Properties

Label 5733.2.a.bf.1.4
Level $5733$
Weight $2$
Character 5733.1
Self dual yes
Analytic conductor $45.778$
Analytic rank $1$
Dimension $4$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [5733,2,Mod(1,5733)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(5733, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("5733.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 5733 = 3^{2} \cdot 7^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 5733.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(45.7782354788\)
Analytic rank: \(1\)
Dimension: \(4\)
Coefficient field: 4.4.17428.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{3} - 6x^{2} + 4x + 6 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 2 \)
Twist minimal: no (minimal twist has level 273)
Fricke sign: \(1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.4
Root \(-0.787711\) of defining polynomial
Character \(\chi\) \(=\) 5733.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+2.37951 q^{2} +3.66208 q^{4} -2.66208 q^{5} +3.95493 q^{8} +O(q^{10})\) \(q+2.37951 q^{2} +3.66208 q^{4} -2.66208 q^{5} +3.95493 q^{8} -6.33445 q^{10} -1.57542 q^{11} -1.00000 q^{13} +2.08666 q^{16} +4.75902 q^{17} +2.23750 q^{19} -9.74873 q^{20} -3.74873 q^{22} -5.84568 q^{23} +2.08666 q^{25} -2.37951 q^{26} -4.23750 q^{29} -7.28055 q^{31} -2.94464 q^{32} +11.3242 q^{34} +10.4750 q^{37} +5.32415 q^{38} -10.5283 q^{40} -2.25127 q^{41} +0.913344 q^{43} -5.76931 q^{44} -13.9099 q^{46} -2.09695 q^{47} +4.96522 q^{50} -3.66208 q^{52} -1.08666 q^{53} +4.19389 q^{55} -10.0832 q^{58} -12.3344 q^{59} +7.51805 q^{61} -17.3242 q^{62} -11.1801 q^{64} +2.66208 q^{65} -15.6914 q^{67} +17.4279 q^{68} -10.0504 q^{71} -15.0797 q^{73} +24.9254 q^{74} +8.19389 q^{76} -11.7555 q^{79} -5.55484 q^{80} -5.35692 q^{82} +7.42110 q^{83} -12.6689 q^{85} +2.17331 q^{86} -6.23069 q^{88} -11.1371 q^{89} -21.4073 q^{92} -4.98971 q^{94} -5.95639 q^{95} +14.6047 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - q^{2} + 7 q^{4} - 3 q^{5} - 3 q^{8}+O(q^{10}) \) Copy content Toggle raw display \( 4 q - q^{2} + 7 q^{4} - 3 q^{5} - 3 q^{8} + 4 q^{10} + 2 q^{11} - 4 q^{13} + 9 q^{16} - 2 q^{17} - 7 q^{19} - 32 q^{20} - 8 q^{22} - 3 q^{23} + 9 q^{25} + q^{26} - q^{29} - 3 q^{31} - 7 q^{32} + 30 q^{34} + 10 q^{37} + 6 q^{38} + 14 q^{40} - 16 q^{41} + 3 q^{43} + 12 q^{44} - 18 q^{46} + 5 q^{47} - 13 q^{50} - 7 q^{52} - 5 q^{53} - 10 q^{55} - 4 q^{58} - 20 q^{59} - 12 q^{61} - 54 q^{62} + 5 q^{64} + 3 q^{65} - 22 q^{67} - 10 q^{68} + 13 q^{73} + 6 q^{74} + 6 q^{76} + 11 q^{79} - 42 q^{80} - 10 q^{82} + q^{83} + 8 q^{85} + 10 q^{86} - 60 q^{88} - 5 q^{89} - 34 q^{92} - 34 q^{94} - 13 q^{95} + 17 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.37951 1.68257 0.841285 0.540593i \(-0.181800\pi\)
0.841285 + 0.540593i \(0.181800\pi\)
\(3\) 0 0
\(4\) 3.66208 1.83104
\(5\) −2.66208 −1.19052 −0.595259 0.803534i \(-0.702950\pi\)
−0.595259 + 0.803534i \(0.702950\pi\)
\(6\) 0 0
\(7\) 0 0
\(8\) 3.95493 1.39828
\(9\) 0 0
\(10\) −6.33445 −2.00313
\(11\) −1.57542 −0.475007 −0.237504 0.971387i \(-0.576329\pi\)
−0.237504 + 0.971387i \(0.576329\pi\)
\(12\) 0 0
\(13\) −1.00000 −0.277350
\(14\) 0 0
\(15\) 0 0
\(16\) 2.08666 0.521664
\(17\) 4.75902 1.15423 0.577116 0.816662i \(-0.304178\pi\)
0.577116 + 0.816662i \(0.304178\pi\)
\(18\) 0 0
\(19\) 2.23750 0.513317 0.256659 0.966502i \(-0.417378\pi\)
0.256659 + 0.966502i \(0.417378\pi\)
\(20\) −9.74873 −2.17988
\(21\) 0 0
\(22\) −3.74873 −0.799233
\(23\) −5.84568 −1.21891 −0.609454 0.792821i \(-0.708611\pi\)
−0.609454 + 0.792821i \(0.708611\pi\)
\(24\) 0 0
\(25\) 2.08666 0.417331
\(26\) −2.37951 −0.466661
\(27\) 0 0
\(28\) 0 0
\(29\) −4.23750 −0.786884 −0.393442 0.919349i \(-0.628716\pi\)
−0.393442 + 0.919349i \(0.628716\pi\)
\(30\) 0 0
\(31\) −7.28055 −1.30763 −0.653813 0.756656i \(-0.726832\pi\)
−0.653813 + 0.756656i \(0.726832\pi\)
\(32\) −2.94464 −0.520544
\(33\) 0 0
\(34\) 11.3242 1.94208
\(35\) 0 0
\(36\) 0 0
\(37\) 10.4750 1.72208 0.861039 0.508538i \(-0.169814\pi\)
0.861039 + 0.508538i \(0.169814\pi\)
\(38\) 5.32415 0.863692
\(39\) 0 0
\(40\) −10.5283 −1.66468
\(41\) −2.25127 −0.351589 −0.175794 0.984427i \(-0.556249\pi\)
−0.175794 + 0.984427i \(0.556249\pi\)
\(42\) 0 0
\(43\) 0.913344 0.139284 0.0696418 0.997572i \(-0.477814\pi\)
0.0696418 + 0.997572i \(0.477814\pi\)
\(44\) −5.76931 −0.869757
\(45\) 0 0
\(46\) −13.9099 −2.05090
\(47\) −2.09695 −0.305871 −0.152936 0.988236i \(-0.548873\pi\)
