copy content Toggle raw display
$29$ \( T^{6} - 164 T^{4} + \cdots - 135247 \) Copy content Toggle raw display
$31$ \( (T^{3} - 4 T^{2} - 59 T - 21)^{2} \) Copy content Toggle raw display
$37$ \( (T^{3} + 5 T^{2} + \cdots - 197)^{2} \) Copy content Toggle raw display
$41$ \( T^{6} - 124 T^{4} + \cdots - 3087 \) Copy content Toggle raw display
$43$ \( (T^{3} + 20 T^{2} + \cdots + 79)^{2} \) Copy content Toggle raw display
$47$ \( T^{6} - 32 T^{4} + \cdots - 448 \) Copy content Toggle raw display
$53$ \( T^{6} - 241 T^{4} + \cdots - 413343 \) Copy content Toggle raw display
$59$ \( T^{6} - 257 T^{4} + \cdots - 80143 \) Copy content Toggle raw display
$61$ \( (T^{3} + T^{2} - 150 T - 693)^{2} \) Copy content Toggle raw display
$67$ \( (T^{3} + 33 T^{2} + \cdots + 1233)^{2} \) Copy content Toggle raw display
$71$ \( T^{6} - 365 T^{4} + \cdots - 942823 \) Copy content Toggle raw display
$73$ \( (T^{3} + 14 T^{2} + \cdots - 413)^{2} \) Copy content Toggle raw display
$79$ \( (T^{3} + 10 T^{2} + \cdots - 1125)^{2} \) Copy content Toggle raw display
$83$ \( T^{6} - 468 T^{4} + \cdots - 3720087 \) Copy content Toggle raw display
$89$ \( T^{6} - 265 T^{4} + \cdots - 219303 \) Copy content Toggle raw display
$97$ \( (T^{3} - 11 T^{2} + \cdots + 1631)^{2} \) Copy content Toggle raw display
show more
show less