Properties

Label 5733.2.a.bf.1.1
Level $5733$
Weight $2$
Character 5733.1
Self dual yes
Analytic conductor $45.778$
Analytic rank $1$
Dimension $4$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [5733,2,Mod(1,5733)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(5733, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("5733.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 5733 = 3^{2} \cdot 7^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 5733.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(45.7782354788\)
Analytic rank: \(1\)
Dimension: \(4\)
Coefficient field: 4.4.17428.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{3} - 6x^{2} + 4x + 6 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 2 \)
Twist minimal: no (minimal twist has level 273)
Fricke sign: \(1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Root \(2.36865\) of defining polynomial
Character \(\chi\) \(=\) 5733.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-2.61050 q^{2} +4.81471 q^{4} -3.81471 q^{5} -7.34780 q^{8} +O(q^{10})\) \(q-2.61050 q^{2} +4.81471 q^{4} -3.81471 q^{5} -7.34780 q^{8} +9.95830 q^{10} +4.73730 q^{11} -1.00000 q^{13} +9.55201 q^{16} -5.22100 q^{17} -2.92259 q^{19} -18.3667 q^{20} -12.3667 q^{22} -3.33101 q^{23} +9.55201 q^{25} +2.61050 q^{26} +0.922589 q^{29} +7.51941 q^{31} -10.2399 q^{32} +13.6294 q^{34} +0.154821 q^{37} +7.62942 q^{38} +28.0297 q^{40} +6.36672 q^{41} -6.55201 q^{43} +22.8087 q^{44} +8.69560 q^{46} +9.03571 q^{47} -24.9355 q^{50} -4.81471 q^{52} -8.55201 q^{53} -18.0714 q^{55} -2.40842 q^{58} +3.95830 q^{59} -12.4420 q^{61} -19.6294 q^{62} +7.62729 q^{64} +3.81471 q^{65} -10.6620 q^{67} -25.1376 q^{68} +6.58248 q^{71} +7.73517 q^{73} -0.404161 q^{74} -14.0714 q^{76} +13.3646 q^{79} -36.4381 q^{80} -16.6203 q^{82} -1.40629 q^{83} +19.9166 q^{85} +17.1040 q^{86} -34.8087 q^{88} -1.96953 q^{89} -16.0378 q^{92} -23.5877 q^{94} +11.1488 q^{95} +2.11001 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - q^{2} + 7 q^{4} - 3 q^{5} - 3 q^{8}+O(q^{10}) \) Copy content Toggle raw display \( 4 q - q^{2} + 7 q^{4} - 3 q^{5} - 3 q^{8} + 4 q^{10} + 2 q^{11} - 4 q^{13} + 9 q^{16} - 2 q^{17} - 7 q^{19} - 32 q^{20} - 8 q^{22} - 3 q^{23} + 9 q^{25} + q^{26} - q^{29} - 3 q^{31} - 7 q^{32} + 30 q^{34} + 10 q^{37} + 6 q^{38} + 14 q^{40} - 16 q^{41} + 3 q^{43} + 12 q^{44} - 18 q^{46} + 5 q^{47} - 13 q^{50} - 7 q^{52} - 5 q^{53} - 10 q^{55} - 4 q^{58} - 20 q^{59} - 12 q^{61} - 54 q^{62} + 5 q^{64} + 3 q^{65} - 22 q^{67} - 10 q^{68} + 13 q^{73} + 6 q^{74} + 6 q^{76} + 11 q^{79} - 42 q^{80} - 10 q^{82} + q^{83} + 8 q^{85} + 10 q^{86} - 60 q^{88} - 5 q^{89} - 34 q^{92} - 34 q^{94} - 13 q^{95} + 17 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −2.61050 −1.84590 −0.922951 0.384917i \(-0.874230\pi\)
−0.922951 + 0.384917i \(0.874230\pi\)
\(3\) 0 0
\(4\) 4.81471 2.40735
\(5\) −3.81471 −1.70599 −0.852995 0.521919i \(-0.825216\pi\)
−0.852995 + 0.521919i \(0.825216\pi\)
\(6\) 0 0
\(7\) 0 0
\(8\) −7.34780 −2.59784
\(9\) 0 0
\(10\) 9.95830 3.14909
\(11\) 4.73730 1.42835 0.714175 0.699968i \(-0.246802\pi\)
0.714175 + 0.699968i \(0.246802\pi\)
\(12\) 0 0
\(13\) −1.00000 −0.277350
\(14\) 0 0
\(15\) 0 0
\(16\) 9.55201 2.38800
\(17\) −5.22100 −1.26628 −0.633139 0.774038i \(-0.718234\pi\)
−0.633139 + 0.774038i \(0.718234\pi\)
\(18\) 0 0
\(19\) −2.92259 −0.670488 −0.335244 0.942131i \(-0.608819\pi\)
−0.335244 + 0.942131i \(0.608819\pi\)
\(20\) −18.3667 −4.10692
\(21\) 0 0
\(22\) −12.3667 −2.63659
\(23\) −3.33101 −0.694563 −0.347282 0.937761i \(-0.612895\pi\)
−0.347282 + 0.937761i \(0.612895\pi\)
\(24\) 0 0
\(25\) 9.55201 1.91040
\(26\) 2.61050 0.511961
\(27\) 0 0
\(28\) 0 0
\(29\) 0.922589 0.171321 0.0856603 0.996324i \(-0.472700\pi\)
0.0856603 + 0.996324i \(0.472700\pi\)
\(30\) 0 0
\(31\) 7.51941 1.35053 0.675263 0.737577i \(-0.264030\pi\)
0.675263 + 0.737577i \(0.264030\pi\)
\(32\) −10.2399 −1.81018
\(33\) 0 0
\(34\) 13.6294 2.33743
\(35\) 0 0
\(36\) 0 0
\(37\) 0.154821 0.0254525 0.0127262 0.999919i \(-0.495949\pi\)
0.0127262 + 0.999919i \(0.495949\pi\)
\(38\) 7.62942 1.23766
\(39\) 0 0
\(40\) 28.0297 4.43189
\(41\) 6.36672 0.994314 0.497157 0.867661i \(-0.334377\pi\)
0.497157 + 0.867661i \(0.334377\pi\)
\(42\) 0 0
\(43\) −6.55201 −0.999172 −0.499586 0.866264i \(-0.666514\pi\)
−0.499586 + 0.866264i \(0.666514\pi\)
\(44\) 22.8087 3.43854
\(45\) 0 0
\(46\) 8.69560 1.28210
\(47\) 9.03571 1.31799 0.658997 0.752146i \(-0.270981\pi\)
0.658997 + 0.752146i \(0.270981\pi\)