−0.152936 + 0.988236i \(0.548873\pi\)
\(48\) 0 0
\(49\) 0 0
\(50\) 4.96522 0.702189
\(51\) 0 0
\(52\) −3.66208 −0.507839
\(53\) −1.08666 −0.149264 −0.0746319 0.997211i \(-0.523778\pi\)
−0.0746319 + 0.997211i \(0.523778\pi\)
\(54\) 0 0
\(55\) 4.19389 0.565504
\(56\) 0 0
\(57\) 0 0
\(58\) −10.0832 −1.32399
\(59\) −12.3344 −1.60581 −0.802904 0.596108i \(-0.796713\pi\)
−0.802904 + 0.596108i \(0.796713\pi\)
\(60\) 0 0
\(61\) 7.51805 0.962587 0.481294 0.876559i \(-0.340167\pi\)
0.481294 + 0.876559i \(0.340167\pi\)
\(62\) −17.3242 −2.20017
\(63\) 0 0
\(64\) −11.1801 −1.39752
\(65\) 2.66208 0.330190
\(66\) 0 0
\(67\) −15.6914 −1.91700 −0.958502 0.285084i \(-0.907978\pi\)
−0.958502 + 0.285084i \(0.907978\pi\)
\(68\) 17.4279 2.11345
\(69\) 0 0
\(70\) 0 0
\(71\) −10.0504 −1.19277 −0.596383 0.802700i \(-0.703396\pi\)
−0.596383 + 0.802700i \(0.703396\pi\)
\(72\) 0 0
\(73\) −15.0797 −1.76495 −0.882473 0.470363i \(-0.844123\pi\)
−0.882473 + 0.470363i \(0.844123\pi\)
\(74\) 24.9254 2.89752
\(75\) 0 0
\(76\) 8.19389 0.939904
\(77\) 0 0
\(78\) 0 0
\(79\) −11.7555 −1.32260 −0.661301 0.750121i \(-0.729995\pi\)
−0.661301 + 0.750121i \(0.729995\pi\)
\(80\) −5.55484 −0.621050
\(81\) 0 0
\(82\) −5.35692 −0.591572
\(83\) 7.42110 0.814572 0.407286 0.913301i \(-0.366475\pi\)
0.407286 + 0.913301i \(0.366475\pi\)
\(84\) 0 0
\(85\) −12.6689 −1.37413
\(86\) 2.17331 0.234354
\(87\) 0 0
\(88\) −6.23069 −0.664193
\(89\) −11.1371 −1.18053 −0.590264 0.807210i \(-0.700976\pi\)
−0.590264 + 0.807210i \(0.700976\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) −21.4073 −2.23187
\(93\) 0 0
\(94\) −4.98971 −0.514649
\(95\) −5.95639 −0.611113
\(96\) 0 0
\(97\) 14.6047 1.48288 0.741442 0.671017i \(-0.234142\pi\)
0.741442 + 0.671017i \(0.234142\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 7.64150 0.764150
\(101\) −11.4349 −1.13781 −0.568906 0.822403i \(-0.692633\pi\)
−0.568906 + 0.822403i \(0.692633\pi\)
\(102\) 0 0
\(103\) −11.1508 −1.09873 −0.549363 0.835584i \(-0.685129\pi\)
−0.549363 + 0.835584i \(0.685129\pi\)
\(104\) −3.95493 −0.387813
\(105\) 0 0
\(106\) −2.58571 −0.251147
\(107\) −2.28403 −0.220805 −0.110403 0.993887i \(-0.535214\pi\)
−0.110403 + 0.993887i \(0.535214\pi\)
\(108\) 0 0
\(109\) 14.6689 1.40502 0.702512 0.711671i \(-0.252062\pi\)
0.702512 + 0.711671i \(0.252062\pi\)
\(110\) 9.97942 0.951500
\(111\) 0 0
\(112\) 0 0
\(113\) 4.23750 0.398630 0.199315 0.979935i \(-0.436128\pi\)
0.199315 + 0.979935i \(0.436128\pi\)
\(114\) 0 0
\(115\) 15.5617 1.45113
\(116\) −15.5180 −1.44081
\(117\) 0 0
\(118\) −29.3500 −2.70188
\(119\) 0 0
\(120\) 0 0
\(121\) −8.51805 −0.774368
\(122\) 17.8893 1.61962
\(123\) 0 0
\(124\) −26.6619 −2.39431
\(125\) 7.75555 0.693677
\(126\) 0 0
\(127\) 4.84916 0.430293 0.215147 0.976582i \(-0.430977\pi\)
0.215147 + 0.976582i \(0.430977\pi\)
\(128\) −20.7140 −1.83087
\(129\) 0 0
\(130\) 6.33445 0.555568
\(131\) −6.36721 −0.556305 −0.278153 0.960537i \(-0.589722\pi\)
−0.278153 + 0.960537i \(0.589722\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) −37.3378 −3.22549
\(135\) 0 0
\(136\) 18.8216 1.61394
\(137\) 18.0258 1.54005 0.770024 0.638015i \(-0.220244\pi\)
0.770024 + 0.638015i \(0.220244\pi\)
\(138\) 0 0
\(139\) −2.67585 −0.226962 −0.113481 0.993540i \(-0.536200\pi\)
−0.113481 + 0.993540i \(0.536200\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) −23.9151 −2.00691
\(143\) 1.57542 0.131743
\(144\) 0 0
\(145\) 11.2805 0.936799
\(146\) −35.8823 −2.96964
\(147\) 0 0
\(148\) 38.3603 3.15319
\(149\) 7.46471 0.611533 0.305766 0.952107i \(-0.401087\pi\)
0.305766 + 0.952107i \(0.401087\pi\)
\(150\) 0 0
\(151\) 13.0155 1.05919 0.529594 0.848251i \(-0.322344\pi\)
0.529594 + 0.848251i \(0.322344\pi\)
\(152\) 8.84916 0.717761
\(153\) 0 0
\(154\) 0 0
\(155\) 19.3814 1.55675
\(156\) 0 0
\(157\) 17.1233 1.36659 0.683294 0.730143i \(-0.260547\pi\)
0.683294 + 0.730143i \(0.260547\pi\)
\(158\) −27.9725 −2.22537
\(159\) 0 0
\(160\) 7.83887 0.619717
\(161\) 0 0
\(162\) 0 0
\(163\) −0.849158 −0.0665112 −0.0332556 0.999447i \(-0.510588\pi\)
−0.0332556 + 0.999447i \(0.510588\pi\)
\(164\) −8.24431 −0.643773
\(165\) 0 0
\(166\) 17.6586 1.37057
\(167\) 18.3781 1.42214 0.711068 0.703123i \(-0.248212\pi\)
0.711068 + 0.703123i \(0.248212\pi\)
\(168\) 0 0
\(169\) 1.00000 0.0769231
\(170\) −30.1458 −2.31208
\(171\) 0 0
\(172\) 3.34474 0.255034
\(173\) −12.2565 −0.931844 −0.465922 0.884826i \(-0.654277\pi\)
−0.465922 + 0.884826i \(0.654277\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) −3.28736 −0.247794
