Properties

Label 5733.2.a.br.1.4
Level $5733$
Weight $2$
Character 5733.1
Self dual yes
Analytic conductor $45.778$
Analytic rank $1$
Dimension $6$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [5733,2,Mod(1,5733)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(5733, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("5733.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 5733 = 3^{2} \cdot 7^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 5733.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(45.7782354788\)
Analytic rank: \(1\)
Dimension: \(6\)
Coefficient field: 6.6.4507648.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - 2x^{5} - 5x^{4} + 8x^{3} + 7x^{2} - 6x - 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 637)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.4
Root \(-1.20475\) of defining polynomial
Character \(\chi\) \(=\) 5733.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+0.656184 q^{2} -1.56942 q^{4} +1.35996 q^{5} -2.34220 q^{8} +O(q^{10})\) \(q+0.656184 q^{2} -1.56942 q^{4} +1.35996 q^{5} -2.34220 q^{8} +0.892385 q^{10} +1.90551 q^{11} +1.00000 q^{13} +1.60193 q^{16} -3.56633 q^{17} +0.985255 q^{19} -2.13436 q^{20} +1.25037 q^{22} -1.69605 q^{23} -3.15050 q^{25} +0.656184 q^{26} -6.54835 q^{29} +7.69550 q^{31} +5.73556 q^{32} -2.34017 q^{34} -2.02005 q^{37} +0.646508 q^{38} -3.18530 q^{40} -9.88779 q^{41} -3.16639 q^{43} -2.99055 q^{44} -1.11292 q^{46} -7.76416 q^{47} -2.06731 q^{50} -1.56942 q^{52} -0.354194 q^{53} +2.59143 q^{55} -4.29692 q^{58} -2.16385 q^{59} +12.2002 q^{61} +5.04967 q^{62} +0.559715 q^{64} +1.35996 q^{65} +11.3134 q^{67} +5.59709 q^{68} +9.05268 q^{71} -7.13619 q^{73} -1.32553 q^{74} -1.54628 q^{76} -5.39629 q^{79} +2.17857 q^{80} -6.48821 q^{82} +2.03494 q^{83} -4.85008 q^{85} -2.07773 q^{86} -4.46309 q^{88} +6.89864 q^{89} +2.66182 q^{92} -5.09472 q^{94} +1.33991 q^{95} -14.6223 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q + 4 q^{4} - 6 q^{5}+O(q^{10}) \) Copy content Toggle raw display \( 6 q + 4 q^{4} - 6 q^{5} + 4 q^{10} - 4 q^{11} + 6 q^{13} - 16 q^{17} + 2 q^{19} - 16 q^{20} - 12 q^{22} + 6 q^{23} - 4 q^{25} + 6 q^{29} + 6 q^{31} + 20 q^{32} - 8 q^{38} + 4 q^{40} + 8 q^{41} + 2 q^{43} + 4 q^{44} + 8 q^{46} - 30 q^{47} - 8 q^{50} + 4 q^{52} + 14 q^{53} - 8 q^{55} - 8 q^{58} - 24 q^{59} - 28 q^{62} - 20 q^{64} - 6 q^{65} + 16 q^{67} - 28 q^{68} - 8 q^{71} - 6 q^{73} + 12 q^{74} - 16 q^{76} - 22 q^{79} + 28 q^{80} - 40 q^{82} - 50 q^{83} - 8 q^{85} + 16 q^{86} - 44 q^{88} - 26 q^{89} - 20 q^{92} - 32 q^{94} + 6 q^{95} - 14 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.656184 0.463992 0.231996 0.972717i \(-0.425474\pi\)
0.231996 + 0.972717i \(0.425474\pi\)
\(3\) 0 0
\(4\) −1.56942 −0.784711
\(5\) 1.35996 0.608194 0.304097 0.952641i \(-0.401645\pi\)
0.304097 + 0.952641i \(0.401645\pi\)
\(6\) 0 0
\(7\) 0 0
\(8\) −2.34220 −0.828092
\(9\) 0 0
\(10\) 0.892385 0.282197
\(11\) 1.90551 0.574534 0.287267 0.957851i \(-0.407253\pi\)
0.287267 + 0.957851i \(0.407253\pi\)
\(12\) 0 0
\(13\) 1.00000 0.277350
\(14\) 0 0
\(15\) 0 0
\(16\) 1.60193 0.400483
\(17\) −3.56633 −0.864963 −0.432482 0.901643i \(-0.642362\pi\)
−0.432482 + 0.901643i \(0.642362\pi\)
\(18\) 0 0
\(19\) 0.985255 0.226033 0.113016 0.993593i \(-0.463949\pi\)
0.113016 + 0.993593i \(0.463949\pi\)
\(20\) −2.13436 −0.477256
\(21\) 0 0
\(22\) 1.25037 0.266579
\(23\) −1.69605 −0.353651 −0.176826 0.984242i \(-0.556583\pi\)
−0.176826 + 0.984242i \(0.556583\pi\)
\(24\) 0 0
\(25\) −3.15050 −0.630100
\(26\) 0.656184 0.128688
\(27\) 0 0
\(28\) 0 0
\(29\) −6.54835 −1.21600 −0.607999 0.793938i \(-0.708028\pi\)
−0.607999 + 0.793938i \(0.708028\pi\)
\(30\) 0 0
\(31\) 7.69550 1.38215 0.691077 0.722781i \(-0.257137\pi\)
0.691077 + 0.722781i \(0.257137\pi\)
\(32\) 5.73556 1.01391
\(33\) 0 0
\(34\) −2.34017 −0.401336
\(35\) 0 0
\(36\) 0 0
\(37\) −2.02005 −0.332095 −0.166047 0.986118i \(-0.553100\pi\)
−0.166047 + 0.986118i \(0.553100\pi\)
\(38\) 0.646508 0.104877
\(39\) 0 0
\(40\) −3.18530 −0.503640
\(41\) −9.88779 −1.54421 −0.772107 0.635493i \(-0.780797\pi\)
−0.772107 + 0.635493i \(0.780797\pi\)
\(42\) 0 0
\(43\) −3.16639 −0.482869 −0.241435 0.970417i \(-0.577618\pi\)
−0.241435 + 0.970417i \(0.577618\pi\)
\(44\) −2.99055 −0.450843
\(45\) 0 0
\(46\) −1.11292 −0.164091
\(47\) −7.76416 −1.13252 −0.566260 0.824227i \(-0.691610\pi\)
−0.566260 + 0.824227i \(0.691610\pi\)
\(48\) 0 0
\(49\) 0 0
\(50\) −2.06731 −0.292362
\(51\) 0 0
\(52\) −1.56942 −0.217640