\(48\) 0 0
\(49\) 0 0
\(50\) −24.9355 −3.52641
\(51\) 0 0
\(52\) −4.81471 −0.667680
\(53\) −8.55201 −1.17471 −0.587354 0.809330i \(-0.699830\pi\)
−0.587354 + 0.809330i \(0.699830\pi\)
\(54\) 0 0
\(55\) −18.0714 −2.43675
\(56\) 0 0
\(57\) 0 0
\(58\) −2.40842 −0.316241
\(59\) 3.95830 0.515327 0.257663 0.966235i \(-0.417047\pi\)
0.257663 + 0.966235i \(0.417047\pi\)
\(60\) 0 0
\(61\) −12.4420 −1.59303 −0.796517 0.604616i \(-0.793327\pi\)
−0.796517 + 0.604616i \(0.793327\pi\)
\(62\) −19.6294 −2.49294
\(63\) 0 0
\(64\) 7.62729 0.953411
\(65\) 3.81471 0.473156
\(66\) 0 0
\(67\) −10.6620 −1.30257 −0.651286 0.758832i \(-0.725770\pi\)
−0.651286 + 0.758832i \(0.725770\pi\)
\(68\) −25.1376 −3.04838
\(69\) 0 0
\(70\) 0 0
\(71\) 6.58248 0.781196 0.390598 0.920561i \(-0.372268\pi\)
0.390598 + 0.920561i \(0.372268\pi\)
\(72\) 0 0
\(73\) 7.73517 0.905333 0.452667 0.891680i \(-0.350473\pi\)
0.452667 + 0.891680i \(0.350473\pi\)
\(74\) −0.404161 −0.0469828
\(75\) 0 0
\(76\) −14.0714 −1.61410
\(77\) 0 0
\(78\) 0 0
\(79\) 13.3646 1.50363 0.751817 0.659372i \(-0.229178\pi\)
0.751817 + 0.659372i \(0.229178\pi\)
\(80\) −36.4381 −4.07391
\(81\) 0 0
\(82\) −16.6203 −1.83541
\(83\) −1.40629 −0.154360 −0.0771802 0.997017i \(-0.524592\pi\)
−0.0771802 + 0.997017i \(0.524592\pi\)
\(84\) 0 0
\(85\) 19.9166 2.16026
\(86\) 17.1040 1.84437
\(87\) 0 0
\(88\) −34.8087 −3.71062
\(89\) −1.96953 −0.208770 −0.104385 0.994537i \(-0.533287\pi\)
−0.104385 + 0.994537i \(0.533287\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) −16.0378 −1.67206
\(93\) 0 0
\(94\) −23.5877 −2.43289
\(95\) 11.1488 1.14385
\(96\) 0 0
\(97\) 2.11001 0.214239 0.107119 0.994246i \(-0.465837\pi\)
0.107119 + 0.994246i \(0.465837\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 45.9901 4.59901
\(101\) 0.850419 0.0846198 0.0423099 0.999105i \(-0.486528\pi\)
0.0423099 + 0.999105i \(0.486528\pi\)
\(102\) 0 0
\(103\) 1.47460 0.145296 0.0726482 0.997358i \(-0.476855\pi\)
0.0726482 + 0.997358i \(0.476855\pi\)
\(104\) 7.34780 0.720511
\(105\) 0 0
\(106\) 22.3250 2.16840
\(107\) −2.62418 −0.253689 −0.126844 0.991923i \(-0.540485\pi\)
−0.126844 + 0.991923i \(0.540485\pi\)
\(108\) 0 0
\(109\) −17.9166 −1.71610 −0.858049 0.513567i \(-0.828324\pi\)
−0.858049 + 0.513567i \(0.828324\pi\)
\(110\) 47.1754 4.49800
\(111\) 0 0
\(112\) 0 0
\(113\) −0.922589 −0.0867899 −0.0433950 0.999058i \(-0.513817\pi\)
−0.0433950 + 0.999058i \(0.513817\pi\)
\(114\) 0 0
\(115\) 12.7068 1.18492
\(116\) 4.44200 0.412429
\(117\) 0 0
\(118\) −10.3331 −0.951242
\(119\) 0 0
\(120\) 0 0
\(121\) 11.4420 1.04018
\(122\) 32.4798 2.94059
\(123\) 0 0
\(124\) 36.2038 3.25119
\(125\) −17.3646 −1.55314
\(126\) 0 0
\(127\) 17.4746 1.55062 0.775310 0.631581i \(-0.217594\pi\)
0.775310 + 0.631581i \(0.217594\pi\)
\(128\) 0.568798 0.0502751
\(129\) 0 0
\(130\) −9.95830 −0.873401
\(131\) 0.967402 0.0845223 0.0422611 0.999107i \(-0.486544\pi\)
0.0422611 + 0.999107i \(0.486544\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 27.8332 2.40442
\(135\) 0 0
\(136\) 38.3629 3.28959
\(137\) −3.29628 −0.281620 −0.140810 0.990037i \(-0.544971\pi\)
−0.140810 + 0.990037i \(0.544971\pi\)
\(138\) 0 0
\(139\) −0.370581 −0.0314323 −0.0157161 0.999876i \(-0.505003\pi\)
−0.0157161 + 0.999876i \(0.505003\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) −17.1836 −1.44201
\(143\) −4.73730 −0.396153
\(144\) 0 0
\(145\) −3.51941 −0.292271
\(146\) −20.1927 −1.67116
\(147\) 0 0
\(148\) 0.745420 0.0612732
\(149\) 15.7425 1.28968 0.644840 0.764318i \(-0.276924\pi\)
0.644840 + 0.764318i \(0.276924\pi\)
\(150\) 0 0
\(151\) 10.2914 0.837505 0.418753 0.908100i \(-0.362467\pi\)
0.418753 + 0.908100i \(0.362467\pi\)
\(152\) 21.4746 1.74182
\(153\) 0 0
\(154\) 0 0
\(155\) −28.6844 −2.30398
\(156\) 0 0
\(157\) 11.4137 0.910909 0.455455 0.890259i \(-0.349477\pi\)
0.455455 + 0.890259i \(0.349477\pi\)
\(158\) −34.8883 −2.77556
\(159\) 0 0
\(160\) 39.0623 3.08815
\(161\) 0 0
\(162\) 0 0
\(163\) −13.4746 −1.05541 −0.527706 0.849427i \(-0.676948\pi\)
−0.527706 + 0.849427i \(0.676948\pi\)
\(164\) 30.6539 2.39367
\(165\) 0 0
\(166\) 3.67112 0.284934
\(167\) 19.1905 1.48501 0.742504 0.669842i \(-0.233638\pi\)
0.742504 + 0.669842i \(0.233638\pi\)
\(168\) 0 0
\(169\) 1.00000 0.0769231
\(170\) −51.9923 −3.98763
\(171\) 0 0
\(172\) −31.5460 −2.40536
\(173\) −19.5124 −1.48350 −0.741752 0.670675i \(-0.766005\pi\)
−0.741752 + 0.670675i \(0.766005\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 45.2507 3.41090