\(177\) 0 0
\(178\) −26.5008 −1.98632
\(179\) −18.5146 −1.38384 −0.691922 0.721972i \(-0.743236\pi\)
−0.691922 + 0.721972i \(0.743236\pi\)
\(180\) 0 0
\(181\) 18.1664 1.35029 0.675147 0.737683i \(-0.264080\pi\)
0.675147 + 0.737683i \(0.264080\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) −23.1193 −1.70438
\(185\) −27.8853 −2.05016
\(186\) 0 0
\(187\) −7.49747 −0.548269
\(188\) −7.67918 −0.560062
\(189\) 0 0
\(190\) −14.1733 −1.02824
\(191\) −23.5151 −1.70149 −0.850747 0.525575i \(-0.823850\pi\)
−0.850747 + 0.525575i \(0.823850\pi\)
\(192\) 0 0
\(193\) 14.7344 1.06061 0.530303 0.847808i \(-0.322078\pi\)
0.530303 + 0.847808i \(0.322078\pi\)
\(194\) 34.7521 2.49505
\(195\) 0 0
\(196\) 0 0
\(197\) −14.5008 −1.03314 −0.516570 0.856245i \(-0.672791\pi\)
−0.516570 + 0.856245i \(0.672791\pi\)
\(198\) 0 0
\(199\) 13.5180 0.958269 0.479135 0.877741i \(-0.340951\pi\)
0.479135 + 0.877741i \(0.340951\pi\)
\(200\) 8.25259 0.583546
\(201\) 0 0
\(202\) −27.2094 −1.91445
\(203\) 0 0
\(204\) 0 0
\(205\) 5.99305 0.418572
\(206\) −26.5336 −1.84868
\(207\) 0 0
\(208\) −2.08666 −0.144684
\(209\) −3.52500 −0.243830
\(210\) 0 0
\(211\) 4.06419 0.279790 0.139895 0.990166i \(-0.455323\pi\)
0.139895 + 0.990166i \(0.455323\pi\)
\(212\) −3.97942 −0.273308
\(213\) 0 0
\(214\) −5.43487 −0.371520
\(215\) −2.43139 −0.165820
\(216\) 0 0
\(217\) 0 0
\(218\) 34.9048 2.36405
\(219\) 0 0
\(220\) 15.3584 1.03546
\(221\) −4.75902 −0.320127
\(222\) 0 0
\(223\) 0.0641862 0.00429822 0.00214911 0.999998i \(-0.499316\pi\)
0.00214911 + 0.999998i \(0.499316\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 10.0832 0.670723
\(227\) −1.68614 −0.111913 −0.0559564 0.998433i \(-0.517821\pi\)
−0.0559564 + 0.998433i \(0.517821\pi\)
\(228\) 0 0
\(229\) −0.648310 −0.0428415 −0.0214208 0.999771i \(-0.506819\pi\)
−0.0214208 + 0.999771i \(0.506819\pi\)
\(230\) 37.0291 2.44163
\(231\) 0 0
\(232\) −16.7590 −1.10028
\(233\) −3.10724 −0.203562 −0.101781 0.994807i \(-0.532454\pi\)
−0.101781 + 0.994807i \(0.532454\pi\)
\(234\) 0 0
\(235\) 5.58223 0.364145
\(236\) −45.1697 −2.94030
\(237\) 0 0
\(238\) 0 0
\(239\) 15.0659 0.974534 0.487267 0.873253i \(-0.337994\pi\)
0.487267 + 0.873253i \(0.337994\pi\)
\(240\) 0 0
\(241\) −25.7280 −1.65729 −0.828643 0.559777i \(-0.810887\pi\)
−0.828643 + 0.559777i \(0.810887\pi\)
\(242\) −20.2688 −1.30293
\(243\) 0 0
\(244\) 27.5317 1.76253
\(245\) 0 0
\(246\) 0 0
\(247\) −2.23750 −0.142369
\(248\) −28.7941 −1.82843
\(249\) 0 0
\(250\) 18.4544 1.16716
\(251\) −11.6258 −0.733816 −0.366908 0.930257i \(-0.619584\pi\)
−0.366908 + 0.930257i \(0.619584\pi\)
\(252\) 0 0
\(253\) 9.20941 0.578991
\(254\) 11.5386 0.723998
\(255\) 0 0
\(256\) −26.9289 −1.68305
\(257\) −12.5651 −0.783791 −0.391896 0.920010i \(-0.628181\pi\)
−0.391896 + 0.920010i \(0.628181\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 9.74873 0.604591
\(261\) 0 0
\(262\) −15.1508 −0.936022
\(263\) −9.37068 −0.577821 −0.288911 0.957356i \(-0.593293\pi\)
−0.288911 + 0.957356i \(0.593293\pi\)
\(264\) 0 0
\(265\) 2.89276 0.177701
\(266\) 0 0
\(267\) 0 0
\(268\) −57.4630 −3.51011
\(269\) −10.3918 −0.633600 −0.316800 0.948492i \(-0.602608\pi\)
−0.316800 + 0.948492i \(0.602608\pi\)
\(270\) 0 0
\(271\) 5.13026 0.311641 0.155821 0.987785i \(-0.450198\pi\)
0.155821 + 0.987785i \(0.450198\pi\)
\(272\) 9.93045 0.602122
\(273\) 0 0
\(274\) 42.8926 2.59124
\(275\) −3.28736 −0.198235
\(276\) 0 0
\(277\) 8.04361 0.483293 0.241647 0.970364i \(-0.422312\pi\)
0.241647 + 0.970364i \(0.422312\pi\)
\(278\) −6.36721 −0.381880
\(279\) 0 0
\(280\) 0 0
\(281\) 27.8525 1.66154 0.830770 0.556616i \(-0.187900\pi\)
0.830770 + 0.556616i \(0.187900\pi\)
\(282\) 0 0
\(283\) −23.8197 −1.41594 −0.707968 0.706244i \(-0.750388\pi\)
−0.707968 + 0.706244i \(0.750388\pi\)
\(284\) −36.8054 −2.18400
\(285\) 0 0
\(286\) 3.74873 0.221667
\(287\) 0 0
\(288\) 0 0
\(289\) 5.64831 0.332254
\(290\) 26.8422 1.57623
\(291\) 0 0
\(292\) −55.2230 −3.23168
\(293\) −16.4612 −0.961675 −0.480838 0.876810i \(-0.659667\pi\)
−0.480838 + 0.876810i \(0.659667\pi\)
\(294\) 0 0
\(295\) 32.8352 1.91174
\(296\) 41.4279 2.40795
\(297\) 0 0
\(298\) 17.7624 1.02895
\(299\) 5.84568 0.338064
\(300\) 0 0
\(301\) 0 0
\(302\) 30.9706 1.78216
\(303\) 0 0
\(304\) 4.66889 0.267779
\(305\) −20.0136 −1.14598
\(306\) 0 0
\(307\) −1.95639 −0.111657 −0.0558287 0.998440i \(-0.517780\pi\)
−0.0558287 + 0.998440i \(0.517780\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 46.1182 2.61934