\(53\) −0.354194 −0.0486522 −0.0243261 0.999704i \(-0.507744\pi\)
−0.0243261 + 0.999704i \(0.507744\pi\)
\(54\) 0 0
\(55\) 2.59143 0.349428
\(56\) 0 0
\(57\) 0 0
\(58\) −4.29692 −0.564214
\(59\) −2.16385 −0.281709 −0.140854 0.990030i \(-0.544985\pi\)
−0.140854 + 0.990030i \(0.544985\pi\)
\(60\) 0 0
\(61\) 12.2002 1.56207 0.781037 0.624484i \(-0.214691\pi\)
0.781037 + 0.624484i \(0.214691\pi\)
\(62\) 5.04967 0.641308
\(63\) 0 0
\(64\) 0.559715 0.0699644
\(65\) 1.35996 0.168683
\(66\) 0 0
\(67\) 11.3134 1.38215 0.691076 0.722782i \(-0.257137\pi\)
0.691076 + 0.722782i \(0.257137\pi\)
\(68\) 5.59709 0.678746
\(69\) 0 0
\(70\) 0 0
\(71\) 9.05268 1.07436 0.537178 0.843469i \(-0.319490\pi\)
0.537178 + 0.843469i \(0.319490\pi\)
\(72\) 0 0
\(73\) −7.13619 −0.835228 −0.417614 0.908625i \(-0.637134\pi\)
−0.417614 + 0.908625i \(0.637134\pi\)
\(74\) −1.32553 −0.154089
\(75\) 0 0
\(76\) −1.54628 −0.177371
\(77\) 0 0
\(78\) 0 0
\(79\) −5.39629 −0.607130 −0.303565 0.952811i \(-0.598177\pi\)
−0.303565 + 0.952811i \(0.598177\pi\)
\(80\) 2.17857 0.243571
\(81\) 0 0
\(82\) −6.48821 −0.716503
\(83\) 2.03494 0.223364 0.111682 0.993744i \(-0.464376\pi\)
0.111682 + 0.993744i \(0.464376\pi\)
\(84\) 0 0
\(85\) −4.85008 −0.526065
\(86\) −2.07773 −0.224048
\(87\) 0 0
\(88\) −4.46309 −0.475767
\(89\) 6.89864 0.731254 0.365627 0.930761i \(-0.380855\pi\)
0.365627 + 0.930761i \(0.380855\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 2.66182 0.277514
\(93\) 0 0
\(94\) −5.09472 −0.525480
\(95\) 1.33991 0.137472
\(96\) 0 0
\(97\) −14.6223 −1.48467 −0.742334 0.670030i \(-0.766281\pi\)
−0.742334 + 0.670030i \(0.766281\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 4.94447 0.494447
\(101\) −2.81368 −0.279972 −0.139986 0.990153i \(-0.544706\pi\)
−0.139986 + 0.990153i \(0.544706\pi\)
\(102\) 0 0
\(103\) 6.04988 0.596112 0.298056 0.954548i \(-0.403662\pi\)
0.298056 + 0.954548i \(0.403662\pi\)
\(104\) −2.34220 −0.229671
\(105\) 0 0
\(106\) −0.232416 −0.0225743
\(107\) −17.3204 −1.67442 −0.837211 0.546880i \(-0.815815\pi\)
−0.837211 + 0.546880i \(0.815815\pi\)
\(108\) 0 0
\(109\) 10.5762 1.01302 0.506509 0.862234i \(-0.330936\pi\)
0.506509 + 0.862234i \(0.330936\pi\)
\(110\) 1.70045 0.162132
\(111\) 0 0
\(112\) 0 0
\(113\) 2.34665 0.220755 0.110377 0.993890i \(-0.464794\pi\)
0.110377 + 0.993890i \(0.464794\pi\)
\(114\) 0 0
\(115\) −2.30657 −0.215089
\(116\) 10.2771 0.954208
\(117\) 0 0
\(118\) −1.41988 −0.130711
\(119\) 0 0
\(120\) 0 0
\(121\) −7.36902 −0.669911
\(122\) 8.00557 0.724790
\(123\) 0 0
\(124\) −12.0775 −1.08459
\(125\) −11.0844 −0.991417
\(126\) 0 0
\(127\) −18.1639 −1.61179 −0.805894 0.592060i \(-0.798315\pi\)
−0.805894 + 0.592060i \(0.798315\pi\)
\(128\) −11.1038 −0.981450
\(129\) 0 0
\(130\) 0.892385 0.0782674
\(131\) −10.1014 −0.882560 −0.441280 0.897369i \(-0.645476\pi\)
−0.441280 + 0.897369i \(0.645476\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 7.42367 0.641308
\(135\) 0 0
\(136\) 8.35306 0.716269
\(137\) −6.55601 −0.560118 −0.280059 0.959983i \(-0.590354\pi\)
−0.280059 + 0.959983i \(0.590354\pi\)
\(138\) 0 0
\(139\) −13.8243 −1.17256 −0.586281 0.810108i \(-0.699409\pi\)
−0.586281 + 0.810108i \(0.699409\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 5.94023 0.498493
\(143\) 1.90551 0.159347
\(144\) 0 0
\(145\) −8.90551 −0.739563
\(146\) −4.68265 −0.387539
\(147\) 0 0
\(148\) 3.17032 0.260598
\(149\) −8.09389 −0.663078 −0.331539 0.943442i \(-0.607568\pi\)
−0.331539 + 0.943442i \(0.607568\pi\)
\(150\) 0 0
\(151\) 12.0365 0.979520 0.489760 0.871857i \(-0.337084\pi\)
0.489760 + 0.871857i \(0.337084\pi\)
\(152\) −2.30766 −0.187176
\(153\) 0 0
\(154\) 0 0
\(155\) 10.4656 0.840617
\(156\) 0 0
\(157\) −18.3935 −1.46796 −0.733982 0.679169i \(-0.762340\pi\)
−0.733982 + 0.679169i \(0.762340\pi\)
\(158\) −3.54096 −0.281704
\(159\) 0 0
\(160\) 7.80014 0.616655
\(161\) 0 0
\(162\) 0 0
\(163\) 2.51286 0.196823 0.0984114 0.995146i \(-0.468624\pi\)
0.0984114 + 0.995146i \(0.468624\pi\)
\(164\) 15.5181 1.21176
\(165\) 0 0
\(166\) 1.33530 0.103639
\(167\) −17.9095 −1.38588 −0.692941 0.720995i \(-0.743685\pi\)
−0.692941 + 0.720995i \(0.743685\pi\)
\(168\) 0 0
\(169\) 1.00000 0.0769231
\(170\) −3.18254 −0.244090
\(171\) 0 0
\(172\) 4.96940 0.378913
\(173\) −6.51981 −0.495692 −0.247846 0.968799i \(-0.579723\pi\)
−0.247846 + 0.968799i \(0.579723\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 3.05250 0.230091
\(177\) 0 0
\(178\) 4.52678 0.339296
\(179\) 26.6014 1.98828 0.994141 0.108091i \(-0.0344738\pi\)
0.994141 + 0.108091i \(0.0344738\pi\)