\(177\) 0 0
\(178\) 5.14146 0.385369
\(179\) 16.5856 1.23967 0.619833 0.784734i \(-0.287201\pi\)
0.619833 + 0.784734i \(0.287201\pi\)
\(180\) 0 0
\(181\) 2.81684 0.209374 0.104687 0.994505i \(-0.466616\pi\)
0.104687 + 0.994505i \(0.466616\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 24.4756 1.80436
\(185\) −0.590599 −0.0434217
\(186\) 0 0
\(187\) −24.7334 −1.80869
\(188\) 43.5043 3.17288
\(189\) 0 0
\(190\) −29.1040 −2.11143
\(191\) −15.1601 −1.09694 −0.548472 0.836169i \(-0.684790\pi\)
−0.548472 + 0.836169i \(0.684790\pi\)
\(192\) 0 0
\(193\) 0.0651962 0.00469293 0.00234646 0.999997i \(-0.499253\pi\)
0.00234646 + 0.999997i \(0.499253\pi\)
\(194\) −5.50818 −0.395464
\(195\) 0 0
\(196\) 0 0
\(197\) 17.1415 1.22128 0.610639 0.791909i \(-0.290913\pi\)
0.610639 + 0.791909i \(0.290913\pi\)
\(198\) 0 0
\(199\) −6.44200 −0.456661 −0.228331 0.973584i \(-0.573327\pi\)
−0.228331 + 0.973584i \(0.573327\pi\)
\(200\) −70.1862 −4.96292
\(201\) 0 0
\(202\) −2.22002 −0.156200
\(203\) 0 0
\(204\) 0 0
\(205\) −24.2872 −1.69629
\(206\) −3.84944 −0.268203
\(207\) 0 0
\(208\) −9.55201 −0.662313
\(209\) −13.8452 −0.957691
\(210\) 0 0
\(211\) −16.0266 −1.10332 −0.551659 0.834070i \(-0.686005\pi\)
−0.551659 + 0.834070i \(0.686005\pi\)
\(212\) −41.1754 −2.82794
\(213\) 0 0
\(214\) 6.85042 0.468285
\(215\) 24.9940 1.70458
\(216\) 0 0
\(217\) 0 0
\(218\) 46.7713 3.16775
\(219\) 0 0
\(220\) −87.0086 −5.86612
\(221\) 5.22100 0.351202
\(222\) 0 0
\(223\) −20.0266 −1.34108 −0.670540 0.741873i \(-0.733938\pi\)
−0.670540 + 0.741873i \(0.733938\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 2.40842 0.160206
\(227\) 19.2171 1.27549 0.637743 0.770249i \(-0.279868\pi\)
0.637743 + 0.770249i \(0.279868\pi\)
\(228\) 0 0
\(229\) −5.25884 −0.347514 −0.173757 0.984789i \(-0.555591\pi\)
−0.173757 + 0.984789i \(0.555591\pi\)
\(230\) −33.1712 −2.18724
\(231\) 0 0
\(232\) −6.77900 −0.445063
\(233\) 26.6234 1.74416 0.872079 0.489365i \(-0.162771\pi\)
0.872079 + 0.489365i \(0.162771\pi\)
\(234\) 0 0
\(235\) −34.4686 −2.24848
\(236\) 19.0581 1.24057
\(237\) 0 0
\(238\) 0 0
\(239\) −4.29104 −0.277564 −0.138782 0.990323i \(-0.544319\pi\)
−0.138782 + 0.990323i \(0.544319\pi\)
\(240\) 0 0
\(241\) −7.52367 −0.484642 −0.242321 0.970196i \(-0.577909\pi\)
−0.242321 + 0.970196i \(0.577909\pi\)
\(242\) −29.8693 −1.92007
\(243\) 0 0
\(244\) −59.9046 −3.83500
\(245\) 0 0
\(246\) 0 0
\(247\) 2.92259 0.185960
\(248\) −55.2511 −3.50845
\(249\) 0 0
\(250\) 45.3303 2.86694
\(251\) 11.3198 0.714498 0.357249 0.934009i \(-0.383715\pi\)
0.357249 + 0.934009i \(0.383715\pi\)
\(252\) 0 0
\(253\) −15.7800 −0.992079
\(254\) −45.6174 −2.86229
\(255\) 0 0
\(256\) −16.7394 −1.04621
\(257\) −24.8504 −1.55013 −0.775063 0.631884i \(-0.782282\pi\)
−0.775063 + 0.631884i \(0.782282\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 18.3667 1.13906
\(261\) 0 0
\(262\) −2.52540 −0.156020
\(263\) −17.1762 −1.05913 −0.529565 0.848270i \(-0.677645\pi\)
−0.529565 + 0.848270i \(0.677645\pi\)
\(264\) 0 0
\(265\) 32.6234 2.00404
\(266\) 0 0
\(267\) 0 0
\(268\) −51.3345 −3.13575
\(269\) −7.74640 −0.472306 −0.236153 0.971716i \(-0.575887\pi\)
−0.236153 + 0.971716i \(0.575887\pi\)
\(270\) 0 0
\(271\) 29.7008 1.80420 0.902099 0.431530i \(-0.142026\pi\)
0.902099 + 0.431530i \(0.142026\pi\)
\(272\) −49.8710 −3.02388
\(273\) 0 0
\(274\) 8.60494 0.519844
\(275\) 45.2507 2.72872
\(276\) 0 0
\(277\) 25.1488 1.51105 0.755523 0.655122i \(-0.227383\pi\)
0.755523 + 0.655122i \(0.227383\pi\)
\(278\) 0.967402 0.0580209
\(279\) 0 0
\(280\) 0 0
\(281\) −8.40030 −0.501120 −0.250560 0.968101i \(-0.580615\pi\)
−0.250560 + 0.968101i \(0.580615\pi\)
\(282\) 0 0
\(283\) 21.3912 1.27157 0.635787 0.771864i \(-0.280676\pi\)
0.635787 + 0.771864i \(0.280676\pi\)
\(284\) 31.6927 1.88062
\(285\) 0 0
\(286\) 12.3667 0.731259
\(287\) 0 0
\(288\) 0 0
\(289\) 10.2588 0.603461
\(290\) 9.18742 0.539504
\(291\) 0 0
\(292\) 37.2426 2.17946
\(293\) −9.59895 −0.560777 −0.280388 0.959887i \(-0.590463\pi\)
−0.280388 + 0.959887i \(0.590463\pi\)
\(294\) 0 0
\(295\) −15.0998 −0.879142
\(296\) −1.13760 −0.0661215
\(297\) 0 0
\(298\) −41.0959 −2.38062
\(299\) 3.33101 0.192637
\(300\) 0 0
\(301\) 0 0
\(302\) −26.8658 −1.54595
\(303\) 0 0
\(304\) −27.9166 −1.60113
\(305\) 47.4626 2.71770
\(306\) 0 0
\(307\) 15.1488 0.864589 0.432295 0.901732i \(-0.357704\pi\)
0.432295 + 0.901732i \(0.357704\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 74.8805 4.25293
