Properties

Label 5733.2.a.bf.1.2
Level $5733$
Weight $2$
Character 5733.1
Self dual yes
Analytic conductor $45.778$
Analytic rank $1$
Dimension $4$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [5733,2,Mod(1,5733)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(5733, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("5733.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 5733 = 3^{2} \cdot 7^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 5733.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(45.7782354788\)
Analytic rank: \(1\)
Dimension: \(4\)
Coefficient field: 4.4.17428.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{3} - 6x^{2} + 4x + 6 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 2 \)
Twist minimal: no (minimal twist has level 273)
Fricke sign: \(1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(-2.10710\) of defining polynomial
Character \(\chi\) \(=\) 5733.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.43986 q^{2} +0.0731828 q^{4} +0.926817 q^{5} +2.77434 q^{8} +O(q^{10})\) \(q-1.43986 q^{2} +0.0731828 q^{4} +0.926817 q^{5} +2.77434 q^{8} -1.33448 q^{10} -4.21419 q^{11} -1.00000 q^{13} -4.14101 q^{16} -2.87971 q^{17} +1.28738 q^{19} +0.0678271 q^{20} +6.06783 q^{22} +8.02072 q^{23} -4.14101 q^{25} +1.43986 q^{26} -3.28738 q^{29} +7.04680 q^{31} +0.413779 q^{32} +4.14637 q^{34} +8.57475 q^{37} -1.85363 q^{38} +2.57130 q^{40} -12.0678 q^{41} +7.14101 q^{43} -0.308407 q^{44} -11.5487 q^{46} +1.95289 q^{47} +5.96245 q^{50} -0.0731828 q^{52} +5.14101 q^{53} -3.90579 q^{55} +4.73334 q^{58} -7.33448 q^{59} -7.75942 q^{61} -10.1464 q^{62} +7.68624 q^{64} -0.926817 q^{65} +12.0414 q^{67} -0.210745 q^{68} -10.7889 q^{71} +8.32568 q^{73} -12.3464 q^{74} +0.0942138 q^{76} +4.47204 q^{79} -3.83796 q^{80} +17.3759 q^{82} -3.80653 q^{83} -2.66896 q^{85} -10.2820 q^{86} -11.6916 q^{88} -5.64793 q^{89} +0.586979 q^{92} -2.81188 q^{94} +1.19316 q^{95} -6.90043 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - q^{2} + 7 q^{4} - 3 q^{5} - 3 q^{8}+O(q^{10}) \) Copy content Toggle raw display \( 4 q - q^{2} + 7 q^{4} - 3 q^{5} - 3 q^{8} + 4 q^{10} + 2 q^{11} - 4 q^{13} + 9 q^{16} - 2 q^{17} - 7 q^{19} - 32 q^{20} - 8 q^{22} - 3 q^{23} + 9 q^{25} + q^{26} - q^{29} - 3 q^{31} - 7 q^{32} + 30 q^{34} + 10 q^{37} + 6 q^{38} + 14 q^{40} - 16 q^{41} + 3 q^{43} + 12 q^{44} - 18 q^{46} + 5 q^{47} - 13 q^{50} - 7 q^{52} - 5 q^{53} - 10 q^{55} - 4 q^{58} - 20 q^{59} - 12 q^{61} - 54 q^{62} + 5 q^{64} + 3 q^{65} - 22 q^{67} - 10 q^{68} + 13 q^{73} + 6 q^{74} + 6 q^{76} + 11 q^{79} - 42 q^{80} - 10 q^{82} + q^{83} + 8 q^{85} + 10 q^{86} - 60 q^{88} - 5 q^{89} - 34 q^{92} - 34 q^{94} - 13 q^{95} + 17 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.43986 −1.01813 −0.509066 0.860728i \(-0.670009\pi\)
−0.509066 + 0.860728i \(0.670009\pi\)
\(3\) 0 0
\(4\) 0.0731828 0.0365914
\(5\) 0.926817 0.414485 0.207243 0.978290i \(-0.433551\pi\)
0.207243 + 0.978290i \(0.433551\pi\)
\(6\) 0 0
\(7\) 0 0
\(8\) 2.77434 0.980876
\(9\) 0 0
\(10\) −1.33448 −0.422000
\(11\) −4.21419 −1.27063 −0.635313 0.772254i \(-0.719129\pi\)
−0.635313 + 0.772254i \(0.719129\pi\)
\(12\) 0 0
\(13\) −1.00000 −0.277350
\(14\) 0 0
\(15\) 0 0
\(16\) −4.14101 −1.03525
\(17\) −2.87971 −0.698432 −0.349216 0.937042i \(-0.613552\pi\)
−0.349216 + 0.937042i \(0.613552\pi\)
\(18\) 0 0
\(19\) 1.28738 0.295344 0.147672 0.989036i \(-0.452822\pi\)
0.147672 + 0.989036i \(0.452822\pi\)
\(20\) 0.0678271 0.0151666
\(21\) 0 0
\(22\) 6.06783 1.29367
\(23\) 8.02072 1.67244 0.836218 0.548397i \(-0.184762\pi\)
0.836218 + 0.548397i \(0.184762\pi\)
\(24\) 0 0
\(25\) −4.14101 −0.828202
\(26\) 1.43986 0.282379
\(27\) 0 0
\(28\) 0 0
\(29\) −3.28738 −0.610450 −0.305225 0.952280i \(-0.598732\pi\)
−0.305225 + 0.952280i \(0.598732\pi\)
\(30\) 0 0
\(31\) 7.04680 1.26564 0.632821 0.774298i \(-0.281897\pi\)
0.632821 + 0.774298i \(0.281897\pi\)
\(32\) 0.413779 0.0731465
\(33\) 0 0
\(34\) 4.14637 0.711096
\(35\) 0 0
\(36\) 0 0
\(37\) 8.57475 1.40968 0.704840 0.709366i \(-0.251019\pi\)
0.704840 + 0.709366i \(0.251019\pi\)
\(38\) −1.85363 −0.300699
\(39\) 0 0
\(40\) 2.57130 0.406559
\(41\) −12.0678 −1.88468 −0.942339 0.334660i \(-0.891379\pi\)
−0.942339 + 0.334660i \(0.891379\pi\)
\(42\) 0 0
\(43\) 7.14101 1.08899 0.544497 0.838763i \(-0.316721\pi\)
0.544497 + 0.838763i \(0.316721\pi\)
\(44\) −0.308407 −0.0464940
\(45\) 0 0
\(46\) −11.5487 −1.70276
\(47\) 1.95289 0.284859 0.142429 0.989805i \(-0.454509\pi\)
0.142429 + 0.989805i \(0.454509\pi\)