\(180\) 0 0
\(181\) −24.6402 −1.83149 −0.915746 0.401758i \(-0.868399\pi\)
−0.915746 + 0.401758i \(0.868399\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 3.97249 0.292856
\(185\) −2.74720 −0.201978
\(186\) 0 0
\(187\) −6.79569 −0.496950
\(188\) 12.1853 0.888701
\(189\) 0 0
\(190\) 0.879227 0.0637858
\(191\) −3.02099 −0.218591 −0.109295 0.994009i \(-0.534859\pi\)
−0.109295 + 0.994009i \(0.534859\pi\)
\(192\) 0 0
\(193\) 21.2522 1.52977 0.764884 0.644168i \(-0.222796\pi\)
0.764884 + 0.644168i \(0.222796\pi\)
\(194\) −9.59491 −0.688874
\(195\) 0 0
\(196\) 0 0
\(197\) 2.72191 0.193928 0.0969639 0.995288i \(-0.469087\pi\)
0.0969639 + 0.995288i \(0.469087\pi\)
\(198\) 0 0
\(199\) −21.6670 −1.53593 −0.767967 0.640490i \(-0.778731\pi\)
−0.767967 + 0.640490i \(0.778731\pi\)
\(200\) 7.37910 0.521781
\(201\) 0 0
\(202\) −1.84629 −0.129905
\(203\) 0 0
\(204\) 0 0
\(205\) −13.4470 −0.939181
\(206\) 3.96983 0.276591
\(207\) 0 0
\(208\) 1.60193 0.111074
\(209\) 1.87741 0.129864
\(210\) 0 0
\(211\) 18.3885 1.26592 0.632959 0.774186i \(-0.281840\pi\)
0.632959 + 0.774186i \(0.281840\pi\)
\(212\) 0.555879 0.0381780
\(213\) 0 0
\(214\) −11.3653 −0.776918
\(215\) −4.30617 −0.293678
\(216\) 0 0
\(217\) 0 0
\(218\) 6.93995 0.470033
\(219\) 0 0
\(220\) −4.06704 −0.274200
\(221\) −3.56633 −0.239898
\(222\) 0 0
\(223\) 22.2216 1.48807 0.744035 0.668141i \(-0.232910\pi\)
0.744035 + 0.668141i \(0.232910\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 1.53984 0.102428
\(227\) −26.7374 −1.77463 −0.887313 0.461167i \(-0.847431\pi\)
−0.887313 + 0.461167i \(0.847431\pi\)
\(228\) 0 0
\(229\) −16.7008 −1.10362 −0.551809 0.833970i \(-0.686062\pi\)
−0.551809 + 0.833970i \(0.686062\pi\)
\(230\) −1.51353 −0.0997994
\(231\) 0 0
\(232\) 15.3375 1.00696
\(233\) 13.8776 0.909149 0.454575 0.890709i \(-0.349791\pi\)
0.454575 + 0.890709i \(0.349791\pi\)
\(234\) 0 0
\(235\) −10.5590 −0.688791
\(236\) 3.39599 0.221060
\(237\) 0 0
\(238\) 0 0
\(239\) −0.465845 −0.0301330 −0.0150665 0.999886i \(-0.504796\pi\)
−0.0150665 + 0.999886i \(0.504796\pi\)
\(240\) 0 0
\(241\) 5.69314 0.366727 0.183364 0.983045i \(-0.441301\pi\)
0.183364 + 0.983045i \(0.441301\pi\)
\(242\) −4.83543 −0.310833
\(243\) 0 0
\(244\) −19.1473 −1.22578
\(245\) 0 0
\(246\) 0 0
\(247\) 0.985255 0.0626902
\(248\) −18.0244 −1.14455
\(249\) 0 0
\(250\) −7.27339 −0.460010
\(251\) −17.9066 −1.13025 −0.565126 0.825005i \(-0.691172\pi\)
−0.565126 + 0.825005i \(0.691172\pi\)
\(252\) 0 0
\(253\) −3.23185 −0.203185
\(254\) −11.9189 −0.747857
\(255\) 0 0
\(256\) −8.40559 −0.525350
\(257\) −25.9756 −1.62031 −0.810156 0.586214i \(-0.800618\pi\)
−0.810156 + 0.586214i \(0.800618\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) −2.13436 −0.132367
\(261\) 0 0
\(262\) −6.62835 −0.409501
\(263\) −27.8402 −1.71670 −0.858349 0.513067i \(-0.828509\pi\)
−0.858349 + 0.513067i \(0.828509\pi\)
\(264\) 0 0
\(265\) −0.481690 −0.0295900
\(266\) 0 0
\(267\) 0 0
\(268\) −17.7555 −1.08459
\(269\) −5.90486 −0.360025 −0.180013 0.983664i \(-0.557614\pi\)
−0.180013 + 0.983664i \(0.557614\pi\)
\(270\) 0 0
\(271\) −4.34932 −0.264203 −0.132101 0.991236i \(-0.542172\pi\)
−0.132101 + 0.991236i \(0.542172\pi\)
\(272\) −5.71303 −0.346403
\(273\) 0 0
\(274\) −4.30195 −0.259890
\(275\) −6.00332 −0.362014
\(276\) 0 0
\(277\) 1.08051 0.0649217 0.0324609 0.999473i \(-0.489666\pi\)
0.0324609 + 0.999473i \(0.489666\pi\)
\(278\) −9.07129 −0.544060
\(279\) 0 0
\(280\) 0 0
\(281\) −14.4912 −0.864473 −0.432236 0.901760i \(-0.642275\pi\)
−0.432236 + 0.901760i \(0.642275\pi\)
\(282\) 0 0
\(283\) 24.4979 1.45625 0.728123 0.685446i \(-0.240393\pi\)
0.728123 + 0.685446i \(0.240393\pi\)
\(284\) −14.2075 −0.843059
\(285\) 0 0
\(286\) 1.25037 0.0739357
\(287\) 0 0
\(288\) 0 0
\(289\) −4.28126 −0.251839
\(290\) −5.84365 −0.343151
\(291\) 0 0
\(292\) 11.1997 0.655413
\(293\) −1.16105 −0.0678296 −0.0339148 0.999425i \(-0.510797\pi\)
−0.0339148 + 0.999425i \(0.510797\pi\)
\(294\) 0 0
\(295\) −2.94275 −0.171334
\(296\) 4.73136 0.275005
\(297\) 0 0
\(298\) −5.31108 −0.307663
\(299\) −1.69605 −0.0980852
\(300\) 0 0
\(301\) 0 0
\(302\) 7.89818 0.454489
\(303\) 0 0
\(304\) 1.57831 0.0905224
\(305\) 16.5918 0.950044
\(306\) 0 0
\(307\) 25.3731 1.44812 0.724060 0.689737i \(-0.242274\pi\)
0.724060 + 0.689737i \(0.242274\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 6.86736 0.390040
\(311\) −24.4645 −1.38726 −0.693628 0.720333i \(-0.743989\pi\)
−0.693628 + 0.720333i \(0.743989\pi\)
\(312\) 0 0
\(313\) 6.61665 0.373995 0.186997 0.982360i \(-0.440124\pi\)