\(311\) −4.37058 −0.247833 −0.123916 0.992293i \(-0.539545\pi\)
−0.123916 + 0.992293i \(0.539545\pi\)
\(312\) 0 0
\(313\) 1.49280 0.0843783 0.0421891 0.999110i \(-0.486567\pi\)
0.0421891 + 0.999110i \(0.486567\pi\)
\(314\) −29.7954 −1.68145
\(315\) 0 0
\(316\) 64.3466 3.61978
\(317\) −23.2129 −1.30377 −0.651883 0.758320i \(-0.726021\pi\)
−0.651883 + 0.758320i \(0.726021\pi\)
\(318\) 0 0
\(319\) 4.37058 0.244706
\(320\) −29.0959 −1.62651
\(321\) 0 0
\(322\) 0 0
\(323\) 15.2588 0.849024
\(324\) 0 0
\(325\) −9.55201 −0.529850
\(326\) 35.1754 1.94819
\(327\) 0 0
\(328\) −46.7814 −2.58307
\(329\) 0 0
\(330\) 0 0
\(331\) 1.10402 0.0606822 0.0303411 0.999540i \(-0.490341\pi\)
0.0303411 + 0.999540i \(0.490341\pi\)
\(332\) −6.77088 −0.371600
\(333\) 0 0
\(334\) −50.0969 −2.74118
\(335\) 40.6725 2.22218
\(336\) 0 0
\(337\) −4.24237 −0.231096 −0.115548 0.993302i \(-0.536862\pi\)
−0.115548 + 0.993302i \(0.536862\pi\)
\(338\) −2.61050 −0.141992
\(339\) 0 0
\(340\) 95.8926 5.20051
\(341\) 35.6217 1.92902
\(342\) 0 0
\(343\) 0 0
\(344\) 48.1428 2.59569
\(345\) 0 0
\(346\) 50.9372 2.73840
\(347\) −14.0336 −0.753362 −0.376681 0.926343i \(-0.622935\pi\)
−0.376681 + 0.926343i \(0.622935\pi\)
\(348\) 0 0
\(349\) −4.10575 −0.219776 −0.109888 0.993944i \(-0.535049\pi\)
−0.109888 + 0.993944i \(0.535049\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) −48.5096 −2.58557
\(353\) −16.0753 −0.855601 −0.427800 0.903873i \(-0.640711\pi\)
−0.427800 + 0.903873i \(0.640711\pi\)
\(354\) 0 0
\(355\) −25.1102 −1.33271
\(356\) −9.48272 −0.502583
\(357\) 0 0
\(358\) −43.2967 −2.28830
\(359\) 18.1510 0.957971 0.478985 0.877823i \(-0.341005\pi\)
0.478985 + 0.877823i \(0.341005\pi\)
\(360\) 0 0
\(361\) −10.4585 −0.550446
\(362\) −7.35336 −0.386484
\(363\) 0 0
\(364\) 0 0
\(365\) −29.5074 −1.54449
\(366\) 0 0
\(367\) 23.3955 1.22123 0.610616 0.791927i \(-0.290922\pi\)
0.610616 + 0.791927i \(0.290922\pi\)
\(368\) −31.8178 −1.65862
\(369\) 0 0
\(370\) 1.54176 0.0801522
\(371\) 0 0
\(372\) 0 0
\(373\) −4.75164 −0.246031 −0.123015 0.992405i \(-0.539256\pi\)
−0.123015 + 0.992405i \(0.539256\pi\)
\(374\) 64.5666 3.33866
\(375\) 0 0
\(376\) −66.3926 −3.42394
\(377\) −0.922589 −0.0475158
\(378\) 0 0
\(379\) −6.81258 −0.349939 −0.174969 0.984574i \(-0.555983\pi\)
−0.174969 + 0.984574i \(0.555983\pi\)
\(380\) 53.6784 2.75364
\(381\) 0 0
\(382\) 39.5753 2.02485
\(383\) 2.25746 0.115351 0.0576754 0.998335i \(-0.481631\pi\)
0.0576754 + 0.998335i \(0.481631\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) −0.170195 −0.00866268
\(387\) 0 0
\(388\) 10.1591 0.515749
\(389\) −6.00000 −0.304212 −0.152106 0.988364i \(-0.548606\pi\)
−0.152106 + 0.988364i \(0.548606\pi\)
\(390\) 0 0
\(391\) 17.3912 0.879511
\(392\) 0 0
\(393\) 0 0
\(394\) −44.7478 −2.25436
\(395\) −50.9820 −2.56518
\(396\) 0 0
\(397\) −24.9897 −1.25420 −0.627100 0.778939i \(-0.715758\pi\)
−0.627100 + 0.778939i \(0.715758\pi\)
\(398\) 16.8168 0.842952
\(399\) 0 0
\(400\) 91.2409 4.56204
\(401\) −27.6529 −1.38092 −0.690460 0.723370i \(-0.742592\pi\)
−0.690460 + 0.723370i \(0.742592\pi\)
\(402\) 0 0
\(403\) −7.51941 −0.374568
\(404\) 4.09452 0.203710
\(405\) 0 0
\(406\) 0 0
\(407\) 0.733435 0.0363550
\(408\) 0 0
\(409\) −13.1488 −0.650168 −0.325084 0.945685i \(-0.605393\pi\)
−0.325084 + 0.945685i \(0.605393\pi\)
\(410\) 63.4017 3.13119
\(411\) 0 0
\(412\) 7.09976 0.349780
\(413\) 0 0
\(414\) 0 0
\(415\) 5.36459 0.263337
\(416\) 10.2399 0.502053
\(417\) 0 0
\(418\) 36.1428 1.76780
\(419\) −5.69462 −0.278200 −0.139100 0.990278i \(-0.544421\pi\)
−0.139100 + 0.990278i \(0.544421\pi\)
\(420\) 0 0
\(421\) −23.0206 −1.12196 −0.560978 0.827831i \(-0.689575\pi\)
−0.560978 + 0.827831i \(0.689575\pi\)
\(422\) 41.8375 2.03662
\(423\) 0 0
\(424\) 62.8384 3.05170
\(425\) −49.8710 −2.41910
\(426\) 0 0
\(427\) 0 0
\(428\) −12.6347 −0.610719
\(429\) 0 0
\(430\) −65.2469 −3.14648
\(431\) −20.8045 −1.00212 −0.501058 0.865414i \(-0.667056\pi\)
−0.501058 + 0.865414i \(0.667056\pi\)
\(432\) 0 0
\(433\) −31.4808 −1.51287 −0.756436 0.654068i \(-0.773061\pi\)
−0.756436 + 0.654068i \(0.773061\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) −86.2632 −4.13126
\(437\) 9.73517 0.465696
\(438\) 0 0
\(439\) −22.3811 −1.06819 −0.534095 0.845425i \(-0.679347\pi\)
−0.534095 + 0.845425i \(0.679347\pi\)
\(440\) 132.785 6.33028
\(441\) 0 0
\(442\) −13.6294 −0.648285
\(443\) −8.52465 −0.405018 −0.202509 0.979280i \(-0.564910\pi\)
−0.202509 + 0.979280i \(0.564910\pi\)
\(444\) 0 0
\(445\) 7.51319 0.356159
\(446\) 52.2795 2.47550