\(48\) 0 0
\(49\) 0 0
\(50\) 5.96245 0.843218
\(51\) 0 0
\(52\) −0.0731828 −0.0101486
\(53\) 5.14101 0.706172 0.353086 0.935591i \(-0.385132\pi\)
0.353086 + 0.935591i \(0.385132\pi\)
\(54\) 0 0
\(55\) −3.90579 −0.526656
\(56\) 0 0
\(57\) 0 0
\(58\) 4.73334 0.621519
\(59\) −7.33448 −0.954868 −0.477434 0.878668i \(-0.658433\pi\)
−0.477434 + 0.878668i \(0.658433\pi\)
\(60\) 0 0
\(61\) −7.75942 −0.993492 −0.496746 0.867896i \(-0.665472\pi\)
−0.496746 + 0.867896i \(0.665472\pi\)
\(62\) −10.1464 −1.28859
\(63\) 0 0
\(64\) 7.68624 0.960780
\(65\) −0.926817 −0.114958
\(66\) 0 0
\(67\) 12.0414 1.47110 0.735548 0.677473i \(-0.236925\pi\)
0.735548 + 0.677473i \(0.236925\pi\)
\(68\) −0.210745 −0.0255566
\(69\) 0 0
\(70\) 0 0
\(71\) −10.7889 −1.28041 −0.640206 0.768203i \(-0.721151\pi\)
−0.640206 + 0.768203i \(0.721151\pi\)
\(72\) 0 0
\(73\) 8.32568 0.974447 0.487224 0.873277i \(-0.338010\pi\)
0.487224 + 0.873277i \(0.338010\pi\)
\(74\) −12.3464 −1.43524
\(75\) 0 0
\(76\) 0.0942138 0.0108071
\(77\) 0 0
\(78\) 0 0
\(79\) 4.47204 0.503144 0.251572 0.967839i \(-0.419052\pi\)
0.251572 + 0.967839i \(0.419052\pi\)
\(80\) −3.83796 −0.429097
\(81\) 0 0
\(82\) 17.3759 1.91885
\(83\) −3.80653 −0.417821 −0.208910 0.977935i \(-0.566992\pi\)
−0.208910 + 0.977935i \(0.566992\pi\)
\(84\) 0 0
\(85\) −2.66896 −0.289490
\(86\) −10.2820 −1.10874
\(87\) 0 0
\(88\) −11.6916 −1.24633
\(89\) −5.64793 −0.598680 −0.299340 0.954147i \(-0.596766\pi\)
−0.299340 + 0.954147i \(0.596766\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0.586979 0.0611968
\(93\) 0 0
\(94\) −2.81188 −0.290024
\(95\) 1.19316 0.122416
\(96\) 0 0
\(97\) −6.90043 −0.700633 −0.350316 0.936631i \(-0.613926\pi\)
−0.350316 + 0.936631i \(0.613926\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) −0.303051 −0.0303051
\(101\) −10.9739 −1.09195 −0.545973 0.837803i \(-0.683840\pi\)
−0.545973 + 0.837803i \(0.683840\pi\)
\(102\) 0 0
\(103\) −16.4284 −1.61874 −0.809368 0.587301i \(-0.800190\pi\)
−0.809368 + 0.587301i \(0.800190\pi\)
\(104\) −2.77434 −0.272046
\(105\) 0 0
\(106\) −7.40231 −0.718976
\(107\) 3.45446 0.333955 0.166978 0.985961i \(-0.446599\pi\)
0.166978 + 0.985961i \(0.446599\pi\)
\(108\) 0 0
\(109\) 4.66896 0.447206 0.223603 0.974680i \(-0.428218\pi\)
0.223603 + 0.974680i \(0.428218\pi\)
\(110\) 5.62377 0.536205
\(111\) 0 0
\(112\) 0 0
\(113\) 3.28738 0.309250 0.154625 0.987973i \(-0.450583\pi\)
0.154625 + 0.987973i \(0.450583\pi\)
\(114\) 0 0
\(115\) 7.43374 0.693200
\(116\) −0.240579 −0.0223372
\(117\) 0 0
\(118\) 10.5606 0.972181
\(119\) 0 0
\(120\) 0 0
\(121\) 6.75942 0.614493
\(122\) 11.1724 1.01151
\(123\) 0 0
\(124\) 0.515704 0.0463116
\(125\) −8.47204 −0.757763
\(126\) 0 0
\(127\) −0.428386 −0.0380131 −0.0190065 0.999819i \(-0.506050\pi\)
−0.0190065 + 0.999819i \(0.506050\pi\)
\(128\) −11.8946 −1.05135
\(129\) 0 0
\(130\) 1.33448 0.117042
\(131\) 14.1878 1.23959 0.619797 0.784762i \(-0.287215\pi\)
0.619797 + 0.784762i \(0.287215\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) −17.3379 −1.49777
\(135\) 0 0
\(136\) −7.98929 −0.685076
\(137\) −14.7070 −1.25650 −0.628250 0.778011i \(-0.716229\pi\)
−0.628250 + 0.778011i \(0.716229\pi\)
\(138\) 0 0
\(139\) −9.85363 −0.835774 −0.417887 0.908499i \(-0.637229\pi\)
−0.417887 + 0.908499i \(0.637229\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 15.5345 1.30363
\(143\) 4.21419 0.352409
\(144\) 0 0
\(145\) −3.04680 −0.253023
\(146\) −11.9878 −0.992115
\(147\) 0 0
\(148\) 0.627525 0.0515822
\(149\) 3.38663 0.277444 0.138722 0.990331i \(-0.455701\pi\)
0.138722 + 0.990331i \(0.455701\pi\)
\(150\) 0 0
\(151\) −21.8951 −1.78180 −0.890898 0.454204i \(-0.849924\pi\)
−0.890898 + 0.454204i \(0.849924\pi\)
\(152\) 3.57161 0.289696
\(153\) 0 0
\(154\) 0 0
\(155\) 6.53109 0.524590
\(156\) 0 0
\(157\) 0.867482 0.0692326 0.0346163 0.999401i \(-0.488979\pi\)
0.0346163 + 0.999401i \(0.488979\pi\)
\(158\) −6.43910 −0.512267
\(159\) 0 0
\(160\) 0.383498 0.0303182
\(161\) 0 0
\(162\) 0 0
\(163\) 4.42839 0.346858 0.173429 0.984846i \(-0.444515\pi\)
0.173429 + 0.984846i \(0.444515\pi\)
\(164\) −0.883158 −0.0689630
\(165\) 0 0
\(166\) 5.48085 0.425396
\(167\) 20.5276 1.58848 0.794238 0.607606i \(-0.207870\pi\)
0.794238 + 0.607606i \(0.207870\pi\)
\(168\) 0 0
\(169\) 1.00000 0.0769231
\(170\) 3.84292 0.294739
\(171\) 0 0
\(172\) 0.522599 0.0398478
\(173\) 15.0154 1.14160 0.570799 0.821090i \(-0.306634\pi\)
0.570799 + 0.821090i \(0.306634\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 17.4510 1.31542
\(177\) 0 0