0.186997 + 0.982360i \(0.440124\pi\)
\(314\) −12.0695 −0.681124
\(315\) 0 0
\(316\) 8.46906 0.476422
\(317\) −8.19803 −0.460447 −0.230224 0.973138i \(-0.573946\pi\)
−0.230224 + 0.973138i \(0.573946\pi\)
\(318\) 0 0
\(319\) −12.4780 −0.698632
\(320\) 0.761192 0.0425519
\(321\) 0 0
\(322\) 0 0
\(323\) −3.51375 −0.195510
\(324\) 0 0
\(325\) −3.15050 −0.174758
\(326\) 1.64890 0.0913242
\(327\) 0 0
\(328\) 23.1592 1.27875
\(329\) 0 0
\(330\) 0 0
\(331\) −0.724715 −0.0398339 −0.0199170 0.999802i \(-0.506340\pi\)
−0.0199170 + 0.999802i \(0.506340\pi\)
\(332\) −3.19369 −0.175276
\(333\) 0 0
\(334\) −11.7519 −0.643038
\(335\) 15.3858 0.840616
\(336\) 0 0
\(337\) −8.58299 −0.467545 −0.233773 0.972291i \(-0.575107\pi\)
−0.233773 + 0.972291i \(0.575107\pi\)
\(338\) 0.656184 0.0356917
\(339\) 0 0
\(340\) 7.61183 0.412809
\(341\) 14.6639 0.794094
\(342\) 0 0
\(343\) 0 0
\(344\) 7.41630 0.399860
\(345\) 0 0
\(346\) −4.27820 −0.229997
\(347\) 25.9250 1.39173 0.695864 0.718173i \(-0.255021\pi\)
0.695864 + 0.718173i \(0.255021\pi\)
\(348\) 0 0
\(349\) 17.1403 0.917501 0.458750 0.888565i \(-0.348297\pi\)
0.458750 + 0.888565i \(0.348297\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 10.9292 0.582527
\(353\) 18.9101 1.00648 0.503242 0.864146i \(-0.332140\pi\)
0.503242 + 0.864146i \(0.332140\pi\)
\(354\) 0 0
\(355\) 12.3113 0.653417
\(356\) −10.8269 −0.573823
\(357\) 0 0
\(358\) 17.4554 0.922547
\(359\) −14.1049 −0.744431 −0.372215 0.928146i \(-0.621402\pi\)
−0.372215 + 0.928146i \(0.621402\pi\)
\(360\) 0 0
\(361\) −18.0293 −0.948909
\(362\) −16.1685 −0.849798
\(363\) 0 0
\(364\) 0 0
\(365\) −9.70495 −0.507980
\(366\) 0 0
\(367\) 0.360258 0.0188053 0.00940266 0.999956i \(-0.497007\pi\)
0.00940266 + 0.999956i \(0.497007\pi\)
\(368\) −2.71696 −0.141631
\(369\) 0 0
\(370\) −1.80267 −0.0937162
\(371\) 0 0
\(372\) 0 0
\(373\) −25.1680 −1.30315 −0.651575 0.758584i \(-0.725892\pi\)
−0.651575 + 0.758584i \(0.725892\pi\)
\(374\) −4.45923 −0.230581
\(375\) 0 0
\(376\) 18.1852 0.937830
\(377\) −6.54835 −0.337257
\(378\) 0 0
\(379\) 31.8947 1.63832 0.819161 0.573564i \(-0.194440\pi\)
0.819161 + 0.573564i \(0.194440\pi\)
\(380\) −2.10288 −0.107876
\(381\) 0 0
\(382\) −1.98232 −0.101424
\(383\) −32.8172 −1.67688 −0.838440 0.544994i \(-0.816532\pi\)
−0.838440 + 0.544994i \(0.816532\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 13.9454 0.709800
\(387\) 0 0
\(388\) 22.9486 1.16504
\(389\) 25.3087 1.28320 0.641600 0.767040i \(-0.278271\pi\)
0.641600 + 0.767040i \(0.278271\pi\)
\(390\) 0 0
\(391\) 6.04869 0.305895
\(392\) 0 0
\(393\) 0 0
\(394\) 1.78607 0.0899810
\(395\) −7.33875 −0.369253
\(396\) 0 0
\(397\) −5.29395 −0.265696 −0.132848 0.991136i \(-0.542412\pi\)
−0.132848 + 0.991136i \(0.542412\pi\)
\(398\) −14.2175 −0.712661
\(399\) 0 0
\(400\) −5.04689 −0.252345
\(401\) 24.6335 1.23014 0.615070 0.788473i \(-0.289128\pi\)
0.615070 + 0.788473i \(0.289128\pi\)
\(402\) 0 0
\(403\) 7.69550 0.383340
\(404\) 4.41586 0.219697
\(405\) 0 0
\(406\) 0 0
\(407\) −3.84924 −0.190800
\(408\) 0 0
\(409\) 10.2223 0.505458 0.252729 0.967537i \(-0.418672\pi\)
0.252729 + 0.967537i \(0.418672\pi\)
\(410\) −8.82372 −0.435773
\(411\) 0 0
\(412\) −9.49481 −0.467776
\(413\) 0 0
\(414\) 0 0
\(415\) 2.76745 0.135849
\(416\) 5.73556 0.281209
\(417\) 0 0
\(418\) 1.23193 0.0602556
\(419\) −30.6503 −1.49736 −0.748682 0.662929i \(-0.769313\pi\)
−0.748682 + 0.662929i \(0.769313\pi\)
\(420\) 0 0
\(421\) 25.9764 1.26601 0.633007 0.774146i \(-0.281820\pi\)
0.633007 + 0.774146i \(0.281820\pi\)
\(422\) 12.0662 0.587376
\(423\) 0 0
\(424\) 0.829592 0.0402885
\(425\) 11.2357 0.545014
\(426\) 0 0
\(427\) 0 0
\(428\) 27.1830 1.31394
\(429\) 0 0
\(430\) −2.82564 −0.136264
\(431\) −14.8818 −0.716829 −0.358415 0.933563i \(-0.616683\pi\)
−0.358415 + 0.933563i \(0.616683\pi\)
\(432\) 0 0
\(433\) −40.0871 −1.92647 −0.963233 0.268669i \(-0.913416\pi\)
−0.963233 + 0.268669i \(0.913416\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) −16.5986 −0.794927
\(437\) −1.67104 −0.0799368
\(438\) 0 0
\(439\) −3.00243 −0.143298 −0.0716491 0.997430i \(-0.522826\pi\)
−0.0716491 + 0.997430i \(0.522826\pi\)
\(440\) −6.06963 −0.289358
\(441\) 0 0
\(442\) −2.34017 −0.111311
\(443\) −1.43566 −0.0682101 −0.0341051 0.999418i \(-0.510858\pi\)
−0.0341051 + 0.999418i \(0.510858\pi\)
\(444\) 0 0
\(445\) 9.38189 0.444744
\(446\) 14.5815 0.690453
\(447\) 0 0
\(448\) 0 0
\(449\) −19.6313 −0.926460 −0.463230 0.886238i \(-0.653310\pi\)
−0.463230 + 0.886238i \(0.653310\pi\)
\(450\) 0 0