\(311\) −6.67585 −0.378552 −0.189276 0.981924i \(-0.560614\pi\)
−0.189276 + 0.981924i \(0.560614\pi\)
\(312\) 0 0
\(313\) 6.78364 0.383434 0.191717 0.981450i \(-0.438594\pi\)
0.191717 + 0.981450i \(0.438594\pi\)
\(314\) 40.7451 2.29938
\(315\) 0 0
\(316\) −43.0497 −2.42174
\(317\) 30.6947 1.72399 0.861993 0.506920i \(-0.169216\pi\)
0.861993 + 0.506920i \(0.169216\pi\)
\(318\) 0 0
\(319\) 6.67585 0.373776
\(320\) 29.7624 1.66377
\(321\) 0 0
\(322\) 0 0
\(323\) 10.6483 0.592488
\(324\) 0 0
\(325\) −2.08666 −0.115747
\(326\) −2.02058 −0.111910
\(327\) 0 0
\(328\) −8.90361 −0.491620
\(329\) 0 0
\(330\) 0 0
\(331\) −13.8267 −0.759983 −0.379992 0.924990i \(-0.624073\pi\)
−0.379992 + 0.924990i \(0.624073\pi\)
\(332\) 27.1766 1.49151
\(333\) 0 0
\(334\) 43.7308 2.39284
\(335\) 41.7716 2.28223
\(336\) 0 0
\(337\) 23.8633 1.29992 0.649959 0.759969i \(-0.274786\pi\)
0.649959 + 0.759969i \(0.274786\pi\)
\(338\) 2.37951 0.129428
\(339\) 0 0
\(340\) −46.3945 −2.51609
\(341\) 11.4699 0.621132
\(342\) 0 0
\(343\) 0 0
\(344\) 3.61221 0.194758
\(345\) 0 0
\(346\) −29.1645 −1.56789
\(347\) 13.6012 0.730152 0.365076 0.930978i \(-0.381043\pi\)
0.365076 + 0.930978i \(0.381043\pi\)
\(348\) 0 0
\(349\) 16.4039 0.878078 0.439039 0.898468i \(-0.355319\pi\)
0.439039 + 0.898468i \(0.355319\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 4.63905 0.247262
\(353\) −4.73322 −0.251924 −0.125962 0.992035i \(-0.540202\pi\)
−0.125962 + 0.992035i \(0.540202\pi\)
\(354\) 0 0
\(355\) 26.7550 1.42001
\(356\) −40.7848 −2.16159
\(357\) 0 0
\(358\) −44.0556 −2.32841
\(359\) 17.5479 0.926142 0.463071 0.886321i \(-0.346747\pi\)
0.463071 + 0.886321i \(0.346747\pi\)
\(360\) 0 0
\(361\) −13.9936 −0.736505
\(362\) 43.2271 2.27196
\(363\) 0 0
\(364\) 0 0
\(365\) 40.1433 2.10120
\(366\) 0 0
\(367\) 11.1888 0.584052 0.292026 0.956410i \(-0.405671\pi\)
0.292026 + 0.956410i \(0.405671\pi\)
\(368\) −12.1979 −0.635861
\(369\) 0 0
\(370\) −66.3533 −3.44954
\(371\) 0 0
\(372\) 0 0
\(373\) −5.43195 −0.281256 −0.140628 0.990063i \(-0.544912\pi\)
−0.140628 + 0.990063i \(0.544912\pi\)
\(374\) −17.8403 −0.922501
\(375\) 0 0
\(376\) −8.29328 −0.427693
\(377\) 4.23750 0.218242
\(378\) 0 0
\(379\) 10.8422 0.556927 0.278463 0.960447i \(-0.410175\pi\)
0.278463 + 0.960447i \(0.410175\pi\)
\(380\) −21.8128 −1.11897
\(381\) 0 0
\(382\) −55.9545 −2.86288
\(383\) 10.5353 0.538328 0.269164 0.963094i \(-0.413253\pi\)
0.269164 + 0.963094i \(0.413253\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 35.0607 1.78454
\(387\) 0 0
\(388\) 53.4836 2.71522
\(389\) −6.00000 −0.304212 −0.152106 0.988364i \(-0.548606\pi\)
−0.152106 + 0.988364i \(0.548606\pi\)
\(390\) 0 0
\(391\) −27.8197 −1.40690
\(392\) 0 0
\(393\) 0 0
\(394\) −34.5048 −1.73833
\(395\) 31.2942 1.57458
\(396\) 0 0
\(397\) 35.4400 1.77868 0.889340 0.457246i \(-0.151164\pi\)
0.889340 + 0.457246i \(0.151164\pi\)
\(398\) 32.1664 1.61235
\(399\) 0 0
\(400\) 4.35413 0.217707
\(401\) −23.7241 −1.18473 −0.592363 0.805671i \(-0.701805\pi\)
−0.592363 + 0.805671i \(0.701805\pi\)
\(402\) 0 0
\(403\) 7.28055 0.362670
\(404\) −41.8754 −2.08338
\(405\) 0 0
\(406\) 0 0
\(407\) −16.5025 −0.818000
\(408\) 0 0
\(409\) 3.95639 0.195631 0.0978156 0.995205i \(-0.468814\pi\)
0.0978156 + 0.995205i \(0.468814\pi\)
\(410\) 14.2605 0.704277
\(411\) 0 0
\(412\) −40.8352 −2.01181
\(413\) 0 0
\(414\) 0 0
\(415\) −19.7555 −0.969762
\(416\) 2.94464 0.144373
\(417\) 0 0
\(418\) −8.38779 −0.410260
\(419\) −18.0586 −0.882219 −0.441109 0.897453i \(-0.645415\pi\)
−0.441109 + 0.897453i \(0.645415\pi\)
\(420\) 0 0
\(421\) 24.4956 1.19384 0.596921 0.802300i \(-0.296391\pi\)
0.596921 + 0.802300i \(0.296391\pi\)
\(422\) 9.67078 0.470766
\(423\) 0 0
\(424\) −4.29765 −0.208712
\(425\) 9.93045 0.481697
\(426\) 0 0
\(427\) 0 0
\(428\) −8.36428 −0.404303
\(429\) 0 0
\(430\) −5.78553 −0.279003
\(431\) 40.7779 1.96420 0.982101 0.188357i \(-0.0603163\pi\)
0.982101 + 0.188357i \(0.0603163\pi\)
\(432\) 0 0
\(433\) 18.0791 0.868828 0.434414 0.900713i \(-0.356955\pi\)
0.434414 + 0.900713i \(0.356955\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 53.7186 2.57265
\(437\) −13.0797 −0.625687
\(438\) 0 0
\(439\) −20.7561 −0.990635 −0.495317 0.868712i \(-0.664948\pi\)
−0.495317 + 0.868712i \(0.664948\pi\)
\(440\) 16.5866 0.790734
\(441\) 0 0
\(442\) −11.3242 −0.538635
\(443\) 8.24042 0.391514 0.195757 0.980652i \(-0.437284\pi\)
0.195757 + 0.980652i \(0.437284\pi\)
\(444\) 0 0
\(445\) 29.6478 1.40544
\(446\) 0.152732 0.00723206