\(178\) 8.13221 0.609535
\(179\) 5.35176 0.400009 0.200004 0.979795i \(-0.435904\pi\)
0.200004 + 0.979795i \(0.435904\pi\)
\(180\) 0 0
\(181\) −11.4667 −0.852312 −0.426156 0.904650i \(-0.640133\pi\)
−0.426156 + 0.904650i \(0.640133\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 22.2522 1.64045
\(185\) 7.94723 0.584292
\(186\) 0 0
\(187\) 12.1357 0.887447
\(188\) 0.142918 0.0104234
\(189\) 0 0
\(190\) −1.71798 −0.124635
\(191\) −20.1756 −1.45985 −0.729927 0.683525i \(-0.760446\pi\)
−0.729927 + 0.683525i \(0.760446\pi\)
\(192\) 0 0
\(193\) −26.3756 −1.89856 −0.949279 0.314435i \(-0.898185\pi\)
−0.949279 + 0.314435i \(0.898185\pi\)
\(194\) 9.93562 0.713336
\(195\) 0 0
\(196\) 0 0
\(197\) 20.1322 1.43436 0.717180 0.696888i \(-0.245432\pi\)
0.717180 + 0.696888i \(0.245432\pi\)
\(198\) 0 0
\(199\) −1.75942 −0.124722 −0.0623610 0.998054i \(-0.519863\pi\)
−0.0623610 + 0.998054i \(0.519863\pi\)
\(200\) −11.4886 −0.812364
\(201\) 0 0
\(202\) 15.8009 1.11174
\(203\) 0 0
\(204\) 0 0
\(205\) −11.1847 −0.781171
\(206\) 23.6545 1.64809
\(207\) 0 0
\(208\) 4.14101 0.287127
\(209\) −5.42525 −0.375272
\(210\) 0 0
\(211\) 15.5694 1.07184 0.535921 0.844268i \(-0.319965\pi\)
0.535921 + 0.844268i \(0.319965\pi\)
\(212\) 0.376234 0.0258398
\(213\) 0 0
\(214\) −4.97392 −0.340010
\(215\) 6.61841 0.451372
\(216\) 0 0
\(217\) 0 0
\(218\) −6.72263 −0.455314
\(219\) 0 0
\(220\) −0.285836 −0.0192711
\(221\) 2.87971 0.193710
\(222\) 0 0
\(223\) 11.5694 0.774744 0.387372 0.921923i \(-0.373383\pi\)
0.387372 + 0.921923i \(0.373383\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) −4.73334 −0.314857
\(227\) −11.0418 −0.732867 −0.366433 0.930444i \(-0.619421\pi\)
−0.366433 + 0.930444i \(0.619421\pi\)
\(228\) 0 0
\(229\) 13.7073 0.905802 0.452901 0.891561i \(-0.350389\pi\)
0.452901 + 0.891561i \(0.350389\pi\)
\(230\) −10.7035 −0.705769
\(231\) 0 0
\(232\) −9.12029 −0.598776
\(233\) −1.23522 −0.0809222 −0.0404611 0.999181i \(-0.512883\pi\)
−0.0404611 + 0.999181i \(0.512883\pi\)
\(234\) 0 0
\(235\) 1.80997 0.118070
\(236\) −0.536758 −0.0349400
\(237\) 0 0
\(238\) 0 0
\(239\) −19.1061 −1.23587 −0.617936 0.786228i \(-0.712031\pi\)
−0.617936 + 0.786228i \(0.712031\pi\)
\(240\) 0 0
\(241\) 12.0329 0.775110 0.387555 0.921847i \(-0.373320\pi\)
0.387555 + 0.921847i \(0.373320\pi\)
\(242\) −9.73259 −0.625634
\(243\) 0 0
\(244\) −0.567856 −0.0363533
\(245\) 0 0
\(246\) 0 0
\(247\) −1.28738 −0.0819137
\(248\) 19.5502 1.24144
\(249\) 0 0
\(250\) 12.1985 0.771502
\(251\) −15.0031 −0.946990 −0.473495 0.880797i \(-0.657008\pi\)
−0.473495 + 0.880797i \(0.657008\pi\)
\(252\) 0 0
\(253\) −33.8009 −2.12504
\(254\) 0.616813 0.0387023
\(255\) 0 0
\(256\) 1.75406 0.109629
\(257\) −13.0261 −0.812544 −0.406272 0.913752i \(-0.633172\pi\)
−0.406272 + 0.913752i \(0.633172\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) −0.0678271 −0.00420646
\(261\) 0 0
\(262\) −20.4284 −1.26207
\(263\) 2.59547 0.160044 0.0800218 0.996793i \(-0.474501\pi\)
0.0800218 + 0.996793i \(0.474501\pi\)
\(264\) 0 0
\(265\) 4.76478 0.292698
\(266\) 0 0
\(267\) 0 0
\(268\) 0.881227 0.0538295
\(269\) −23.3081 −1.42112 −0.710560 0.703637i \(-0.751558\pi\)
−0.710560 + 0.703637i \(0.751558\pi\)
\(270\) 0 0
\(271\) 6.05215 0.367642 0.183821 0.982960i \(-0.441153\pi\)
0.183821 + 0.982960i \(0.441153\pi\)
\(272\) 11.9249 0.723054
\(273\) 0 0
\(274\) 21.1759 1.27928
\(275\) 17.4510 1.05234
\(276\) 0 0
\(277\) 15.1932 0.912869 0.456434 0.889757i \(-0.349126\pi\)
0.456434 + 0.889757i \(0.349126\pi\)
\(278\) 14.1878 0.850928
\(279\) 0 0
\(280\) 0 0
\(281\) 7.57506 0.451890 0.225945 0.974140i \(-0.427453\pi\)
0.225945 + 0.974140i \(0.427453\pi\)
\(282\) 0 0
\(283\) −19.0974 −1.13522 −0.567610 0.823298i \(-0.692132\pi\)
−0.567610 + 0.823298i \(0.692132\pi\)
\(284\) −0.789565 −0.0468521
\(285\) 0 0
\(286\) −6.06783 −0.358798
\(287\) 0 0
\(288\) 0 0
\(289\) −8.70727 −0.512192
\(290\) 4.38695 0.257610
\(291\) 0 0
\(292\) 0.609297 0.0356564
\(293\) −3.79430 −0.221665 −0.110833 0.993839i \(-0.535352\pi\)
−0.110833 + 0.993839i \(0.535352\pi\)
\(294\) 0 0
\(295\) −6.79772 −0.395779
\(296\) 23.7893 1.38272
\(297\) 0 0
\(298\) −4.87626 −0.282474
\(299\) −8.02072 −0.463850
\(300\) 0 0
\(301\) 0 0
\(302\) 31.5257 1.81410
\(303\) 0 0
\(304\) −5.33104 −0.305756
\(305\) −7.19156 −0.411788
\(306\) 0 0
\(307\) 5.19316 0.296389 0.148195 0.988958i \(-0.452654\pi\)
0.148195 + 0.988958i \(0.452654\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) −9.40383 −0.534101
\(311\) −13.8536 −0.785568 −0.392784 0.919631i \(-0.628488\pi\)