\(451\) −18.8413 −0.887203
\(452\) −3.68289 −0.173229
\(453\) 0 0
\(454\) −17.5447 −0.823413
\(455\) 0 0
\(456\) 0 0
\(457\) 10.6421 0.497815 0.248907 0.968527i \(-0.419929\pi\)
0.248907 + 0.968527i \(0.419929\pi\)
\(458\) −10.9588 −0.512070
\(459\) 0 0
\(460\) 3.61998 0.168782
\(461\) 38.5930 1.79745 0.898727 0.438509i \(-0.144493\pi\)
0.898727 + 0.438509i \(0.144493\pi\)
\(462\) 0 0
\(463\) −27.9993 −1.30124 −0.650618 0.759405i \(-0.725490\pi\)
−0.650618 + 0.759405i \(0.725490\pi\)
\(464\) −10.4900 −0.486987
\(465\) 0 0
\(466\) 9.10623 0.421838
\(467\) 25.8199 1.19480 0.597401 0.801943i \(-0.296200\pi\)
0.597401 + 0.801943i \(0.296200\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) −6.92862 −0.319594
\(471\) 0 0
\(472\) 5.06816 0.233281
\(473\) −6.03359 −0.277425
\(474\) 0 0
\(475\) −3.10405 −0.142423
\(476\) 0 0
\(477\) 0 0
\(478\) −0.305680 −0.0139815
\(479\) 39.4071 1.80055 0.900277 0.435317i \(-0.143364\pi\)
0.900277 + 0.435317i \(0.143364\pi\)
\(480\) 0 0
\(481\) −2.02005 −0.0921065
\(482\) 3.73575 0.170159
\(483\) 0 0
\(484\) 11.5651 0.525687
\(485\) −19.8858 −0.902966
\(486\) 0 0
\(487\) −34.0959 −1.54503 −0.772517 0.634994i \(-0.781003\pi\)
−0.772517 + 0.634994i \(0.781003\pi\)
\(488\) −28.5753 −1.29354
\(489\) 0 0
\(490\) 0 0
\(491\) 9.70414 0.437942 0.218971 0.975731i \(-0.429730\pi\)
0.218971 + 0.975731i \(0.429730\pi\)
\(492\) 0 0
\(493\) 23.3536 1.05179
\(494\) 0.646508 0.0290878
\(495\) 0 0
\(496\) 12.3277 0.553529
\(497\) 0 0
\(498\) 0 0
\(499\) 18.0463 0.807862 0.403931 0.914789i \(-0.367644\pi\)
0.403931 + 0.914789i \(0.367644\pi\)
\(500\) 17.3961 0.777976
\(501\) 0 0
\(502\) −11.7500 −0.524428
\(503\) −16.4922 −0.735352 −0.367676 0.929954i \(-0.619846\pi\)
−0.367676 + 0.929954i \(0.619846\pi\)
\(504\) 0 0
\(505\) −3.82650 −0.170277
\(506\) −2.12069 −0.0942761
\(507\) 0 0
\(508\) 28.5069 1.26479
\(509\) 19.1977 0.850921 0.425460 0.904977i \(-0.360112\pi\)
0.425460 + 0.904977i \(0.360112\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 16.6921 0.737692
\(513\) 0 0
\(514\) −17.0448 −0.751812
\(515\) 8.22760 0.362552
\(516\) 0 0
\(517\) −14.7947 −0.650670
\(518\) 0 0
\(519\) 0 0
\(520\) −3.18530 −0.139685
\(521\) 8.76034 0.383797 0.191899 0.981415i \(-0.438535\pi\)
0.191899 + 0.981415i \(0.438535\pi\)
\(522\) 0 0
\(523\) −11.7406 −0.513381 −0.256690 0.966494i \(-0.582632\pi\)
−0.256690 + 0.966494i \(0.582632\pi\)
\(524\) 15.8533 0.692555
\(525\) 0 0
\(526\) −18.2683 −0.796534
\(527\) −27.4447 −1.19551
\(528\) 0 0
\(529\) −20.1234 −0.874931
\(530\) −0.316077 −0.0137295
\(531\) 0 0
\(532\) 0 0
\(533\) −9.88779 −0.428288
\(534\) 0 0
\(535\) −23.5550 −1.01837
\(536\) −26.4982 −1.14455
\(537\) 0 0
\(538\) −3.87467 −0.167049
\(539\) 0 0
\(540\) 0 0
\(541\) 16.4587 0.707614 0.353807 0.935318i \(-0.384887\pi\)
0.353807 + 0.935318i \(0.384887\pi\)
\(542\) −2.85396 −0.122588
\(543\) 0 0
\(544\) −20.4549 −0.876997
\(545\) 14.3833 0.616112
\(546\) 0 0
\(547\) −8.19375 −0.350339 −0.175170 0.984538i \(-0.556047\pi\)
−0.175170 + 0.984538i \(0.556047\pi\)
\(548\) 10.2891 0.439531
\(549\) 0 0
\(550\) −3.93928 −0.167972
\(551\) −6.45179 −0.274856
\(552\) 0 0
\(553\) 0 0
\(554\) 0.709015 0.0301232
\(555\) 0 0
\(556\) 21.6962 0.920123
\(557\) 13.8144 0.585335 0.292667 0.956214i \(-0.405457\pi\)
0.292667 + 0.956214i \(0.405457\pi\)
\(558\) 0 0
\(559\) −3.16639 −0.133924
\(560\) 0 0
\(561\) 0 0
\(562\) −9.50889 −0.401108
\(563\) −9.75559 −0.411149 −0.205575 0.978641i \(-0.565906\pi\)
−0.205575 + 0.978641i \(0.565906\pi\)
\(564\) 0 0
\(565\) 3.19136 0.134262
\(566\) 16.0751 0.675687
\(567\) 0 0
\(568\) −21.2032 −0.889666
\(569\) 1.43264 0.0600593 0.0300296 0.999549i \(-0.490440\pi\)
0.0300296 + 0.999549i \(0.490440\pi\)
\(570\) 0 0
\(571\) 16.2872 0.681598 0.340799 0.940136i \(-0.389303\pi\)
0.340799 + 0.940136i \(0.389303\pi\)
\(572\) −2.99055 −0.125041
\(573\) 0 0
\(574\) 0 0
\(575\) 5.34342 0.222836
\(576\) 0 0
\(577\) −4.81846 −0.200595 −0.100297 0.994957i \(-0.531979\pi\)
−0.100297 + 0.994957i \(0.531979\pi\)
\(578\) −2.80929 −0.116851
\(579\) 0 0
\(580\) 13.9765 0.580343
\(581\) 0 0
\(582\) 0 0
\(583\) −0.674920 −0.0279523
\(584\) 16.7144 0.691645
\(585\) 0 0
\(586\) −0.761866 −0.0314724
\(587\) −36.6215 −1.51153 −0.755765 0.654843i \(-0.772735\pi\)
−0.755765 + 0.654843i \(0.772735\pi\)
\(588\) 0 0
\(589\) 7.58203 0.312412
\(590\) −1.93099 −0.0794974
\(591\) 0 0
\(592\) −3.23599 −0.132998
\(593\) 18.7081 0.768251 0.384125 0.923281i \(-0.374503\pi\)
0.384125 + 0.923281i \(0.374503\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 12.7027 0.520325