\(447\) 0 0
\(448\) 0 0
\(449\) −18.7142 −0.883178 −0.441589 0.897218i \(-0.645585\pi\)
−0.441589 + 0.897218i \(0.645585\pi\)
\(450\) 0 0
\(451\) 30.1610 1.42023
\(452\) −4.44200 −0.208934
\(453\) 0 0
\(454\) −50.1663 −2.35442
\(455\) 0 0
\(456\) 0 0
\(457\) −14.1366 −0.661283 −0.330641 0.943756i \(-0.607265\pi\)
−0.330641 + 0.943756i \(0.607265\pi\)
\(458\) 13.7282 0.641476
\(459\) 0 0
\(460\) 61.1797 2.85252
\(461\) −2.67636 −0.124651 −0.0623253 0.998056i \(-0.519852\pi\)
−0.0623253 + 0.998056i \(0.519852\pi\)
\(462\) 0 0
\(463\) −2.53162 −0.117655 −0.0588273 0.998268i \(-0.518736\pi\)
−0.0588273 + 0.998268i \(0.518736\pi\)
\(464\) 8.81258 0.409114
\(465\) 0 0
\(466\) −69.5005 −3.21955
\(467\) 2.00426 0.0927460 0.0463730 0.998924i \(-0.485234\pi\)
0.0463730 + 0.998924i \(0.485234\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 89.9803 4.15048
\(471\) 0 0
\(472\) −29.0848 −1.33874
\(473\) −31.0388 −1.42717
\(474\) 0 0
\(475\) −27.9166 −1.28090
\(476\) 0 0
\(477\) 0 0
\(478\) 11.2018 0.512357
\(479\) −14.6609 −0.669872 −0.334936 0.942241i \(-0.608715\pi\)
−0.334936 + 0.942241i \(0.608715\pi\)
\(480\) 0 0
\(481\) −0.154821 −0.00705925
\(482\) 19.6405 0.894602
\(483\) 0 0
\(484\) 55.0899 2.50409
\(485\) −8.04907 −0.365489
\(486\) 0 0
\(487\) 38.2143 1.73165 0.865827 0.500344i \(-0.166793\pi\)
0.865827 + 0.500344i \(0.166793\pi\)
\(488\) 91.4213 4.13845
\(489\) 0 0
\(490\) 0 0
\(491\) −21.3758 −0.964677 −0.482339 0.875985i \(-0.660213\pi\)
−0.482339 + 0.875985i \(0.660213\pi\)
\(492\) 0 0
\(493\) −4.81684 −0.216939
\(494\) −7.62942 −0.343264
\(495\) 0 0
\(496\) 71.8255 3.22506
\(497\) 0 0
\(498\) 0 0
\(499\) 27.0920 1.21281 0.606403 0.795158i \(-0.292612\pi\)
0.606403 + 0.795158i \(0.292612\pi\)
\(500\) −83.6054 −3.73895
\(501\) 0 0
\(502\) −29.5503 −1.31889
\(503\) 24.8778 1.10925 0.554623 0.832102i \(-0.312863\pi\)
0.554623 + 0.832102i \(0.312863\pi\)
\(504\) 0 0
\(505\) −3.24410 −0.144361
\(506\) 41.1936 1.83128
\(507\) 0 0
\(508\) 84.1351 3.73289
\(509\) 2.70297 0.119807 0.0599034 0.998204i \(-0.480921\pi\)
0.0599034 + 0.998204i \(0.480921\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 42.5607 1.88093
\(513\) 0 0
\(514\) 64.8720 2.86138
\(515\) −5.62516 −0.247874
\(516\) 0 0
\(517\) 42.8049 1.88256
\(518\) 0 0
\(519\) 0 0
\(520\) −28.0297 −1.22918
\(521\) −33.4472 −1.46535 −0.732675 0.680579i \(-0.761728\pi\)
−0.732675 + 0.680579i \(0.761728\pi\)
\(522\) 0 0
\(523\) −19.3198 −0.844795 −0.422397 0.906411i \(-0.638811\pi\)
−0.422397 + 0.906411i \(0.638811\pi\)
\(524\) 4.65776 0.203475
\(525\) 0 0
\(526\) 44.8384 1.95505
\(527\) −39.2588 −1.71014
\(528\) 0 0
\(529\) −11.9044 −0.517582
\(530\) −85.1634 −3.69926
\(531\) 0 0
\(532\) 0 0
\(533\) −6.36672 −0.275773
\(534\) 0 0
\(535\) 10.0105 0.432791
\(536\) 78.3424 3.38387
\(537\) 0 0
\(538\) 20.2220 0.871832
\(539\) 0 0
\(540\) 0 0
\(541\) −24.9554 −1.07292 −0.536459 0.843927i \(-0.680238\pi\)
−0.536459 + 0.843927i \(0.680238\pi\)
\(542\) −77.5340 −3.33037
\(543\) 0 0
\(544\) 53.4626 2.29219
\(545\) 68.3466 2.92765
\(546\) 0 0
\(547\) 3.80037 0.162492 0.0812460 0.996694i \(-0.474110\pi\)
0.0812460 + 0.996694i \(0.474110\pi\)
\(548\) −15.8706 −0.677960
\(549\) 0 0
\(550\) −118.127 −5.03695
\(551\) −2.69635 −0.114868
\(552\) 0 0
\(553\) 0 0
\(554\) −65.6510 −2.78924
\(555\) 0 0
\(556\) −1.78424 −0.0756686
\(557\) −43.8792 −1.85922 −0.929610 0.368546i \(-0.879856\pi\)
−0.929610 + 0.368546i \(0.879856\pi\)
\(558\) 0 0
\(559\) 6.55201 0.277120
\(560\) 0 0
\(561\) 0 0
\(562\) 21.9290 0.925018
\(563\) 12.3768 0.521620 0.260810 0.965390i \(-0.416010\pi\)
0.260810 + 0.965390i \(0.416010\pi\)
\(564\) 0 0
\(565\) 3.51941 0.148063
\(566\) −55.8417 −2.34720
\(567\) 0 0
\(568\) −48.3667 −2.02942
\(569\) 26.6234 1.11611 0.558056 0.829803i \(-0.311547\pi\)
0.558056 + 0.829803i \(0.311547\pi\)
\(570\) 0 0
\(571\) 10.9983 0.460263 0.230132 0.973160i \(-0.426084\pi\)
0.230132 + 0.973160i \(0.426084\pi\)
\(572\) −22.8087 −0.953680
\(573\) 0 0
\(574\) 0 0
\(575\) −31.8178 −1.32689
\(576\) 0 0
\(577\) −30.4238 −1.26656 −0.633280 0.773923i \(-0.718292\pi\)
−0.633280 + 0.773923i \(0.718292\pi\)
\(578\) −26.7807 −1.11393
\(579\) 0 0
\(580\) −16.9449 −0.703600
\(581\) 0 0
\(582\) 0 0
\(583\) −40.5134 −1.67789
\(584\) −56.8365 −2.35191
\(585\) 0 0
\(586\) 25.0581 1.03514
\(587\) 3.84207 0.158579 0.0792895 0.996852i \(-0.474735\pi\)
0.0792895 + 0.996852i \(0.474735\pi\)
\(588\) 0 0
\(589\) −21.9761 −0.905511
\(590\) 39.4179 1.62281