−0.392784 + 0.919631i \(0.628488\pi\)
\(312\) 0 0
\(313\) 32.6162 1.84358 0.921788 0.387694i \(-0.126728\pi\)
0.921788 + 0.387694i \(0.126728\pi\)
\(314\) −1.24905 −0.0704879
\(315\) 0 0
\(316\) 0.327277 0.0184108
\(317\) −12.0380 −0.676121 −0.338061 0.941124i \(-0.609771\pi\)
−0.338061 + 0.941124i \(0.609771\pi\)
\(318\) 0 0
\(319\) 13.8536 0.775655
\(320\) 7.12374 0.398229
\(321\) 0 0
\(322\) 0 0
\(323\) −3.70727 −0.206278
\(324\) 0 0
\(325\) 4.14101 0.229702
\(326\) −6.37623 −0.353147
\(327\) 0 0
\(328\) −33.4802 −1.84864
\(329\) 0 0
\(330\) 0 0
\(331\) −26.2820 −1.44459 −0.722295 0.691585i \(-0.756913\pi\)
−0.722295 + 0.691585i \(0.756913\pi\)
\(332\) −0.278572 −0.0152886
\(333\) 0 0
\(334\) −29.5568 −1.61728
\(335\) 11.1602 0.609748
\(336\) 0 0
\(337\) 26.2905 1.43214 0.716068 0.698031i \(-0.245940\pi\)
0.716068 + 0.698031i \(0.245940\pi\)
\(338\) −1.43986 −0.0783178
\(339\) 0 0
\(340\) −0.195322 −0.0105928
\(341\) −29.6966 −1.60816
\(342\) 0 0
\(343\) 0 0
\(344\) 19.8116 1.06817
\(345\) 0 0
\(346\) −21.6199 −1.16230
\(347\) −16.4928 −0.885378 −0.442689 0.896675i \(-0.645975\pi\)
−0.442689 + 0.896675i \(0.645975\pi\)
\(348\) 0 0
\(349\) −14.1793 −0.759001 −0.379501 0.925191i \(-0.623904\pi\)
−0.379501 + 0.925191i \(0.623904\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) −1.74375 −0.0929419
\(353\) −29.8272 −1.58754 −0.793772 0.608215i \(-0.791886\pi\)
−0.793772 + 0.608215i \(0.791886\pi\)
\(354\) 0 0
\(355\) −9.99938 −0.530712
\(356\) −0.413332 −0.0219065
\(357\) 0 0
\(358\) −7.70575 −0.407262
\(359\) −1.34671 −0.0710767 −0.0355383 0.999368i \(-0.511315\pi\)
−0.0355383 + 0.999368i \(0.511315\pi\)
\(360\) 0 0
\(361\) −17.3427 −0.912772
\(362\) 16.5104 0.867766
\(363\) 0 0
\(364\) 0 0
\(365\) 7.71638 0.403894
\(366\) 0 0
\(367\) −36.1771 −1.88843 −0.944214 0.329331i \(-0.893177\pi\)
−0.944214 + 0.329331i \(0.893177\pi\)
\(368\) −33.2139 −1.73139
\(369\) 0 0
\(370\) −11.4429 −0.594886
\(371\) 0 0
\(372\) 0 0
\(373\) −16.9089 −0.875511 −0.437755 0.899094i \(-0.644226\pi\)
−0.437755 + 0.899094i \(0.644226\pi\)
\(374\) −17.4736 −0.903538
\(375\) 0 0
\(376\) 5.41798 0.279411
\(377\) 3.28738 0.169308
\(378\) 0 0
\(379\) −11.6131 −0.596523 −0.298261 0.954484i \(-0.596407\pi\)
−0.298261 + 0.954484i \(0.596407\pi\)
\(380\) 0.0873190 0.00447937
\(381\) 0 0
\(382\) 29.0499 1.48632
\(383\) 14.6134 0.746708 0.373354 0.927689i \(-0.378208\pi\)
0.373354 + 0.927689i \(0.378208\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 37.9771 1.93298
\(387\) 0 0
\(388\) −0.504993 −0.0256371
\(389\) −6.00000 −0.304212 −0.152106 0.988364i \(-0.548606\pi\)
−0.152106 + 0.988364i \(0.548606\pi\)
\(390\) 0 0
\(391\) −23.0974 −1.16808
\(392\) 0 0
\(393\) 0 0
\(394\) −28.9875 −1.46037
\(395\) 4.14477 0.208546
\(396\) 0 0
\(397\) −25.6982 −1.28975 −0.644877 0.764287i \(-0.723091\pi\)
−0.644877 + 0.764287i \(0.723091\pi\)
\(398\) 2.53331 0.126983
\(399\) 0 0
\(400\) 17.1480 0.857398
\(401\) 19.5637 0.976966 0.488483 0.872573i \(-0.337550\pi\)
0.488483 + 0.872573i \(0.337550\pi\)
\(402\) 0 0
\(403\) −7.04680 −0.351026
\(404\) −0.803103 −0.0399559
\(405\) 0 0
\(406\) 0 0
\(407\) −36.1357 −1.79118
\(408\) 0 0
\(409\) −3.19316 −0.157892 −0.0789458 0.996879i \(-0.525155\pi\)
−0.0789458 + 0.996879i \(0.525155\pi\)
\(410\) 16.1043 0.795335
\(411\) 0 0
\(412\) −1.20228 −0.0592319
\(413\) 0 0
\(414\) 0 0
\(415\) −3.52796 −0.173181
\(416\) −0.413779 −0.0202872
\(417\) 0 0
\(418\) 7.81157 0.382076
\(419\) 30.2292 1.47680 0.738398 0.674366i \(-0.235583\pi\)
0.738398 + 0.674366i \(0.235583\pi\)
\(420\) 0 0
\(421\) 26.9510 1.31351 0.656755 0.754104i \(-0.271928\pi\)
0.656755 + 0.754104i \(0.271928\pi\)
\(422\) −22.4177 −1.09128
\(423\) 0 0
\(424\) 14.2629 0.692668
\(425\) 11.9249 0.578443
\(426\) 0 0
\(427\) 0 0
\(428\) 0.252807 0.0122199
\(429\) 0 0
\(430\) −9.52955 −0.459556
\(431\) −16.7713 −0.807847 −0.403923 0.914793i \(-0.632354\pi\)
−0.403923 + 0.914793i \(0.632354\pi\)
\(432\) 0 0
\(433\) −25.8530 −1.24242 −0.621208 0.783646i \(-0.713358\pi\)
−0.621208 + 0.783646i \(0.713358\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0.341688 0.0163639
\(437\) 10.3257 0.493944
\(438\) 0 0
\(439\) −25.0553 −1.19582 −0.597912 0.801562i \(-0.704003\pi\)
−0.597912 + 0.801562i \(0.704003\pi\)
\(440\) −10.8360 −0.516585
\(441\) 0 0
\(442\) −4.14637 −0.197223
\(443\) −4.64762 −0.220815 −0.110408 0.993886i \(-0.535216\pi\)
−0.110408 + 0.993886i \(0.535216\pi\)
\(444\) 0 0
\(445\) −5.23460 −0.248144
\(446\) −16.6583 −0.788791