\(447\) 0 0
\(448\) 0 0
\(449\) −36.1061 −1.70395 −0.851975 0.523582i \(-0.824595\pi\)
−0.851975 + 0.523582i \(0.824595\pi\)
\(450\) 0 0
\(451\) 3.54669 0.167007
\(452\) 15.5180 0.729908
\(453\) 0 0
\(454\) −4.01218 −0.188301
\(455\) 0 0
\(456\) 0 0
\(457\) −6.54052 −0.305953 −0.152976 0.988230i \(-0.548886\pi\)
−0.152976 + 0.988230i \(0.548886\pi\)
\(458\) −1.54266 −0.0720838
\(459\) 0 0
\(460\) 56.9880 2.65708
\(461\) −14.6987 −0.684588 −0.342294 0.939593i \(-0.611204\pi\)
−0.342294 + 0.939593i \(0.611204\pi\)
\(462\) 0 0
\(463\) 21.7775 1.01208 0.506042 0.862509i \(-0.331108\pi\)
0.506042 + 0.862509i \(0.331108\pi\)
\(464\) −8.84220 −0.410489
\(465\) 0 0
\(466\) −7.39371 −0.342507
\(467\) 35.0086 1.62000 0.810001 0.586428i \(-0.199466\pi\)
0.810001 + 0.586428i \(0.199466\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 13.2830 0.612699
\(471\) 0 0
\(472\) −48.7819 −2.24537
\(473\) −1.43890 −0.0661607
\(474\) 0 0
\(475\) 4.66889 0.214223
\(476\) 0 0
\(477\) 0 0
\(478\) 35.8496 1.63972
\(479\) 31.7814 1.45213 0.726064 0.687628i \(-0.241348\pi\)
0.726064 + 0.687628i \(0.241348\pi\)
\(480\) 0 0
\(481\) −10.4750 −0.477619
\(482\) −61.2201 −2.78850
\(483\) 0 0
\(484\) −31.1938 −1.41790
\(485\) −38.8789 −1.76540
\(486\) 0 0
\(487\) −28.5817 −1.29516 −0.647580 0.761998i \(-0.724219\pi\)
−0.647580 + 0.761998i \(0.724219\pi\)
\(488\) 29.7334 1.34597
\(489\) 0 0
\(490\) 0 0
\(491\) −21.7160 −0.980028 −0.490014 0.871715i \(-0.663008\pi\)
−0.490014 + 0.871715i \(0.663008\pi\)
\(492\) 0 0
\(493\) −20.1664 −0.908247
\(494\) −5.32415 −0.239545
\(495\) 0 0
\(496\) −15.1920 −0.682141
\(497\) 0 0
\(498\) 0 0
\(499\) −42.6895 −1.91104 −0.955522 0.294921i \(-0.904707\pi\)
−0.955522 + 0.294921i \(0.904707\pi\)
\(500\) 28.4014 1.27015
\(501\) 0 0
\(502\) −27.6638 −1.23470
\(503\) 21.8922 0.976125 0.488063 0.872809i \(-0.337704\pi\)
0.488063 + 0.872809i \(0.337704\pi\)
\(504\) 0 0
\(505\) 30.4405 1.35458
\(506\) 21.9139 0.974192
\(507\) 0 0
\(508\) 17.7580 0.787883
\(509\) −5.36546 −0.237820 −0.118910 0.992905i \(-0.537940\pi\)
−0.118910 + 0.992905i \(0.537940\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) −22.6496 −1.00098
\(513\) 0 0
\(514\) −29.8989 −1.31878
\(515\) 29.6844 1.30805
\(516\) 0 0
\(517\) 3.30357 0.145291
\(518\) 0 0
\(519\) 0 0
\(520\) 10.5283 0.461698
\(521\) −11.5221 −0.504791 −0.252396 0.967624i \(-0.581218\pi\)
−0.252396 + 0.967624i \(0.581218\pi\)
\(522\) 0 0
\(523\) 3.62584 0.158547 0.0792734 0.996853i \(-0.474740\pi\)
0.0792734 + 0.996853i \(0.474740\pi\)
\(524\) −23.3172 −1.01862
\(525\) 0 0
\(526\) −22.2977 −0.972224
\(527\) −34.6483 −1.50930
\(528\) 0 0
\(529\) 11.1720 0.485738
\(530\) 6.88336 0.298994
\(531\) 0 0
\(532\) 0 0
\(533\) 2.25127 0.0975132
\(534\) 0 0
\(535\) 6.08026 0.262872
\(536\) −62.0583 −2.68051
\(537\) 0 0
\(538\) −24.7275 −1.06608
\(539\) 0 0
\(540\) 0 0
\(541\) 37.2300 1.60064 0.800321 0.599572i \(-0.204662\pi\)
0.800321 + 0.599572i \(0.204662\pi\)
\(542\) 12.2075 0.524358
\(543\) 0 0
\(544\) −14.0136 −0.600829
\(545\) −39.0497 −1.67271
\(546\) 0 0
\(547\) −4.34529 −0.185791 −0.0928956 0.995676i \(-0.529612\pi\)
−0.0928956 + 0.995676i \(0.529612\pi\)
\(548\) 66.0119 2.81989
\(549\) 0 0
\(550\) −7.82232 −0.333545
\(551\) −9.48140 −0.403921
\(552\) 0 0
\(553\) 0 0
\(554\) 19.1399 0.813175
\(555\) 0 0
\(556\) −9.79915 −0.415577
\(557\) −28.0052 −1.18662 −0.593310 0.804974i \(-0.702179\pi\)
−0.593310 + 0.804974i \(0.702179\pi\)
\(558\) 0 0
\(559\) −0.913344 −0.0386303
\(560\) 0 0
\(561\) 0 0
\(562\) 66.2753 2.79566
\(563\) −22.2525 −0.937829 −0.468915 0.883243i \(-0.655355\pi\)
−0.468915 + 0.883243i \(0.655355\pi\)
\(564\) 0 0
\(565\) −11.2805 −0.474576
\(566\) −56.6793 −2.38241
\(567\) 0 0
\(568\) −39.7487 −1.66782
\(569\) −3.10724 −0.130262 −0.0651311 0.997877i \(-0.520747\pi\)
−0.0651311 + 0.997877i \(0.520747\pi\)
\(570\) 0 0
\(571\) 16.5772 0.693733 0.346866 0.937915i \(-0.387246\pi\)
0.346866 + 0.937915i \(0.387246\pi\)
\(572\) 5.76931 0.241227
\(573\) 0 0
\(574\) 0 0
\(575\) −12.1979 −0.508689
\(576\) 0 0
\(577\) 7.45253 0.310253 0.155126 0.987895i \(-0.450422\pi\)
0.155126 + 0.987895i \(0.450422\pi\)
\(578\) 13.4402 0.559039
\(579\) 0 0
\(580\) 41.3102 1.71531
\(581\) 0 0
\(582\) 0 0
\(583\) 1.71194 0.0709014
\(584\) −59.6392 −2.46789
\(585\) 0 0
\(586\) −39.1697 −1.61809
\(587\) 11.9892 0.494845 0.247423 0.968908i \(-0.420416\pi\)
0.247423 + 0.968908i \(0.420416\pi\)
\(588\) 0 0
\(589\) −16.2902 −0.671227
\(590\) 78.1319 3.21664