\(591\) 0 0
\(592\) 1.47886 0.0607806
\(593\) −23.8904 −0.981061 −0.490530 0.871424i \(-0.663197\pi\)
−0.490530 + 0.871424i \(0.663197\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 75.7958 3.10471
\(597\) 0 0
\(598\) −8.69560 −0.355589
\(599\) 15.4206 0.630070 0.315035 0.949080i \(-0.397984\pi\)
0.315035 + 0.949080i \(0.397984\pi\)
\(600\) 0 0
\(601\) 1.49280 0.0608928 0.0304464 0.999536i \(-0.490307\pi\)
0.0304464 + 0.999536i \(0.490307\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 49.5503 2.01617
\(605\) −43.6479 −1.77454
\(606\) 0 0
\(607\) 4.44626 0.180468 0.0902340 0.995921i \(-0.471239\pi\)
0.0902340 + 0.995921i \(0.471239\pi\)
\(608\) 29.9271 1.21370
\(609\) 0 0
\(610\) −123.901 −5.01661
\(611\) −9.03571 −0.365546
\(612\) 0 0
\(613\) 26.6640 1.07695 0.538474 0.842642i \(-0.319001\pi\)
0.538474 + 0.842642i \(0.319001\pi\)
\(614\) −39.5460 −1.59595
\(615\) 0 0
\(616\) 0 0
\(617\) −27.3495 −1.10105 −0.550525 0.834819i \(-0.685572\pi\)
−0.550525 + 0.834819i \(0.685572\pi\)
\(618\) 0 0
\(619\) 9.24836 0.371723 0.185861 0.982576i \(-0.440492\pi\)
0.185861 + 0.982576i \(0.440492\pi\)
\(620\) −138.107 −5.54651
\(621\) 0 0
\(622\) 11.4094 0.457475
\(623\) 0 0
\(624\) 0 0
\(625\) 18.4808 0.739233
\(626\) −3.89697 −0.155754
\(627\) 0 0
\(628\) 54.9535 2.19288
\(629\) −0.808323 −0.0322299
\(630\) 0 0
\(631\) 24.5134 0.975864 0.487932 0.872882i \(-0.337751\pi\)
0.487932 + 0.872882i \(0.337751\pi\)
\(632\) −98.2003 −3.90620
\(633\) 0 0
\(634\) 60.5972 2.40662
\(635\) −66.6605 −2.64534
\(636\) 0 0
\(637\) 0 0
\(638\) −11.4094 −0.451703
\(639\) 0 0
\(640\) −2.16980 −0.0857689
\(641\) −34.3972 −1.35861 −0.679304 0.733857i \(-0.737718\pi\)
−0.679304 + 0.733857i \(0.737718\pi\)
\(642\) 0 0
\(643\) 7.69036 0.303278 0.151639 0.988436i \(-0.451545\pi\)
0.151639 + 0.988436i \(0.451545\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) −39.8332 −1.56722
\(647\) 41.9123 1.64774 0.823872 0.566776i \(-0.191809\pi\)
0.823872 + 0.566776i \(0.191809\pi\)
\(648\) 0 0
\(649\) 18.7516 0.736066
\(650\) 24.9355 0.978051
\(651\) 0 0
\(652\) −64.8763 −2.54075
\(653\) −34.2262 −1.33938 −0.669688 0.742642i \(-0.733572\pi\)
−0.669688 + 0.742642i \(0.733572\pi\)
\(654\) 0 0
\(655\) −3.69036 −0.144194
\(656\) 60.8149 2.37442
\(657\) 0 0
\(658\) 0 0
\(659\) −45.1685 −1.75951 −0.879757 0.475424i \(-0.842295\pi\)
−0.879757 + 0.475424i \(0.842295\pi\)
\(660\) 0 0
\(661\) −11.9839 −0.466119 −0.233059 0.972463i \(-0.574874\pi\)
−0.233059 + 0.972463i \(0.574874\pi\)
\(662\) −2.88203 −0.112013
\(663\) 0 0
\(664\) 10.3331 0.401004
\(665\) 0 0
\(666\) 0 0
\(667\) −3.07315 −0.118993
\(668\) 92.3968 3.57494
\(669\) 0 0
\(670\) −106.176 −4.10192
\(671\) −58.9415 −2.27541
\(672\) 0 0
\(673\) −29.5117 −1.13759 −0.568796 0.822479i \(-0.692591\pi\)
−0.568796 + 0.822479i \(0.692591\pi\)
\(674\) 11.0747 0.426581
\(675\) 0 0
\(676\) 4.81471 0.185181
\(677\) −31.0662 −1.19397 −0.596985 0.802252i \(-0.703635\pi\)
−0.596985 + 0.802252i \(0.703635\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) −146.343 −5.61200
\(681\) 0 0
\(682\) −92.9904 −3.56079
\(683\) −5.79433 −0.221714 −0.110857 0.993836i \(-0.535360\pi\)
−0.110857 + 0.993836i \(0.535360\pi\)
\(684\) 0 0
\(685\) 12.5744 0.480441
\(686\) 0 0
\(687\) 0 0
\(688\) −62.5848 −2.38602
\(689\) 8.55201 0.325806
\(690\) 0 0
\(691\) −18.8617 −0.717531 −0.358766 0.933428i \(-0.616802\pi\)
−0.358766 + 0.933428i \(0.616802\pi\)
\(692\) −93.9467 −3.57132
\(693\) 0 0
\(694\) 36.6347 1.39063
\(695\) 1.41366 0.0536232
\(696\) 0 0
\(697\) −33.2406 −1.25908
\(698\) 10.7181 0.405685
\(699\) 0 0
\(700\) 0 0
\(701\) 32.3180 1.22064 0.610318 0.792157i \(-0.291042\pi\)
0.610318 + 0.792157i \(0.291042\pi\)
\(702\) 0 0
\(703\) −0.452479 −0.0170656
\(704\) 36.1328 1.36180
\(705\) 0 0
\(706\) 41.9645 1.57936
\(707\) 0 0
\(708\) 0 0
\(709\) 4.72296 0.177374 0.0886872 0.996060i \(-0.471733\pi\)
0.0886872 + 0.996060i \(0.471733\pi\)
\(710\) 65.5503 2.46006
\(711\) 0 0
\(712\) 14.4717 0.542350
\(713\) −25.0472 −0.938026
\(714\) 0 0
\(715\) 18.0714 0.675833
\(716\) 79.8548 2.98431
\(717\) 0 0
\(718\) −47.3831 −1.76832
\(719\) −40.8902 −1.52495 −0.762474 0.647019i \(-0.776015\pi\)
−0.762474 + 0.647019i \(0.776015\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 27.3018 1.01607
\(723\) 0 0
\(724\) 13.5623 0.504037
\(725\) 8.81258 0.327291
\(726\) 0 0
\(727\) −18.7292 −0.694627 −0.347313 0.937749i \(-0.612906\pi\)
−0.347313 + 0.937749i \(0.612906\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 77.0291 2.85098