\(447\) 0 0
\(448\) 0 0
\(449\) −0.494696 −0.0233462 −0.0116731 0.999932i \(-0.503716\pi\)
−0.0116731 + 0.999932i \(0.503716\pi\)
\(450\) 0 0
\(451\) 50.8561 2.39472
\(452\) 0.240579 0.0113159
\(453\) 0 0
\(454\) 15.8985 0.746155
\(455\) 0 0
\(456\) 0 0
\(457\) 26.4698 1.23821 0.619103 0.785310i \(-0.287496\pi\)
0.619103 + 0.785310i \(0.287496\pi\)
\(458\) −19.7365 −0.922225
\(459\) 0 0
\(460\) 0.544022 0.0253652
\(461\) −1.08168 −0.0503786 −0.0251893 0.999683i \(-0.508019\pi\)
−0.0251893 + 0.999683i \(0.508019\pi\)
\(462\) 0 0
\(463\) −32.7098 −1.52015 −0.760076 0.649834i \(-0.774838\pi\)
−0.760076 + 0.649834i \(0.774838\pi\)
\(464\) 13.6131 0.631970
\(465\) 0 0
\(466\) 1.77854 0.0823894
\(467\) −17.0797 −0.790356 −0.395178 0.918605i \(-0.629317\pi\)
−0.395178 + 0.918605i \(0.629317\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) −2.60610 −0.120211
\(471\) 0 0
\(472\) −20.3483 −0.936608
\(473\) −30.0936 −1.38370
\(474\) 0 0
\(475\) −5.33104 −0.244605
\(476\) 0 0
\(477\) 0 0
\(478\) 27.5101 1.25828
\(479\) −17.1790 −0.784929 −0.392464 0.919767i \(-0.628377\pi\)
−0.392464 + 0.919767i \(0.628377\pi\)
\(480\) 0 0
\(481\) −8.57475 −0.390975
\(482\) −17.3257 −0.789164
\(483\) 0 0
\(484\) 0.494674 0.0224852
\(485\) −6.39544 −0.290402
\(486\) 0 0
\(487\) −4.28264 −0.194065 −0.0970325 0.995281i \(-0.530935\pi\)
−0.0970325 + 0.995281i \(0.530935\pi\)
\(488\) −21.5273 −0.974493
\(489\) 0 0
\(490\) 0 0
\(491\) −27.4545 −1.23900 −0.619501 0.784996i \(-0.712665\pi\)
−0.619501 + 0.784996i \(0.712665\pi\)
\(492\) 0 0
\(493\) 9.46669 0.426358
\(494\) 1.85363 0.0833990
\(495\) 0 0
\(496\) −29.1809 −1.31026
\(497\) 0 0
\(498\) 0 0
\(499\) −37.0452 −1.65837 −0.829185 0.558974i \(-0.811195\pi\)
−0.829185 + 0.558974i \(0.811195\pi\)
\(500\) −0.620008 −0.0277276
\(501\) 0 0
\(502\) 21.6023 0.964160
\(503\) 3.23744 0.144350 0.0721752 0.997392i \(-0.477006\pi\)
0.0721752 + 0.997392i \(0.477006\pi\)
\(504\) 0 0
\(505\) −10.1708 −0.452596
\(506\) 48.6683 2.16357
\(507\) 0 0
\(508\) −0.0313505 −0.00139095
\(509\) −30.4877 −1.35134 −0.675672 0.737202i \(-0.736147\pi\)
−0.675672 + 0.737202i \(0.736147\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 21.2637 0.939730
\(513\) 0 0
\(514\) 18.7557 0.827277
\(515\) −15.2261 −0.670943
\(516\) 0 0
\(517\) −8.22987 −0.361949
\(518\) 0 0
\(519\) 0 0
\(520\) −2.57130 −0.112759
\(521\) −25.3602 −1.11105 −0.555526 0.831499i \(-0.687483\pi\)
−0.555526 + 0.831499i \(0.687483\pi\)
\(522\) 0 0
\(523\) 7.00314 0.306226 0.153113 0.988209i \(-0.451070\pi\)
0.153113 + 0.988209i \(0.451070\pi\)
\(524\) 1.03830 0.0453585
\(525\) 0 0
\(526\) −3.73710 −0.162945
\(527\) −20.2927 −0.883965
\(528\) 0 0
\(529\) 41.3320 1.79704
\(530\) −6.86059 −0.298005
\(531\) 0 0
\(532\) 0 0
\(533\) 12.0678 0.522716
\(534\) 0 0
\(535\) 3.20165 0.138420
\(536\) 33.4070 1.44296
\(537\) 0 0
\(538\) 33.5603 1.44689
\(539\) 0 0
\(540\) 0 0
\(541\) −1.42463 −0.0612495 −0.0306248 0.999531i \(-0.509750\pi\)
−0.0306248 + 0.999531i \(0.509750\pi\)
\(542\) −8.71422 −0.374308
\(543\) 0 0
\(544\) −1.19156 −0.0510879
\(545\) 4.32728 0.185360
\(546\) 0 0
\(547\) −22.0499 −0.942787 −0.471394 0.881923i \(-0.656249\pi\)
−0.471394 + 0.881923i \(0.656249\pi\)
\(548\) −1.07630 −0.0459771
\(549\) 0 0
\(550\) −25.1269 −1.07142
\(551\) −4.23209 −0.180293
\(552\) 0 0
\(553\) 0 0
\(554\) −21.8760 −0.929420
\(555\) 0 0
\(556\) −0.721117 −0.0305822
\(557\) 9.08319 0.384867 0.192434 0.981310i \(-0.438362\pi\)
0.192434 + 0.981310i \(0.438362\pi\)
\(558\) 0 0
\(559\) −7.14101 −0.302033
\(560\) 0 0
\(561\) 0 0
\(562\) −10.9070 −0.460084
\(563\) 34.1350 1.43862 0.719310 0.694689i \(-0.244458\pi\)
0.719310 + 0.694689i \(0.244458\pi\)
\(564\) 0 0
\(565\) 3.04680 0.128180
\(566\) 27.4974 1.15580
\(567\) 0 0
\(568\) −29.9322 −1.25593
\(569\) −1.23522 −0.0517833 −0.0258916 0.999665i \(-0.508242\pi\)
−0.0258916 + 0.999665i \(0.508242\pi\)
\(570\) 0 0
\(571\) −26.4613 −1.10737 −0.553686 0.832725i \(-0.686779\pi\)
−0.553686 + 0.832725i \(0.686779\pi\)
\(572\) 0.308407 0.0128951
\(573\) 0 0
\(574\) 0 0
\(575\) −33.2139 −1.38511
\(576\) 0 0
\(577\) 23.2852 0.969374 0.484687 0.874688i \(-0.338934\pi\)
0.484687 + 0.874688i \(0.338934\pi\)
\(578\) 12.5372 0.521479
\(579\) 0 0
\(580\) −0.222973 −0.00925846
\(581\) 0 0
\(582\) 0 0
\(583\) −21.6652 −0.897281
\(584\) 23.0982 0.955812
\(585\) 0 0
\(586\) 5.46324 0.225684
\(587\) −10.7155 −0.442274 −0.221137 0.975243i \(-0.570977\pi\)
−0.221137 + 0.975243i \(0.570977\pi\)
\(588\) 0 0
\(589\) 9.07187 0.373800