\(591\) 0 0
\(592\) 21.8577 0.898347
\(593\) −33.4767 −1.37473 −0.687363 0.726314i \(-0.741232\pi\)
−0.687363 + 0.726314i \(0.741232\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 27.3363 1.11974
\(597\) 0 0
\(598\) 13.9099 0.568817
\(599\) 13.5863 0.555120 0.277560 0.960708i \(-0.410474\pi\)
0.277560 + 0.960708i \(0.410474\pi\)
\(600\) 0 0
\(601\) 6.78364 0.276710 0.138355 0.990383i \(-0.455818\pi\)
0.138355 + 0.990383i \(0.455818\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 47.6638 1.93941
\(605\) 22.6757 0.921898
\(606\) 0 0
\(607\) 17.4905 0.709918 0.354959 0.934882i \(-0.384495\pi\)
0.354959 + 0.934882i \(0.384495\pi\)
\(608\) −6.58863 −0.267204
\(609\) 0 0
\(610\) −47.6227 −1.92819
\(611\) 2.09695 0.0848334
\(612\) 0 0
\(613\) −38.2455 −1.54472 −0.772361 0.635184i \(-0.780924\pi\)
−0.772361 + 0.635184i \(0.780924\pi\)
\(614\) −4.65526 −0.187871
\(615\) 0 0
\(616\) 0 0
\(617\) 34.1542 1.37500 0.687498 0.726187i \(-0.258709\pi\)
0.687498 + 0.726187i \(0.258709\pi\)
\(618\) 0 0
\(619\) 8.56805 0.344379 0.172190 0.985064i \(-0.444916\pi\)
0.172190 + 0.985064i \(0.444916\pi\)
\(620\) 70.9761 2.85047
\(621\) 0 0
\(622\) −15.8853 −0.636941
\(623\) 0 0
\(624\) 0 0
\(625\) −31.0791 −1.24317
\(626\) 16.1417 0.645154
\(627\) 0 0
\(628\) 62.7069 2.50228
\(629\) 49.8508 1.98768
\(630\) 0 0
\(631\) −17.7119 −0.705101 −0.352551 0.935793i \(-0.614686\pi\)
−0.352551 + 0.935793i \(0.614686\pi\)
\(632\) −46.4924 −1.84937
\(633\) 0 0
\(634\) 73.0384 2.90073
\(635\) −12.9088 −0.512271
\(636\) 0 0
\(637\) 0 0
\(638\) 15.8853 0.628903
\(639\) 0 0
\(640\) 55.1422 2.17969
\(641\) −16.6117 −0.656121 −0.328061 0.944657i \(-0.606395\pi\)
−0.328061 + 0.944657i \(0.606395\pi\)
\(642\) 0 0
\(643\) −12.9500 −0.510698 −0.255349 0.966849i \(-0.582190\pi\)
−0.255349 + 0.966849i \(0.582190\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 25.3378 0.996902
\(647\) −23.6775 −0.930857 −0.465428 0.885086i \(-0.654100\pi\)
−0.465428 + 0.885086i \(0.654100\pi\)
\(648\) 0 0
\(649\) 19.4319 0.762771
\(650\) −4.96522 −0.194752
\(651\) 0 0
\(652\) −3.10968 −0.121785
\(653\) −22.2811 −0.871927 −0.435963 0.899964i \(-0.643592\pi\)
−0.435963 + 0.899964i \(0.643592\pi\)
\(654\) 0 0
\(655\) 16.9500 0.662291
\(656\) −4.69762 −0.183411
\(657\) 0 0
\(658\) 0 0
\(659\) −15.5165 −0.604435 −0.302218 0.953239i \(-0.597727\pi\)
−0.302218 + 0.953239i \(0.597727\pi\)
\(660\) 0 0
\(661\) −28.1444 −1.09469 −0.547346 0.836906i \(-0.684362\pi\)
−0.547346 + 0.836906i \(0.684362\pi\)
\(662\) −32.9008 −1.27872
\(663\) 0 0
\(664\) 29.3500 1.13900
\(665\) 0 0
\(666\) 0 0
\(667\) 24.7711 0.959139
\(668\) 67.3018 2.60399
\(669\) 0 0
\(670\) 99.3961 3.84000
\(671\) −11.8441 −0.457236
\(672\) 0 0
\(673\) 7.13477 0.275025 0.137513 0.990500i \(-0.456089\pi\)
0.137513 + 0.990500i \(0.456089\pi\)
\(674\) 56.7831 2.18720
\(675\) 0 0
\(676\) 3.66208 0.140849
\(677\) −10.7660 −0.413770 −0.206885 0.978365i \(-0.566333\pi\)
−0.206885 + 0.978365i \(0.566333\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) −50.1046 −1.92142
\(681\) 0 0
\(682\) 27.2928 1.04510
\(683\) 12.2020 0.466898 0.233449 0.972369i \(-0.424999\pi\)
0.233449 + 0.972369i \(0.424999\pi\)
\(684\) 0 0
\(685\) −47.9861 −1.83345
\(686\) 0 0
\(687\) 0 0
\(688\) 1.90583 0.0726593
\(689\) 1.08666 0.0413983
\(690\) 0 0
\(691\) −32.0367 −1.21873 −0.609366 0.792889i \(-0.708576\pi\)
−0.609366 + 0.792889i \(0.708576\pi\)
\(692\) −44.8842 −1.70624
\(693\) 0 0
\(694\) 32.3643 1.22853
\(695\) 7.12331 0.270202
\(696\) 0 0
\(697\) −10.7138 −0.405815
\(698\) 39.0332 1.47743
\(699\) 0 0
\(700\) 0 0
\(701\) 14.9513 0.564704 0.282352 0.959311i \(-0.408885\pi\)
0.282352 + 0.959311i \(0.408885\pi\)
\(702\) 0 0
\(703\) 23.4378 0.883973
\(704\) 17.6134 0.663830
\(705\) 0 0
\(706\) −11.2627 −0.423879
\(707\) 0 0
\(708\) 0 0
\(709\) −8.58279 −0.322333 −0.161167 0.986927i \(-0.551526\pi\)
−0.161167 + 0.986927i \(0.551526\pi\)
\(710\) 63.6638 2.38926
\(711\) 0 0
\(712\) −44.0464 −1.65071
\(713\) 42.5598 1.59388
\(714\) 0 0
\(715\) −4.19389 −0.156843
\(716\) −67.8018 −2.53387
\(717\) 0 0
\(718\) 41.7554 1.55830
\(719\) 35.9644 1.34125 0.670623 0.741798i \(-0.266027\pi\)
0.670623 + 0.741798i \(0.266027\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) −33.2979 −1.23922
\(723\) 0 0
\(724\) 66.5266 2.47244
\(725\) −8.84220 −0.328391
\(726\) 0 0
\(727\) 31.5111 1.16868 0.584341 0.811508i \(-0.301353\pi\)
0.584341 + 0.811508i \(0.301353\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 95.5215 3.53541