\(597\) 0 0
\(598\) −1.11292 −0.0455108
\(599\) 25.4194 1.03861 0.519305 0.854589i \(-0.326191\pi\)
0.519305 + 0.854589i \(0.326191\pi\)
\(600\) 0 0
\(601\) 17.7790 0.725219 0.362609 0.931941i \(-0.381886\pi\)
0.362609 + 0.931941i \(0.381886\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) −18.8904 −0.768640
\(605\) −10.0216 −0.407436
\(606\) 0 0
\(607\) 26.0047 1.05550 0.527750 0.849400i \(-0.323036\pi\)
0.527750 + 0.849400i \(0.323036\pi\)
\(608\) 5.65098 0.229178
\(609\) 0 0
\(610\) 10.8873 0.440813
\(611\) −7.76416 −0.314104
\(612\) 0 0
\(613\) 26.8230 1.08337 0.541685 0.840582i \(-0.317787\pi\)
0.541685 + 0.840582i \(0.317787\pi\)
\(614\) 16.6494 0.671916
\(615\) 0 0
\(616\) 0 0
\(617\) 18.6491 0.750784 0.375392 0.926866i \(-0.377508\pi\)
0.375392 + 0.926866i \(0.377508\pi\)
\(618\) 0 0
\(619\) 13.0685 0.525269 0.262634 0.964895i \(-0.415409\pi\)
0.262634 + 0.964895i \(0.415409\pi\)
\(620\) −16.4249 −0.659642
\(621\) 0 0
\(622\) −16.0532 −0.643676
\(623\) 0 0
\(624\) 0 0
\(625\) 0.678175 0.0271270
\(626\) 4.34174 0.173531
\(627\) 0 0
\(628\) 28.8672 1.15193
\(629\) 7.20418 0.287250
\(630\) 0 0
\(631\) −49.1745 −1.95761 −0.978804 0.204801i \(-0.934345\pi\)
−0.978804 + 0.204801i \(0.934345\pi\)
\(632\) 12.6392 0.502760
\(633\) 0 0
\(634\) −5.37941 −0.213644
\(635\) −24.7023 −0.980279
\(636\) 0 0
\(637\) 0 0
\(638\) −8.18784 −0.324160
\(639\) 0 0
\(640\) −15.1008 −0.596912
\(641\) −4.37503 −0.172803 −0.0864016 0.996260i \(-0.527537\pi\)
−0.0864016 + 0.996260i \(0.527537\pi\)
\(642\) 0 0
\(643\) −5.34651 −0.210846 −0.105423 0.994427i \(-0.533620\pi\)
−0.105423 + 0.994427i \(0.533620\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) −2.30566 −0.0907151
\(647\) 29.7346 1.16899 0.584493 0.811398i \(-0.301293\pi\)
0.584493 + 0.811398i \(0.301293\pi\)
\(648\) 0 0
\(649\) −4.12324 −0.161851
\(650\) −2.06731 −0.0810865
\(651\) 0 0
\(652\) −3.94375 −0.154449
\(653\) 2.54262 0.0995005 0.0497503 0.998762i \(-0.484157\pi\)
0.0497503 + 0.998762i \(0.484157\pi\)
\(654\) 0 0
\(655\) −13.7375 −0.536768
\(656\) −15.8396 −0.618432
\(657\) 0 0
\(658\) 0 0
\(659\) −1.87019 −0.0728523 −0.0364261 0.999336i \(-0.511597\pi\)
−0.0364261 + 0.999336i \(0.511597\pi\)
\(660\) 0 0
\(661\) −12.0763 −0.469714 −0.234857 0.972030i \(-0.575462\pi\)
−0.234857 + 0.972030i \(0.575462\pi\)
\(662\) −0.475546 −0.0184826
\(663\) 0 0
\(664\) −4.76624 −0.184966
\(665\) 0 0
\(666\) 0 0
\(667\) 11.1063 0.430040
\(668\) 28.1076 1.08752
\(669\) 0 0
\(670\) 10.0959 0.390039
\(671\) 23.2476 0.897464
\(672\) 0 0
\(673\) −7.81691 −0.301320 −0.150660 0.988586i \(-0.548140\pi\)
−0.150660 + 0.988586i \(0.548140\pi\)
\(674\) −5.63202 −0.216937
\(675\) 0 0
\(676\) −1.56942 −0.0603624
\(677\) −6.25628 −0.240448 −0.120224 0.992747i \(-0.538361\pi\)
−0.120224 + 0.992747i \(0.538361\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 11.3598 0.435630
\(681\) 0 0
\(682\) 9.62220 0.368453
\(683\) −22.3656 −0.855795 −0.427898 0.903827i \(-0.640746\pi\)
−0.427898 + 0.903827i \(0.640746\pi\)
\(684\) 0 0
\(685\) −8.91593 −0.340660
\(686\) 0 0
\(687\) 0 0
\(688\) −5.07234 −0.193381
\(689\) −0.354194 −0.0134937
\(690\) 0 0
\(691\) −3.80771 −0.144852 −0.0724260 0.997374i \(-0.523074\pi\)
−0.0724260 + 0.997374i \(0.523074\pi\)
\(692\) 10.2323 0.388975
\(693\) 0 0
\(694\) 17.0116 0.645751
\(695\) −18.8005 −0.713145
\(696\) 0 0
\(697\) 35.2632 1.33569
\(698\) 11.2472 0.425713
\(699\) 0 0
\(700\) 0 0
\(701\) 8.14218 0.307526 0.153763 0.988108i \(-0.450861\pi\)
0.153763 + 0.988108i \(0.450861\pi\)
\(702\) 0 0
\(703\) −1.99027 −0.0750643
\(704\) 1.06654 0.0401969
\(705\) 0 0
\(706\) 12.4085 0.467001
\(707\) 0 0
\(708\) 0 0
\(709\) −24.0319 −0.902536 −0.451268 0.892388i \(-0.649028\pi\)
−0.451268 + 0.892388i \(0.649028\pi\)
\(710\) 8.07848 0.303180
\(711\) 0 0
\(712\) −16.1580 −0.605546
\(713\) −13.0520 −0.488800
\(714\) 0 0
\(715\) 2.59143 0.0969138
\(716\) −41.7488 −1.56023
\(717\) 0 0
\(718\) −9.25544 −0.345410
\(719\) 32.6960 1.21936 0.609678 0.792649i \(-0.291299\pi\)
0.609678 + 0.792649i \(0.291299\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) −11.8305 −0.440286
\(723\) 0 0
\(724\) 38.6709 1.43719
\(725\) 20.6306 0.766201
\(726\) 0 0
\(727\) −15.7712 −0.584921 −0.292460 0.956278i \(-0.594474\pi\)
−0.292460 + 0.956278i \(0.594474\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) −6.36823 −0.235699
\(731\) 11.2924 0.417664
\(732\) 0 0
\(733\) 23.5094 0.868340 0.434170 0.900831i \(-0.357042\pi\)
0.434170 + 0.900831i \(0.357042\pi\)