\(731\) 34.2080 1.26523
\(732\) 0 0
\(733\) 14.1100 0.521165 0.260583 0.965452i \(-0.416085\pi\)
0.260583 + 0.965452i \(0.416085\pi\)
\(734\) −61.0738 −2.25428
\(735\) 0 0
\(736\) 34.1093 1.25728
\(737\) −50.5092 −1.86053
\(738\) 0 0
\(739\) −49.9209 −1.83637 −0.918184 0.396154i \(-0.870345\pi\)
−0.918184 + 0.396154i \(0.870345\pi\)
\(740\) −2.84356 −0.104531
\(741\) 0 0
\(742\) 0 0
\(743\) −2.15868 −0.0791945 −0.0395972 0.999216i \(-0.512607\pi\)
−0.0395972 + 0.999216i \(0.512607\pi\)
\(744\) 0 0
\(745\) −60.0532 −2.20018
\(746\) 12.4042 0.454149
\(747\) 0 0
\(748\) −119.084 −4.35415
\(749\) 0 0
\(750\) 0 0
\(751\) 16.8372 0.614399 0.307199 0.951645i \(-0.400608\pi\)
0.307199 + 0.951645i \(0.400608\pi\)
\(752\) 86.3092 3.14737
\(753\) 0 0
\(754\) 2.40842 0.0877095
\(755\) −39.2588 −1.42878
\(756\) 0 0
\(757\) −17.6028 −0.639785 −0.319893 0.947454i \(-0.603647\pi\)
−0.319893 + 0.947454i \(0.603647\pi\)
\(758\) 17.7842 0.645953
\(759\) 0 0
\(760\) −81.9193 −2.97153
\(761\) 19.2179 0.696648 0.348324 0.937374i \(-0.386751\pi\)
0.348324 + 0.937374i \(0.386751\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) −72.9913 −2.64073
\(765\) 0 0
\(766\) −5.89310 −0.212926
\(767\) −3.95830 −0.142926
\(768\) 0 0
\(769\) 14.0406 0.506315 0.253158 0.967425i \(-0.418531\pi\)
0.253158 + 0.967425i \(0.418531\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0.313901 0.0112975
\(773\) 22.4339 0.806891 0.403445 0.915004i \(-0.367813\pi\)
0.403445 + 0.915004i \(0.367813\pi\)
\(774\) 0 0
\(775\) 71.8255 2.58005
\(776\) −15.5039 −0.556558
\(777\) 0 0
\(778\) 15.6630 0.561546
\(779\) −18.6073 −0.666676
\(780\) 0 0
\(781\) 31.1832 1.11582
\(782\) −45.3997 −1.62349
\(783\) 0 0
\(784\) 0 0
\(785\) −43.5398 −1.55400
\(786\) 0 0
\(787\) 0.926847 0.0330385 0.0165193 0.999864i \(-0.494742\pi\)
0.0165193 + 0.999864i \(0.494742\pi\)
\(788\) 82.5311 2.94005
\(789\) 0 0
\(790\) 133.089 4.73508
\(791\) 0 0
\(792\) 0 0
\(793\) 12.4420 0.441828
\(794\) 65.2357 2.31513
\(795\) 0 0
\(796\) −31.0164 −1.09935
\(797\) −26.0154 −0.921512 −0.460756 0.887527i \(-0.652422\pi\)
−0.460756 + 0.887527i \(0.652422\pi\)
\(798\) 0 0
\(799\) −47.1754 −1.66895
\(800\) −97.8118 −3.45817
\(801\) 0 0
\(802\) 72.1879 2.54904
\(803\) 36.6438 1.29313
\(804\) 0 0
\(805\) 0 0
\(806\) 19.6294 0.691417
\(807\) 0 0
\(808\) −6.24870 −0.219829
\(809\) 44.8539 1.57698 0.788490 0.615048i \(-0.210863\pi\)
0.788490 + 0.615048i \(0.210863\pi\)
\(810\) 0 0
\(811\) −27.2511 −0.956916 −0.478458 0.878110i \(-0.658804\pi\)
−0.478458 + 0.878110i \(0.658804\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) −1.91463 −0.0671078
\(815\) 51.4017 1.80052
\(816\) 0 0
\(817\) 19.1488 0.669933
\(818\) 34.3250 1.20015
\(819\) 0 0
\(820\) −116.936 −4.08357
\(821\) −20.4003 −0.711975 −0.355988 0.934491i \(-0.615855\pi\)
−0.355988 + 0.934491i \(0.615855\pi\)
\(822\) 0 0
\(823\) 54.3509 1.89455 0.947276 0.320418i \(-0.103824\pi\)
0.947276 + 0.320418i \(0.103824\pi\)
\(824\) −10.8350 −0.377457
\(825\) 0 0
\(826\) 0 0
\(827\) −3.48272 −0.121106 −0.0605530 0.998165i \(-0.519286\pi\)
−0.0605530 + 0.998165i \(0.519286\pi\)
\(828\) 0 0
\(829\) 29.8417 1.03645 0.518223 0.855246i \(-0.326594\pi\)
0.518223 + 0.855246i \(0.326594\pi\)
\(830\) −14.0043 −0.486095
\(831\) 0 0
\(832\) −7.62729 −0.264429
\(833\) 0 0
\(834\) 0 0
\(835\) −73.2063 −2.53341
\(836\) −66.6605 −2.30550
\(837\) 0 0
\(838\) 14.8658 0.513530
\(839\) −43.0033 −1.48464 −0.742320 0.670045i \(-0.766275\pi\)
−0.742320 + 0.670045i \(0.766275\pi\)
\(840\) 0 0
\(841\) −28.1488 −0.970649
\(842\) 60.0953 2.07102
\(843\) 0 0
\(844\) −77.1634 −2.65608
\(845\) −3.81471 −0.131230
\(846\) 0 0
\(847\) 0 0
\(848\) −81.6889 −2.80521
\(849\) 0 0
\(850\) 130.188 4.46542
\(851\) −0.515711 −0.0176784
\(852\) 0 0
\(853\) −34.1023 −1.16764 −0.583820 0.811883i \(-0.698443\pi\)
−0.583820 + 0.811883i \(0.698443\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 19.2819 0.659043
\(857\) −45.7344 −1.56226 −0.781129 0.624370i \(-0.785356\pi\)
−0.781129 + 0.624370i \(0.785356\pi\)
\(858\) 0 0
\(859\) −15.9861 −0.545437 −0.272719 0.962094i \(-0.587923\pi\)
−0.272719 + 0.962094i \(0.587923\pi\)
\(860\) 120.339 4.10352
\(861\) 0 0
\(862\) 54.3100 1.84981
\(863\) 24.5096 0.834315 0.417157 0.908834i \(-0.363026\pi\)
0.417157 + 0.908834i \(0.363026\pi\)
\(864\) 0 0
\(865\) 74.4343 2.53084
\(866\) 82.1807 2.79261
\(867\) 0 0
\(868\) 0 0
\(869\) 63.3120 2.14771
\(870\) 0 0
\(871\) 10.6620 0.361269
