Properties

Label 572.2.e
Level $572$
Weight $2$
Character orbit 572.e
Rep. character $\chi_{572}(131,\cdot)$
Character field $\Q$
Dimension $72$
Newform subspaces $2$
Sturm bound $168$
Trace bound $1$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 572 = 2^{2} \cdot 11 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 572.e (of order \(2\) and degree \(1\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 44 \)
Character field: \(\Q\)
Newform subspaces: \( 2 \)
Sturm bound: \(168\)
Trace bound: \(1\)
Distinguishing \(T_p\): \(3\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(572, [\chi])\).

Total New Old
Modular forms 88 72 16
Cusp forms 80 72 8
Eisenstein series 8 0 8

Trace form

\( 72q + 4q^{4} - 80q^{9} + O(q^{10}) \) \( 72q + 4q^{4} - 80q^{9} - 8q^{12} - 4q^{14} + 12q^{16} - 16q^{22} + 88q^{25} - 16q^{33} - 30q^{36} - 32q^{37} - 38q^{38} + 54q^{42} + 4q^{44} - 24q^{45} + 34q^{48} + 56q^{49} - 94q^{56} + 12q^{58} + 4q^{60} - 20q^{64} - 30q^{66} - 24q^{69} - 92q^{70} + 44q^{77} - 10q^{78} - 8q^{80} + 136q^{81} - 76q^{82} + 80q^{86} + 36q^{88} + 8q^{89} + 94q^{92} + 8q^{93} - 56q^{97} + O(q^{100}) \)

Decomposition of \(S_{2}^{\mathrm{new}}(572, [\chi])\) into newform subspaces

Label Dim. \(A\) Field CM Traces $q$-expansion
\(a_2\) \(a_3\) \(a_5\) \(a_7\)
572.2.e.a \(8\) \(4.567\) 8.0.342102016.5 None \(0\) \(0\) \(-12\) \(0\) \(q-\beta _{4}q^{2}+(-\beta _{3}-\beta _{5}+\beta _{7})q^{4}+(-2+\cdots)q^{5}+\cdots\)
572.2.e.b \(64\) \(4.567\) None \(0\) \(0\) \(12\) \(0\)

Decomposition of \(S_{2}^{\mathrm{old}}(572, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(572, [\chi]) \cong \) \(S_{2}^{\mathrm{new}}(44, [\chi])\)\(^{\oplus 2}\)