\(734\) 0.236396 0.00872552
\(735\) 0 0
\(736\) −9.72781 −0.358572
\(737\) 21.5578 0.794093
\(738\) 0 0
\(739\) −22.5267 −0.828658 −0.414329 0.910127i \(-0.635984\pi\)
−0.414329 + 0.910127i \(0.635984\pi\)
\(740\) 4.31151 0.158494
\(741\) 0 0
\(742\) 0 0
\(743\) 13.9795 0.512857 0.256429 0.966563i \(-0.417454\pi\)
0.256429 + 0.966563i \(0.417454\pi\)
\(744\) 0 0
\(745\) −11.0074 −0.403280
\(746\) −16.5149 −0.604652
\(747\) 0 0
\(748\) 10.6653 0.389963
\(749\) 0 0
\(750\) 0 0
\(751\) 2.54591 0.0929017 0.0464509 0.998921i \(-0.485209\pi\)
0.0464509 + 0.998921i \(0.485209\pi\)
\(752\) −12.4377 −0.453555
\(753\) 0 0
\(754\) −4.29692 −0.156485
\(755\) 16.3692 0.595738
\(756\) 0 0
\(757\) 19.6921 0.715721 0.357861 0.933775i \(-0.383506\pi\)
0.357861 + 0.933775i \(0.383506\pi\)
\(758\) 20.9288 0.760168
\(759\) 0 0
\(760\) −3.13833 −0.113839
\(761\) 39.0905 1.41703 0.708515 0.705696i \(-0.249365\pi\)
0.708515 + 0.705696i \(0.249365\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 4.74120 0.171531
\(765\) 0 0
\(766\) −21.5341 −0.778059
\(767\) −2.16385 −0.0781320
\(768\) 0 0
\(769\) −21.7389 −0.783926 −0.391963 0.919981i \(-0.628204\pi\)
−0.391963 + 0.919981i \(0.628204\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) −33.3537 −1.20043
\(773\) −4.12806 −0.148476 −0.0742381 0.997241i \(-0.523652\pi\)
−0.0742381 + 0.997241i \(0.523652\pi\)
\(774\) 0 0
\(775\) −24.2447 −0.870895
\(776\) 34.2483 1.22944
\(777\) 0 0
\(778\) 16.6071 0.595395
\(779\) −9.74199 −0.349043
\(780\) 0 0
\(781\) 17.2500 0.617254
\(782\) 3.96905 0.141933
\(783\) 0 0
\(784\) 0 0
\(785\) −25.0145 −0.892807
\(786\) 0 0
\(787\) 38.7863 1.38258 0.691291 0.722576i \(-0.257042\pi\)
0.691291 + 0.722576i \(0.257042\pi\)
\(788\) −4.27182 −0.152177
\(789\) 0 0
\(790\) −4.81557 −0.171330
\(791\) 0 0
\(792\) 0 0
\(793\) 12.2002 0.433242
\(794\) −3.47381 −0.123281
\(795\) 0 0
\(796\) 34.0047 1.20526
\(797\) −19.9651 −0.707201 −0.353601 0.935397i \(-0.615043\pi\)
−0.353601 + 0.935397i \(0.615043\pi\)
\(798\) 0 0
\(799\) 27.6896 0.979587
\(800\) −18.0699 −0.638867
\(801\) 0 0
\(802\) 16.1641 0.570775
\(803\) −13.5981 −0.479866
\(804\) 0 0
\(805\) 0 0
\(806\) 5.04967 0.177867
\(807\) 0 0
\(808\) 6.59020 0.231842
\(809\) 30.2441 1.06332 0.531662 0.846956i \(-0.321568\pi\)
0.531662 + 0.846956i \(0.321568\pi\)
\(810\) 0 0
\(811\) 23.4099 0.822034 0.411017 0.911628i \(-0.365174\pi\)
0.411017 + 0.911628i \(0.365174\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) −2.52581 −0.0885295
\(815\) 3.41740 0.119706
\(816\) 0 0
\(817\) −3.11970 −0.109144
\(818\) 6.70768 0.234528
\(819\) 0 0
\(820\) 21.1041 0.736986
\(821\) 46.5536 1.62473 0.812366 0.583147i \(-0.198179\pi\)
0.812366 + 0.583147i \(0.198179\pi\)
\(822\) 0 0
\(823\) −5.68031 −0.198003 −0.0990017 0.995087i \(-0.531565\pi\)
−0.0990017 + 0.995087i \(0.531565\pi\)
\(824\) −14.1700 −0.493636
\(825\) 0 0
\(826\) 0 0
\(827\) −48.3198 −1.68024 −0.840122 0.542398i \(-0.817517\pi\)
−0.840122 + 0.542398i \(0.817517\pi\)
\(828\) 0 0
\(829\) −11.8545 −0.411722 −0.205861 0.978581i \(-0.566000\pi\)
−0.205861 + 0.978581i \(0.566000\pi\)
\(830\) 1.81595 0.0630327
\(831\) 0 0
\(832\) 0.559715 0.0194046
\(833\) 0 0
\(834\) 0 0
\(835\) −24.3563 −0.842884
\(836\) −2.94646 −0.101905
\(837\) 0 0
\(838\) −20.1122 −0.694765
\(839\) 2.69386 0.0930025 0.0465013 0.998918i \(-0.485193\pi\)
0.0465013 + 0.998918i \(0.485193\pi\)
\(840\) 0 0
\(841\) 13.8809 0.478652
\(842\) 17.0453 0.587420
\(843\) 0 0
\(844\) −28.8593 −0.993380
\(845\) 1.35996 0.0467841
\(846\) 0 0
\(847\) 0 0
\(848\) −0.567394 −0.0194844
\(849\) 0 0
\(850\) 7.37271 0.252882
\(851\) 3.42612 0.117446
\(852\) 0 0
\(853\) −2.48965 −0.0852440 −0.0426220 0.999091i \(-0.513571\pi\)
−0.0426220 + 0.999091i \(0.513571\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 40.5677 1.38658
\(857\) −46.2110 −1.57854 −0.789270 0.614047i \(-0.789541\pi\)
−0.789270 + 0.614047i \(0.789541\pi\)
\(858\) 0 0
\(859\) −10.9170 −0.372482 −0.186241 0.982504i \(-0.559631\pi\)
−0.186241 + 0.982504i \(0.559631\pi\)
\(860\) 6.75820 0.230453
\(861\) 0 0
\(862\) −9.76517 −0.332603
\(863\) 29.2330 0.995104 0.497552 0.867434i \(-0.334232\pi\)
0.497552 + 0.867434i \(0.334232\pi\)
\(864\) 0 0
\(865\) −8.86670 −0.301477
\(866\) −26.3045 −0.893865
\(867\) 0 0
\(868\) 0 0
\(869\) −10.2827 −0.348817
\(870\) 0 0
\(871\) 11.3134 0.383340
\(872\) −24.7716 −0.838873
\(873\) 0 0
\(874\) −1.09651 −0.0370901
\(875\) 0 0
\(876\) 0 0
\(877\) −7.38110 −0.249242 −0.124621 0.992204i \(-0.539772\pi\)