\(590\) 9.78774 0.402955
\(591\) 0 0
\(592\) −35.5081 −1.45938
\(593\) 14.1008 0.579049 0.289525 0.957171i \(-0.406503\pi\)
0.289525 + 0.957171i \(0.406503\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0.247843 0.0101521
\(597\) 0 0
\(598\) 11.5487 0.472260
\(599\) 38.9296 1.59062 0.795311 0.606202i \(-0.207308\pi\)
0.795311 + 0.606202i \(0.207308\pi\)
\(600\) 0 0
\(601\) 32.6162 1.33044 0.665221 0.746646i \(-0.268337\pi\)
0.665221 + 0.746646i \(0.268337\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) −1.60234 −0.0651984
\(605\) 6.26475 0.254698
\(606\) 0 0
\(607\) −19.3203 −0.784188 −0.392094 0.919925i \(-0.628249\pi\)
−0.392094 + 0.919925i \(0.628249\pi\)
\(608\) 0.532689 0.0216034
\(609\) 0 0
\(610\) 10.3548 0.419254
\(611\) −1.95289 −0.0790056
\(612\) 0 0
\(613\) 35.3197 1.42655 0.713275 0.700885i \(-0.247211\pi\)
0.713275 + 0.700885i \(0.247211\pi\)
\(614\) −7.47740 −0.301763
\(615\) 0 0
\(616\) 0 0
\(617\) 24.4318 0.983589 0.491794 0.870711i \(-0.336341\pi\)
0.491794 + 0.870711i \(0.336341\pi\)
\(618\) 0 0
\(619\) −2.90892 −0.116919 −0.0584597 0.998290i \(-0.518619\pi\)
−0.0584597 + 0.998290i \(0.518619\pi\)
\(620\) 0.477964 0.0191955
\(621\) 0 0
\(622\) 19.9472 0.799811
\(623\) 0 0
\(624\) 0 0
\(625\) 12.8530 0.514121
\(626\) −46.9626 −1.87700
\(627\) 0 0
\(628\) 0.0634848 0.00253332
\(629\) −24.6928 −0.984566
\(630\) 0 0
\(631\) 5.66521 0.225528 0.112764 0.993622i \(-0.464030\pi\)
0.112764 + 0.993622i \(0.464030\pi\)
\(632\) 12.4070 0.493522
\(633\) 0 0
\(634\) 17.3330 0.688380
\(635\) −0.397035 −0.0157559
\(636\) 0 0
\(637\) 0 0
\(638\) −19.9472 −0.789718
\(639\) 0 0
\(640\) −11.0241 −0.435768
\(641\) −12.2842 −0.485198 −0.242599 0.970127i \(-0.578000\pi\)
−0.242599 + 0.970127i \(0.578000\pi\)
\(642\) 0 0
\(643\) −9.14950 −0.360821 −0.180411 0.983591i \(-0.557743\pi\)
−0.180411 + 0.983591i \(0.557743\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 5.33793 0.210018
\(647\) 38.4108 1.51008 0.755042 0.655677i \(-0.227617\pi\)
0.755042 + 0.655677i \(0.227617\pi\)
\(648\) 0 0
\(649\) 30.9089 1.21328
\(650\) −5.96245 −0.233867
\(651\) 0 0
\(652\) 0.324082 0.0126920
\(653\) −28.4805 −1.11453 −0.557265 0.830335i \(-0.688149\pi\)
−0.557265 + 0.830335i \(0.688149\pi\)
\(654\) 0 0
\(655\) 13.1495 0.513794
\(656\) 49.9730 1.95112
\(657\) 0 0
\(658\) 0 0
\(659\) 30.4384 1.18571 0.592856 0.805309i \(-0.298000\pi\)
0.592856 + 0.805309i \(0.298000\pi\)
\(660\) 0 0
\(661\) −36.7710 −1.43023 −0.715114 0.699008i \(-0.753625\pi\)
−0.715114 + 0.699008i \(0.753625\pi\)
\(662\) 37.8423 1.47078
\(663\) 0 0
\(664\) −10.5606 −0.409830
\(665\) 0 0
\(666\) 0 0
\(667\) −26.3671 −1.02094
\(668\) 1.50227 0.0581246
\(669\) 0 0
\(670\) −16.0691 −0.620803
\(671\) 32.6997 1.26236
\(672\) 0 0
\(673\) 26.7961 1.03291 0.516457 0.856313i \(-0.327250\pi\)
0.516457 + 0.856313i \(0.327250\pi\)
\(674\) −37.8545 −1.45810
\(675\) 0 0
\(676\) 0.0731828 0.00281472
\(677\) −20.3050 −0.780383 −0.390191 0.920734i \(-0.627591\pi\)
−0.390191 + 0.920734i \(0.627591\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) −7.40461 −0.283954
\(681\) 0 0
\(682\) 42.7587 1.63732
\(683\) −44.9240 −1.71897 −0.859484 0.511162i \(-0.829215\pi\)
−0.859484 + 0.511162i \(0.829215\pi\)
\(684\) 0 0
\(685\) −13.6307 −0.520801
\(686\) 0 0
\(687\) 0 0
\(688\) −29.5710 −1.12738
\(689\) −5.14101 −0.195857
\(690\) 0 0
\(691\) −22.0085 −0.837243 −0.418621 0.908161i \(-0.637487\pi\)
−0.418621 + 0.908161i \(0.637487\pi\)
\(692\) 1.09887 0.0417726
\(693\) 0 0
\(694\) 23.7472 0.901431
\(695\) −9.13252 −0.346416
\(696\) 0 0
\(697\) 34.7518 1.31632
\(698\) 20.4162 0.772763
\(699\) 0 0
\(700\) 0 0
\(701\) −31.4645 −1.18840 −0.594198 0.804319i \(-0.702531\pi\)
−0.594198 + 0.804319i \(0.702531\pi\)
\(702\) 0 0
\(703\) 11.0389 0.416341
\(704\) −32.3913 −1.22079
\(705\) 0 0
\(706\) 42.9469 1.61633
\(707\) 0 0
\(708\) 0 0
\(709\) −25.3373 −0.951563 −0.475781 0.879564i \(-0.657835\pi\)
−0.475781 + 0.879564i \(0.657835\pi\)
\(710\) 14.3977 0.540334
\(711\) 0 0
\(712\) −15.6693 −0.587231
\(713\) 56.5204 2.11670
\(714\) 0 0
\(715\) 3.90579 0.146068
\(716\) 0.391657 0.0146369
\(717\) 0 0
\(718\) 1.93907 0.0723654
\(719\) −43.8002 −1.63347 −0.816737 0.577011i \(-0.804219\pi\)
−0.816737 + 0.577011i \(0.804219\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 24.9709 0.929322
\(723\) 0 0
\(724\) −0.839165 −0.0311873
\(725\) 13.6131 0.505576
\(726\) 0 0
\(727\) −0.944090 −0.0350144 −0.0175072 0.999847i \(-0.505573\pi\)