\(731\) 4.34662 0.160766
\(732\) 0 0
\(733\) 26.6047 0.982667 0.491334 0.870971i \(-0.336510\pi\)
0.491334 + 0.870971i \(0.336510\pi\)
\(734\) 26.6240 0.982708
\(735\) 0 0
\(736\) 17.2134 0.634496
\(737\) 24.7205 0.910591
\(738\) 0 0
\(739\) −50.3397 −1.85177 −0.925887 0.377800i \(-0.876681\pi\)
−0.925887 + 0.377800i \(0.876681\pi\)
\(740\) −102.118 −3.75393
\(741\) 0 0
\(742\) 0 0
\(743\) −23.4021 −0.858540 −0.429270 0.903176i \(-0.641229\pi\)
−0.429270 + 0.903176i \(0.641229\pi\)
\(744\) 0 0
\(745\) −19.8716 −0.728040
\(746\) −12.9254 −0.473232
\(747\) 0 0
\(748\) −27.4563 −1.00390
\(749\) 0 0
\(750\) 0 0
\(751\) 49.0305 1.78915 0.894574 0.446920i \(-0.147479\pi\)
0.894574 + 0.446920i \(0.147479\pi\)
\(752\) −4.37561 −0.159562
\(753\) 0 0
\(754\) 10.0832 0.367208
\(755\) −34.6483 −1.26098
\(756\) 0 0
\(757\) −35.3883 −1.28621 −0.643106 0.765778i \(-0.722354\pi\)
−0.643106 + 0.765778i \(0.722354\pi\)
\(758\) 25.7992 0.937067
\(759\) 0 0
\(760\) −23.5571 −0.854507
\(761\) 27.7051 1.00431 0.502155 0.864778i \(-0.332541\pi\)
0.502155 + 0.864778i \(0.332541\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) −86.1142 −3.11550
\(765\) 0 0
\(766\) 25.0689 0.905775
\(767\) 12.3344 0.445371
\(768\) 0 0
\(769\) −21.1383 −0.762265 −0.381133 0.924520i \(-0.624466\pi\)
−0.381133 + 0.924520i \(0.624466\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 53.9586 1.94201
\(773\) −41.4537 −1.49099 −0.745493 0.666513i \(-0.767786\pi\)
−0.745493 + 0.666513i \(0.767786\pi\)
\(774\) 0 0
\(775\) −15.1920 −0.545713
\(776\) 57.7606 2.07349
\(777\) 0 0
\(778\) −14.2771 −0.511858
\(779\) −5.03721 −0.180477
\(780\) 0 0
\(781\) 15.8336 0.566572
\(782\) −66.1974 −2.36721
\(783\) 0 0
\(784\) 0 0
\(785\) −45.5836 −1.62695
\(786\) 0 0
\(787\) 28.7711 1.02558 0.512789 0.858515i \(-0.328612\pi\)
0.512789 + 0.858515i \(0.328612\pi\)
\(788\) −53.1031 −1.89172
\(789\) 0 0
\(790\) 74.4649 2.64934
\(791\) 0 0
\(792\) 0 0
\(793\) −7.51805 −0.266974
\(794\) 84.3298 2.99275
\(795\) 0 0
\(796\) 49.5041 1.75463
\(797\) 19.5357 0.691990 0.345995 0.938236i \(-0.387541\pi\)
0.345995 + 0.938236i \(0.387541\pi\)
\(798\) 0 0
\(799\) −9.97942 −0.353046
\(800\) −6.14446 −0.217239
\(801\) 0 0
\(802\) −56.4518 −1.99338
\(803\) 23.7569 0.838362
\(804\) 0 0
\(805\) 0 0
\(806\) 17.3242 0.610217
\(807\) 0 0
\(808\) −45.2241 −1.59098
\(809\) 36.1824 1.27211 0.636053 0.771645i \(-0.280566\pi\)
0.636053 + 0.771645i \(0.280566\pi\)
\(810\) 0 0
\(811\) −0.794087 −0.0278842 −0.0139421 0.999903i \(-0.504438\pi\)
−0.0139421 + 0.999903i \(0.504438\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) −39.2680 −1.37634
\(815\) 2.26052 0.0791827
\(816\) 0 0
\(817\) 2.04361 0.0714967
\(818\) 9.41429 0.329163
\(819\) 0 0
\(820\) 21.9470 0.766422
\(821\) 15.8525 0.553256 0.276628 0.960977i \(-0.410783\pi\)
0.276628 + 0.960977i \(0.410783\pi\)
\(822\) 0 0
\(823\) −20.0412 −0.698591 −0.349295 0.937013i \(-0.613579\pi\)
−0.349295 + 0.937013i \(0.613579\pi\)
\(824\) −44.1008 −1.53633
\(825\) 0 0
\(826\) 0 0
\(827\) −34.7848 −1.20959 −0.604794 0.796382i \(-0.706744\pi\)
−0.604794 + 0.796382i \(0.706744\pi\)
\(828\) 0 0
\(829\) 30.6793 1.06554 0.532769 0.846261i \(-0.321152\pi\)
0.532769 + 0.846261i \(0.321152\pi\)
\(830\) −47.0086 −1.63169
\(831\) 0 0
\(832\) 11.1801 0.387601
\(833\) 0 0
\(834\) 0 0
\(835\) −48.9238 −1.69308
\(836\) −12.9088 −0.446461
\(837\) 0 0
\(838\) −42.9706 −1.48439
\(839\) 39.8238 1.37487 0.687436 0.726245i \(-0.258736\pi\)
0.687436 + 0.726245i \(0.258736\pi\)
\(840\) 0 0
\(841\) −11.0436 −0.380814
\(842\) 58.2875 2.00872
\(843\) 0 0
\(844\) 14.8834 0.512307
\(845\) −2.66208 −0.0915782
\(846\) 0 0
\(847\) 0 0
\(848\) −2.26748 −0.0778655
\(849\) 0 0
\(850\) 23.6296 0.810489
\(851\) −61.2335 −2.09906
\(852\) 0 0
\(853\) −24.7505 −0.847440 −0.423720 0.905793i \(-0.639276\pi\)
−0.423720 + 0.905793i \(0.639276\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) −9.03317 −0.308748
\(857\) 6.47097 0.221044 0.110522 0.993874i \(-0.464748\pi\)
0.110522 + 0.993874i \(0.464748\pi\)
\(858\) 0 0
\(859\) −31.0741 −1.06023 −0.530117 0.847925i \(-0.677852\pi\)
−0.530117 + 0.847925i \(0.677852\pi\)
\(860\) −8.90395 −0.303622
\(861\) 0 0
\(862\) 97.0314 3.30490
\(863\) −28.6391 −0.974885 −0.487442 0.873155i \(-0.662070\pi\)
−0.487442 + 0.873155i \(0.662070\pi\)
\(864\) 0 0
\(865\) 32.6277 1.10938
\(866\) 43.0195 1.46186
\(867\) 0 0
\(868\) 0 0
\(869\) 18.5199 0.628246
\(870\) 0 0
\(871\) 15.6914 0.531681