−0.124621 + 0.992204i \(0.539772\pi\)
\(878\) −1.97015 −0.0664892
\(879\) 0 0
\(880\) 4.15129 0.139940
\(881\) −16.4854 −0.555407 −0.277703 0.960667i \(-0.589573\pi\)
−0.277703 + 0.960667i \(0.589573\pi\)
\(882\) 0 0
\(883\) 12.4427 0.418732 0.209366 0.977837i \(-0.432860\pi\)
0.209366 + 0.977837i \(0.432860\pi\)
\(884\) 5.59709 0.188250
\(885\) 0 0
\(886\) −0.942055 −0.0316490
\(887\) 8.11331 0.272418 0.136209 0.990680i \(-0.456508\pi\)
0.136209 + 0.990680i \(0.456508\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 6.15624 0.206358
\(891\) 0 0
\(892\) −34.8751 −1.16771
\(893\) −7.64968 −0.255987
\(894\) 0 0
\(895\) 36.1769 1.20926
\(896\) 0 0
\(897\) 0 0
\(898\) −12.8818 −0.429870
\(899\) −50.3929 −1.68070
\(900\) 0 0
\(901\) 1.26317 0.0420824
\(902\) −12.3634 −0.411655
\(903\) 0 0
\(904\) −5.49633 −0.182805
\(905\) −33.5098 −1.11390
\(906\) 0 0
\(907\) −18.4796 −0.613605 −0.306803 0.951773i \(-0.599259\pi\)
−0.306803 + 0.951773i \(0.599259\pi\)
\(908\) 41.9623 1.39257
\(909\) 0 0
\(910\) 0 0
\(911\) −15.8660 −0.525663 −0.262831 0.964842i \(-0.584656\pi\)
−0.262831 + 0.964842i \(0.584656\pi\)
\(912\) 0 0
\(913\) 3.87761 0.128330
\(914\) 6.98315 0.230982
\(915\) 0 0
\(916\) 26.2106 0.866022
\(917\) 0 0
\(918\) 0 0
\(919\) 43.4568 1.43351 0.716753 0.697327i \(-0.245627\pi\)
0.716753 + 0.697327i \(0.245627\pi\)
\(920\) 5.40244 0.178113
\(921\) 0 0
\(922\) 25.3241 0.834004
\(923\) 9.05268 0.297973
\(924\) 0 0
\(925\) 6.36418 0.209253
\(926\) −18.3727 −0.603763
\(927\) 0 0
\(928\) −37.5585 −1.23292
\(929\) 25.6312 0.840931 0.420465 0.907309i \(-0.361867\pi\)
0.420465 + 0.907309i \(0.361867\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) −21.7798 −0.713420
\(933\) 0 0
\(934\) 16.9426 0.554379
\(935\) −9.24189 −0.302242
\(936\) 0 0
\(937\) 23.9639 0.782867 0.391433 0.920206i \(-0.371979\pi\)
0.391433 + 0.920206i \(0.371979\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 16.5715 0.540502
\(941\) 42.2934 1.37872 0.689362 0.724417i \(-0.257891\pi\)
0.689362 + 0.724417i \(0.257891\pi\)
\(942\) 0 0
\(943\) 16.7702 0.546113
\(944\) −3.46634 −0.112820
\(945\) 0 0
\(946\) −3.95914 −0.128723
\(947\) 49.5957 1.61165 0.805823 0.592157i \(-0.201723\pi\)
0.805823 + 0.592157i \(0.201723\pi\)
\(948\) 0 0
\(949\) −7.13619 −0.231650
\(950\) −2.03683 −0.0660833
\(951\) 0 0
\(952\) 0 0
\(953\) −18.7156 −0.606259 −0.303129 0.952949i \(-0.598031\pi\)
−0.303129 + 0.952949i \(0.598031\pi\)
\(954\) 0 0
\(955\) −4.10843 −0.132946
\(956\) 0.731107 0.0236457
\(957\) 0 0
\(958\) 25.8583 0.835443
\(959\) 0 0
\(960\) 0 0
\(961\) 28.2208 0.910348
\(962\) −1.32553 −0.0427367
\(963\) 0 0
\(964\) −8.93494 −0.287775
\(965\) 28.9022 0.930395
\(966\) 0 0
\(967\) −34.3284 −1.10393 −0.551964 0.833868i \(-0.686121\pi\)
−0.551964 + 0.833868i \(0.686121\pi\)
\(968\) 17.2597 0.554748
\(969\) 0 0
\(970\) −13.0487 −0.418969
\(971\) −56.7118 −1.81997 −0.909984 0.414642i \(-0.863907\pi\)
−0.909984 + 0.414642i \(0.863907\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) −22.3732 −0.716884
\(975\) 0 0
\(976\) 19.5439 0.625585
\(977\) 39.8809 1.27590 0.637951 0.770077i \(-0.279782\pi\)
0.637951 + 0.770077i \(0.279782\pi\)
\(978\) 0 0
\(979\) 13.1454 0.420130
\(980\) 0 0
\(981\) 0 0
\(982\) 6.36770 0.203201
\(983\) −41.2678 −1.31624 −0.658120 0.752913i \(-0.728648\pi\)
−0.658120 + 0.752913i \(0.728648\pi\)
\(984\) 0 0
\(985\) 3.70169 0.117946
\(986\) 15.3243 0.488024
\(987\) 0 0
\(988\) −1.54628 −0.0491937
\(989\) 5.37036 0.170767
\(990\) 0 0
\(991\) −26.1784 −0.831583 −0.415792 0.909460i \(-0.636495\pi\)
−0.415792 + 0.909460i \(0.636495\pi\)
\(992\) 44.1380 1.40138
\(993\) 0 0
\(994\) 0 0
\(995\) −29.4663 −0.934145
\(996\) 0 0
\(997\) 8.62009 0.273001 0.136501 0.990640i \(-0.456414\pi\)
0.136501 + 0.990640i \(0.456414\pi\)
\(998\) 11.8417 0.374842
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 5733.2.a.br.1.4 6
3.2 odd 2 637.2.a.n.1.3 yes 6
7.6 odd 2 5733.2.a.bu.1.4 6
21.2 odd 6 637.2.e.n.508.4 12
21.5 even 6 637.2.e.o.508.4 12
21.11 odd 6 637.2.e.n.79.4 12
21.17 even 6 637.2.e.o.79.4 12
21.20 even 2 637.2.a.m.1.3 6
39.38 odd 2 8281.2.a.cd.1.4 6
273.272 even 2 8281.2.a.cc.1.4 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
637.2.a.m.1.3 6 21.20 even 2
637.2.a.n.1.3 yes 6 3.2 odd 2
637.2.e.n.79.4 12 21.11 odd 6
637.2.e.n.508.4 12 21.2 odd 6
637.2.e.o.79.4 12 21.17 even 6
637.2.e.o.508.4 12 21.5 even 6
5733.2.a.br.1.4 6 1.1 even 1 trivial
5733.2.a.bu.1.4 6 7.6 odd 2
8281.2.a.cc.1.4 6 273.272 even 2
8281.2.a.cd.1.4 6 39.38 odd 2