−0.0175072 + 0.999847i \(0.505573\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) −11.1105 −0.411217
\(731\) −20.5640 −0.760588
\(732\) 0 0
\(733\) 5.09957 0.188357 0.0941784 0.995555i \(-0.469978\pi\)
0.0941784 + 0.995555i \(0.469978\pi\)
\(734\) 52.0898 1.92267
\(735\) 0 0
\(736\) 3.31881 0.122333
\(737\) −50.7450 −1.86921
\(738\) 0 0
\(739\) −8.25129 −0.303529 −0.151764 0.988417i \(-0.548495\pi\)
−0.151764 + 0.988417i \(0.548495\pi\)
\(740\) 0.581601 0.0213801
\(741\) 0 0
\(742\) 0 0
\(743\) −38.4962 −1.41229 −0.706145 0.708068i \(-0.749567\pi\)
−0.706145 + 0.708068i \(0.749567\pi\)
\(744\) 0 0
\(745\) 3.13879 0.114996
\(746\) 24.3464 0.891385
\(747\) 0 0
\(748\) 0.888121 0.0324729
\(749\) 0 0
\(750\) 0 0
\(751\) −41.3175 −1.50770 −0.753848 0.657049i \(-0.771805\pi\)
−0.753848 + 0.657049i \(0.771805\pi\)
\(752\) −8.08695 −0.294901
\(753\) 0 0
\(754\) −4.73334 −0.172378
\(755\) −20.2927 −0.738528
\(756\) 0 0
\(757\) −39.7158 −1.44349 −0.721747 0.692157i \(-0.756661\pi\)
−0.721747 + 0.692157i \(0.756661\pi\)
\(758\) 16.7211 0.607338
\(759\) 0 0
\(760\) 3.31023 0.120075
\(761\) 10.7390 0.389289 0.194644 0.980874i \(-0.437645\pi\)
0.194644 + 0.980874i \(0.437645\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) −1.47651 −0.0534181
\(765\) 0 0
\(766\) −21.0411 −0.760247
\(767\) 7.33448 0.264833
\(768\) 0 0
\(769\) 50.5549 1.82306 0.911529 0.411237i \(-0.134903\pi\)
0.911529 + 0.411237i \(0.134903\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) −1.93024 −0.0694709
\(773\) 8.91770 0.320747 0.160374 0.987056i \(-0.448730\pi\)
0.160374 + 0.987056i \(0.448730\pi\)
\(774\) 0 0
\(775\) −29.1809 −1.04821
\(776\) −19.1441 −0.687234
\(777\) 0 0
\(778\) 8.63913 0.309728
\(779\) −15.5358 −0.556629
\(780\) 0 0
\(781\) 45.4667 1.62693
\(782\) 33.2568 1.18926
\(783\) 0 0
\(784\) 0 0
\(785\) 0.803998 0.0286959
\(786\) 0 0
\(787\) −22.3671 −0.797302 −0.398651 0.917103i \(-0.630521\pi\)
−0.398651 + 0.917103i \(0.630521\pi\)
\(788\) 1.47333 0.0524853
\(789\) 0 0
\(790\) −5.96787 −0.212327
\(791\) 0 0
\(792\) 0 0
\(793\) 7.75942 0.275545
\(794\) 37.0016 1.31314
\(795\) 0 0
\(796\) −0.128759 −0.00456375
\(797\) 20.5518 0.727983 0.363991 0.931402i \(-0.381414\pi\)
0.363991 + 0.931402i \(0.381414\pi\)
\(798\) 0 0
\(799\) −5.62377 −0.198955
\(800\) −1.71346 −0.0605801
\(801\) 0 0
\(802\) −28.1689 −0.994680
\(803\) −35.0860 −1.23816
\(804\) 0 0
\(805\) 0 0
\(806\) 10.1464 0.357390
\(807\) 0 0
\(808\) −30.4454 −1.07106
\(809\) −7.83443 −0.275444 −0.137722 0.990471i \(-0.543978\pi\)
−0.137722 + 0.990471i \(0.543978\pi\)
\(810\) 0 0
\(811\) 47.5502 1.66971 0.834857 0.550468i \(-0.185551\pi\)
0.834857 + 0.550468i \(0.185551\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 52.0301 1.82365
\(815\) 4.10430 0.143767
\(816\) 0 0
\(817\) 9.19316 0.321628
\(818\) 4.59769 0.160754
\(819\) 0 0
\(820\) −0.818526 −0.0285842
\(821\) −4.42494 −0.154431 −0.0772157 0.997014i \(-0.524603\pi\)
−0.0772157 + 0.997014i \(0.524603\pi\)
\(822\) 0 0
\(823\) −28.7525 −1.00225 −0.501124 0.865375i \(-0.667080\pi\)
−0.501124 + 0.865375i \(0.667080\pi\)
\(824\) −45.5779 −1.58778
\(825\) 0 0
\(826\) 0 0
\(827\) 5.58667 0.194267 0.0971337 0.995271i \(-0.469033\pi\)
0.0971337 + 0.995271i \(0.469033\pi\)
\(828\) 0 0
\(829\) −53.4974 −1.85804 −0.929021 0.370027i \(-0.879348\pi\)
−0.929021 + 0.370027i \(0.879348\pi\)
\(830\) 5.07974 0.176320
\(831\) 0 0
\(832\) −7.68624 −0.266472
\(833\) 0 0
\(834\) 0 0
\(835\) 19.0254 0.658400
\(836\) −0.397035 −0.0137317
\(837\) 0 0
\(838\) −43.5257 −1.50357
\(839\) −43.0405 −1.48592 −0.742962 0.669334i \(-0.766580\pi\)
−0.742962 + 0.669334i \(0.766580\pi\)
\(840\) 0 0
\(841\) −18.1932 −0.627350
\(842\) −38.8055 −1.33733
\(843\) 0 0
\(844\) 1.13941 0.0392202
\(845\) 0.926817 0.0318835
\(846\) 0 0
\(847\) 0 0
\(848\) −21.2890 −0.731066
\(849\) 0 0
\(850\) −17.1701 −0.588931
\(851\) 68.7757 2.35760
\(852\) 0 0
\(853\) 30.7434 1.05263 0.526316 0.850289i \(-0.323573\pi\)
0.526316 + 0.850289i \(0.323573\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 9.58384 0.327569
\(857\) −24.5449 −0.838438 −0.419219 0.907885i \(-0.637696\pi\)
−0.419219 + 0.907885i \(0.637696\pi\)
\(858\) 0 0
\(859\) 52.1243 1.77846 0.889229 0.457461i \(-0.151241\pi\)
0.889229 + 0.457461i \(0.151241\pi\)
\(860\) 0.484354 0.0165163
\(861\) 0 0
\(862\) 24.1483 0.822494
\(863\) −22.2563 −0.757612 −0.378806 0.925476i \(-0.623665\pi\)
−0.378806 + 0.925476i \(0.623665\pi\)
\(864\) 0 0
\(865\) 13.9165 0.473175
\(866\) 37.2246 1.26494
\(867\) 0 0
\(868\) 0 0
\(869\) −18.8461 −0.639309
\(870\) 0 0