\(872\) 131.648 4.45815
\(873\) 0 0
\(874\) −25.4137 −0.859630
\(875\) 0 0
\(876\) 0 0
\(877\) 53.4913 1.80627 0.903136 0.429354i \(-0.141259\pi\)
0.903136 + 0.429354i \(0.141259\pi\)
\(878\) 58.4258 1.97177
\(879\) 0 0
\(880\) −172.618 −5.81896
\(881\) 26.1745 0.881840 0.440920 0.897546i \(-0.354652\pi\)
0.440920 + 0.897546i \(0.354652\pi\)
\(882\) 0 0
\(883\) 23.1840 0.780202 0.390101 0.920772i \(-0.372440\pi\)
0.390101 + 0.920772i \(0.372440\pi\)
\(884\) 25.1376 0.845469
\(885\) 0 0
\(886\) 22.2536 0.747624
\(887\) −13.7008 −0.460029 −0.230015 0.973187i \(-0.573877\pi\)
−0.230015 + 0.973187i \(0.573877\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) −19.6132 −0.657435
\(891\) 0 0
\(892\) −96.4223 −3.22846
\(893\) −26.4077 −0.883699
\(894\) 0 0
\(895\) −63.2692 −2.11486
\(896\) 0 0
\(897\) 0 0
\(898\) 48.8534 1.63026
\(899\) 6.93733 0.231373
\(900\) 0 0
\(901\) 44.6500 1.48751
\(902\) −78.7354 −2.62160
\(903\) 0 0
\(904\) 6.77900 0.225466
\(905\) −10.7454 −0.357190
\(906\) 0 0
\(907\) 25.5621 0.848777 0.424388 0.905480i \(-0.360489\pi\)
0.424388 + 0.905480i \(0.360489\pi\)
\(908\) 92.5249 3.07055
\(909\) 0 0
\(910\) 0 0
\(911\) −2.07643 −0.0687951 −0.0343976 0.999408i \(-0.510951\pi\)
−0.0343976 + 0.999408i \(0.510951\pi\)
\(912\) 0 0
\(913\) −6.66202 −0.220481
\(914\) 36.9036 1.22066
\(915\) 0 0
\(916\) −25.3198 −0.836589
\(917\) 0 0
\(918\) 0 0
\(919\) 17.8514 0.588863 0.294432 0.955673i \(-0.404870\pi\)
0.294432 + 0.955673i \(0.404870\pi\)
\(920\) −93.3672 −3.07823
\(921\) 0 0
\(922\) 6.98664 0.230093
\(923\) −6.58248 −0.216665
\(924\) 0 0
\(925\) 1.47886 0.0486245
\(926\) 6.60881 0.217179
\(927\) 0 0
\(928\) −9.44724 −0.310121
\(929\) −37.0553 −1.21575 −0.607873 0.794034i \(-0.707977\pi\)
−0.607873 + 0.794034i \(0.707977\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 128.184 4.19881
\(933\) 0 0
\(934\) −5.23212 −0.171200
\(935\) 94.3509 3.08560
\(936\) 0 0
\(937\) −39.7540 −1.29871 −0.649354 0.760486i \(-0.724961\pi\)
−0.649354 + 0.760486i \(0.724961\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) −165.956 −5.41290
\(941\) −47.3530 −1.54366 −0.771832 0.635827i \(-0.780659\pi\)
−0.771832 + 0.635827i \(0.780659\pi\)
\(942\) 0 0
\(943\) −21.2076 −0.690614
\(944\) 37.8097 1.23060
\(945\) 0 0
\(946\) 81.0268 2.63441
\(947\) −8.80446 −0.286106 −0.143053 0.989715i \(-0.545692\pi\)
−0.143053 + 0.989715i \(0.545692\pi\)
\(948\) 0 0
\(949\) −7.73517 −0.251094
\(950\) 72.8763 2.36442
\(951\) 0 0
\(952\) 0 0
\(953\) −7.72895 −0.250365 −0.125183 0.992134i \(-0.539952\pi\)
−0.125183 + 0.992134i \(0.539952\pi\)
\(954\) 0 0
\(955\) 57.8312 1.87137
\(956\) −20.6601 −0.668196
\(957\) 0 0
\(958\) 38.2722 1.23652
\(959\) 0 0
\(960\) 0 0
\(961\) 25.5415 0.823920
\(962\) 0.404161 0.0130307
\(963\) 0 0
\(964\) −36.2243 −1.16671
\(965\) −0.248705 −0.00800608
\(966\) 0 0
\(967\) 14.3054 0.460030 0.230015 0.973187i \(-0.426122\pi\)
0.230015 + 0.973187i \(0.426122\pi\)
\(968\) −84.0735 −2.70222
\(969\) 0 0
\(970\) 21.0121 0.674658
\(971\) −15.1692 −0.486803 −0.243402 0.969926i \(-0.578263\pi\)
−0.243402 + 0.969926i \(0.578263\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) −99.7583 −3.19646
\(975\) 0 0
\(976\) −118.846 −3.80417
\(977\) 8.25746 0.264180 0.132090 0.991238i \(-0.457831\pi\)
0.132090 + 0.991238i \(0.457831\pi\)
\(978\) 0 0
\(979\) −9.33026 −0.298196
\(980\) 0 0
\(981\) 0 0
\(982\) 55.8016 1.78070
\(983\) −25.8525 −0.824568 −0.412284 0.911055i \(-0.635269\pi\)
−0.412284 + 0.911055i \(0.635269\pi\)
\(984\) 0 0
\(985\) −65.3897 −2.08349
\(986\) 12.5744 0.400449
\(987\) 0 0
\(988\) 14.0714 0.447671
\(989\) 21.8248 0.693988
\(990\) 0 0
\(991\) −56.2100 −1.78557 −0.892785 0.450484i \(-0.851252\pi\)
−0.892785 + 0.450484i \(0.851252\pi\)
\(992\) −76.9981 −2.44469
\(993\) 0 0
\(994\) 0 0
\(995\) 24.5744 0.779059
\(996\) 0 0
\(997\) −37.4789 −1.18697 −0.593484 0.804846i \(-0.702248\pi\)
−0.593484 + 0.804846i \(0.702248\pi\)
\(998\) −70.7237 −2.23872
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 5733.2.a.bf.1.1 4
3.2 odd 2 1911.2.a.s.1.4 4
7.6 odd 2 819.2.a.k.1.1 4
21.20 even 2 273.2.a.e.1.4 4
84.83 odd 2 4368.2.a.br.1.1 4
105.104 even 2 6825.2.a.bg.1.1 4
273.272 even 2 3549.2.a.w.1.1 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
273.2.a.e.1.4 4 21.20 even 2
819.2.a.k.1.1 4 7.6 odd 2
1911.2.a.s.1.4 4 3.2 odd 2
3549.2.a.w.1.1 4 273.272 even 2
4368.2.a.br.1.1 4 84.83 odd 2
5733.2.a.bf.1.1 4 1.1 even 1 trivial
6825.2.a.bg.1.1 4 105.104 even 2