\(872\) 58.0145 1.96462
\(873\) 0 0
\(874\) −31.1233 −1.05276
\(875\) 0 0
\(876\) 0 0
\(877\) 0.00110921 3.74555e−5 0 1.87278e−5 1.00000i \(-0.499994\pi\)
1.87278e−5 1.00000i \(0.499994\pi\)
\(878\) −49.3894 −1.66681
\(879\) 0 0
\(880\) 8.75121 0.295003
\(881\) 23.9479 0.806824 0.403412 0.915019i \(-0.367824\pi\)
0.403412 + 0.915019i \(0.367824\pi\)
\(882\) 0 0
\(883\) 51.9965 1.74982 0.874911 0.484283i \(-0.160919\pi\)
0.874911 + 0.484283i \(0.160919\pi\)
\(884\) −17.4279 −0.586164
\(885\) 0 0
\(886\) 19.6082 0.658750
\(887\) 10.8697 0.364970 0.182485 0.983209i \(-0.441586\pi\)
0.182485 + 0.983209i \(0.441586\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 70.5472 2.36475
\(891\) 0 0
\(892\) 0.235055 0.00787021
\(893\) −4.69192 −0.157009
\(894\) 0 0
\(895\) 49.2872 1.64749
\(896\) 0 0
\(897\) 0 0
\(898\) −85.9148 −2.86701
\(899\) 30.8513 1.02895
\(900\) 0 0
\(901\) −5.17142 −0.172285
\(902\) 8.43940 0.281001
\(903\) 0 0
\(904\) 16.7590 0.557397
\(905\) −48.3603 −1.60755
\(906\) 0 0
\(907\) −25.4892 −0.846354 −0.423177 0.906047i \(-0.639085\pi\)
−0.423177 + 0.906047i \(0.639085\pi\)
\(908\) −6.17476 −0.204917
\(909\) 0 0
\(910\) 0 0
\(911\) −42.2059 −1.39834 −0.699172 0.714953i \(-0.746448\pi\)
−0.699172 + 0.714953i \(0.746448\pi\)
\(912\) 0 0
\(913\) −11.6914 −0.386928
\(914\) −15.5632 −0.514786
\(915\) 0 0
\(916\) −2.37416 −0.0784445
\(917\) 0 0
\(918\) 0 0
\(919\) −29.4033 −0.969925 −0.484963 0.874535i \(-0.661167\pi\)
−0.484963 + 0.874535i \(0.661167\pi\)
\(920\) 61.5453 2.02909
\(921\) 0 0
\(922\) −34.9758 −1.15187
\(923\) 10.0504 0.330814
\(924\) 0 0
\(925\) 21.8577 0.718677
\(926\) 51.8197 1.70290
\(927\) 0 0
\(928\) 12.4779 0.409608
\(929\) −13.3759 −0.438849 −0.219425 0.975629i \(-0.570418\pi\)
−0.219425 + 0.975629i \(0.570418\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) −11.3789 −0.372730
\(933\) 0 0
\(934\) 83.3033 2.72577
\(935\) 19.9588 0.652724
\(936\) 0 0
\(937\) 24.9981 0.816653 0.408326 0.912836i \(-0.366113\pi\)
0.408326 + 0.912836i \(0.366113\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 20.4426 0.666763
\(941\) 10.5369 0.343493 0.171746 0.985141i \(-0.445059\pi\)
0.171746 + 0.985141i \(0.445059\pi\)
\(942\) 0 0
\(943\) 13.1602 0.428555
\(944\) −25.7377 −0.837692
\(945\) 0 0
\(946\) −3.42388 −0.111320
\(947\) 52.7779 1.71505 0.857525 0.514442i \(-0.172001\pi\)
0.857525 + 0.514442i \(0.172001\pi\)
\(948\) 0 0
\(949\) 15.0797 0.489508
\(950\) 11.1097 0.360446
\(951\) 0 0
\(952\) 0 0
\(953\) −21.8486 −0.707746 −0.353873 0.935294i \(-0.615135\pi\)
−0.353873 + 0.935294i \(0.615135\pi\)
\(954\) 0 0
\(955\) 62.5991 2.02566
\(956\) 55.1726 1.78441
\(957\) 0 0
\(958\) 75.6241 2.44330
\(959\) 0 0
\(960\) 0 0
\(961\) 22.0064 0.709884
\(962\) −24.9254 −0.803627
\(963\) 0 0
\(964\) −94.2180 −3.03456
\(965\) −39.2241 −1.26267
\(966\) 0 0
\(967\) 1.94143 0.0624323 0.0312162 0.999513i \(-0.490062\pi\)
0.0312162 + 0.999513i \(0.490062\pi\)
\(968\) −33.6883 −1.08278
\(969\) 0 0
\(970\) −92.5127 −2.97040
\(971\) −14.9077 −0.478412 −0.239206 0.970969i \(-0.576887\pi\)
−0.239206 + 0.970969i \(0.576887\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) −68.0105 −2.17920
\(975\) 0 0
\(976\) 15.6876 0.502147
\(977\) 16.5353 0.529011 0.264505 0.964384i \(-0.414791\pi\)
0.264505 + 0.964384i \(0.414791\pi\)
\(978\) 0 0
\(979\) 17.5456 0.560759
\(980\) 0 0
\(981\) 0 0
\(982\) −51.6734 −1.64897
\(983\) −30.0694 −0.959065 −0.479533 0.877524i \(-0.659194\pi\)
−0.479533 + 0.877524i \(0.659194\pi\)
\(984\) 0 0
\(985\) 38.6023 1.22997
\(986\) −47.9861 −1.52819
\(987\) 0 0
\(988\) −8.19389 −0.260682
\(989\) −5.33912 −0.169774
\(990\) 0 0
\(991\) 43.5902 1.38469 0.692345 0.721567i \(-0.256578\pi\)
0.692345 + 0.721567i \(0.256578\pi\)
\(992\) 21.4386 0.680677
\(993\) 0 0
\(994\) 0 0
\(995\) −35.9861 −1.14084
\(996\) 0 0
\(997\) −57.8577 −1.83237 −0.916186 0.400753i \(-0.868749\pi\)
−0.916186 + 0.400753i \(0.868749\pi\)
\(998\) −101.580 −3.21546
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 5733.2.a.bf.1.4 4
3.2 odd 2 1911.2.a.s.1.1 4
7.6 odd 2 819.2.a.k.1.4 4
21.20 even 2 273.2.a.e.1.1 4
84.83 odd 2 4368.2.a.br.1.2 4
105.104 even 2 6825.2.a.bg.1.4 4
273.272 even 2 3549.2.a.w.1.4 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
273.2.a.e.1.1 4 21.20 even 2
819.2.a.k.1.4 4 7.6 odd 2
1911.2.a.s.1.1 4 3.2 odd 2
3549.2.a.w.1.4 4 273.272 even 2
4368.2.a.br.1.2 4 84.83 odd 2
5733.2.a.bf.1.4 4 1.1 even 1 trivial
6825.2.a.bg.1.4 4 105.104 even 2