\(871\) −12.0414 −0.408009
\(872\) 12.9533 0.438654
\(873\) 0 0
\(874\) −14.8675 −0.502900
\(875\) 0 0
\(876\) 0 0
\(877\) 41.0547 1.38632 0.693159 0.720785i \(-0.256218\pi\)
0.693159 + 0.720785i \(0.256218\pi\)
\(878\) 36.0760 1.21751
\(879\) 0 0
\(880\) 16.1739 0.545222
\(881\) −31.0568 −1.04633 −0.523165 0.852231i \(-0.675249\pi\)
−0.523165 + 0.852231i \(0.675249\pi\)
\(882\) 0 0
\(883\) −56.5357 −1.90258 −0.951289 0.308300i \(-0.900240\pi\)
−0.951289 + 0.308300i \(0.900240\pi\)
\(884\) 0.210745 0.00708813
\(885\) 0 0
\(886\) 6.69190 0.224819
\(887\) 9.94785 0.334016 0.167008 0.985956i \(-0.446589\pi\)
0.167008 + 0.985956i \(0.446589\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 7.53707 0.252643
\(891\) 0 0
\(892\) 0.846681 0.0283490
\(893\) 2.51411 0.0841314
\(894\) 0 0
\(895\) 4.96010 0.165798
\(896\) 0 0
\(897\) 0 0
\(898\) 0.712291 0.0237695
\(899\) −23.1655 −0.772612
\(900\) 0 0
\(901\) −14.8046 −0.493213
\(902\) −73.2255 −2.43814
\(903\) 0 0
\(904\) 9.12029 0.303336
\(905\) −10.6275 −0.353271
\(906\) 0 0
\(907\) −31.2936 −1.03909 −0.519544 0.854444i \(-0.673898\pi\)
−0.519544 + 0.854444i \(0.673898\pi\)
\(908\) −0.808067 −0.0268166
\(909\) 0 0
\(910\) 0 0
\(911\) 9.39320 0.311210 0.155605 0.987819i \(-0.450267\pi\)
0.155605 + 0.987819i \(0.450267\pi\)
\(912\) 0 0
\(913\) 16.0414 0.530894
\(914\) −38.1127 −1.26066
\(915\) 0 0
\(916\) 1.00314 0.0331446
\(917\) 0 0
\(918\) 0 0
\(919\) 21.7066 0.716036 0.358018 0.933715i \(-0.383453\pi\)
0.358018 + 0.933715i \(0.383453\pi\)
\(920\) 20.6237 0.679944
\(921\) 0 0
\(922\) 1.55746 0.0512921
\(923\) 10.7889 0.355122
\(924\) 0 0
\(925\) −35.5081 −1.16750
\(926\) 47.0974 1.54771
\(927\) 0 0
\(928\) −1.36025 −0.0446523
\(929\) 35.6787 1.17058 0.585289 0.810824i \(-0.300981\pi\)
0.585289 + 0.810824i \(0.300981\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) −0.0903972 −0.00296106
\(933\) 0 0
\(934\) 24.5924 0.804687
\(935\) 11.2475 0.367834
\(936\) 0 0
\(937\) 47.0866 1.53825 0.769127 0.639096i \(-0.220691\pi\)
0.769127 + 0.639096i \(0.220691\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0.132459 0.00432034
\(941\) 45.2923 1.47649 0.738244 0.674534i \(-0.235655\pi\)
0.738244 + 0.674534i \(0.235655\pi\)
\(942\) 0 0
\(943\) −96.7927 −3.15200
\(944\) 30.3722 0.988530
\(945\) 0 0
\(946\) 43.3304 1.40879
\(947\) −4.77134 −0.155048 −0.0775238 0.996991i \(-0.524701\pi\)
−0.0775238 + 0.996991i \(0.524701\pi\)
\(948\) 0 0
\(949\) −8.32568 −0.270263
\(950\) 7.67592 0.249040
\(951\) 0 0
\(952\) 0 0
\(953\) 3.95572 0.128138 0.0640692 0.997945i \(-0.479592\pi\)
0.0640692 + 0.997945i \(0.479592\pi\)
\(954\) 0 0
\(955\) −18.6991 −0.605088
\(956\) −1.39824 −0.0452223
\(957\) 0 0
\(958\) 24.7353 0.799160
\(959\) 0 0
\(960\) 0 0
\(961\) 18.6573 0.601850
\(962\) 12.3464 0.398064
\(963\) 0 0
\(964\) 0.880605 0.0283624
\(965\) −24.4454 −0.786924
\(966\) 0 0
\(967\) 50.2292 1.61526 0.807632 0.589687i \(-0.200749\pi\)
0.807632 + 0.589687i \(0.200749\pi\)
\(968\) 18.7529 0.602742
\(969\) 0 0
\(970\) 9.20850 0.295667
\(971\) 38.6576 1.24058 0.620291 0.784372i \(-0.287014\pi\)
0.620291 + 0.784372i \(0.287014\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) 6.16638 0.197584
\(975\) 0 0
\(976\) 32.1318 1.02852
\(977\) 20.6134 0.659480 0.329740 0.944072i \(-0.393039\pi\)
0.329740 + 0.944072i \(0.393039\pi\)
\(978\) 0 0
\(979\) 23.8015 0.760699
\(980\) 0 0
\(981\) 0 0
\(982\) 39.5304 1.26147
\(983\) −4.48620 −0.143088 −0.0715438 0.997437i \(-0.522793\pi\)
−0.0715438 + 0.997437i \(0.522793\pi\)
\(984\) 0 0
\(985\) 18.6589 0.594521
\(986\) −13.6307 −0.434089
\(987\) 0 0
\(988\) −0.0942138 −0.00299734
\(989\) 57.2760 1.82127
\(990\) 0 0
\(991\) −32.7971 −1.04183 −0.520917 0.853607i \(-0.674410\pi\)
−0.520917 + 0.853607i \(0.674410\pi\)
\(992\) 2.91582 0.0925773
\(993\) 0 0
\(994\) 0 0
\(995\) −1.63066 −0.0516954
\(996\) 0 0
\(997\) −0.491870 −0.0155777 −0.00778884 0.999970i \(-0.502479\pi\)
−0.00778884 + 0.999970i \(0.502479\pi\)
\(998\) 53.3397 1.68844
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 5733.2.a.bf.1.2 4
3.2 odd 2 1911.2.a.s.1.3 4
7.6 odd 2 819.2.a.k.1.2 4
21.20 even 2 273.2.a.e.1.3 4
84.83 odd 2 4368.2.a.br.1.3 4
105.104 even 2 6825.2.a.bg.1.2 4
273.272 even 2 3549.2.a.w.1.2 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
273.2.a.e.1.3 4 21.20 even 2
819.2.a.k.1.2 4 7.6 odd 2
1911.2.a.s.1.3 4 3.2 odd 2
3549.2.a.w.1.2 4 273.272 even 2
4368.2.a.br.1.3 4 84.83 odd 2
5733.2.a.bf.1.2 4 1.1 even 1 trivial
6825.2.a.bg.1.2 4 105.104 even 2