Properties

Label 5700.2.f.i.3649.1
Level $5700$
Weight $2$
Character 5700.3649
Analytic conductor $45.515$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 5700 = 2^{2} \cdot 3 \cdot 5^{2} \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 5700.f (of order \(2\), degree \(1\), not minimal)

Newform invariants

Self dual: no
Analytic conductor: \(45.5147291521\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(i)\)
Defining polynomial: \( x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 1140)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 3649.1
Root \(-1.00000i\) of defining polynomial
Character \(\chi\) \(=\) 5700.3649
Dual form 5700.2.f.i.3649.2

$q$-expansion

\(f(q)\) \(=\) \(q-1.00000i q^{3} -4.00000i q^{7} -1.00000 q^{9} +O(q^{10})\) \(q-1.00000i q^{3} -4.00000i q^{7} -1.00000 q^{9} +2.00000 q^{11} -6.00000i q^{13} -2.00000i q^{17} -1.00000 q^{19} -4.00000 q^{21} -6.00000i q^{23} +1.00000i q^{27} -8.00000 q^{29} -8.00000 q^{31} -2.00000i q^{33} +10.0000i q^{37} -6.00000 q^{39} -4.00000 q^{41} -4.00000i q^{43} +6.00000i q^{47} -9.00000 q^{49} -2.00000 q^{51} -12.0000i q^{53} +1.00000i q^{57} +8.00000 q^{59} +2.00000 q^{61} +4.00000i q^{63} +4.00000i q^{67} -6.00000 q^{69} +12.0000 q^{71} +10.0000i q^{73} -8.00000i q^{77} +8.00000 q^{79} +1.00000 q^{81} -2.00000i q^{83} +8.00000i q^{87} +12.0000 q^{89} -24.0000 q^{91} +8.00000i q^{93} -14.0000i q^{97} -2.00000 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 2 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 2 q - 2 q^{9} + 4 q^{11} - 2 q^{19} - 8 q^{21} - 16 q^{29} - 16 q^{31} - 12 q^{39} - 8 q^{41} - 18 q^{49} - 4 q^{51} + 16 q^{59} + 4 q^{61} - 12 q^{69} + 24 q^{71} + 16 q^{79} + 2 q^{81} + 24 q^{89} - 48 q^{91} - 4 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/5700\mathbb{Z}\right)^\times\).

\(n\) \(1901\) \(2851\) \(3877\) \(4201\)
\(\chi(n)\) \(1\) \(1\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) − 1.00000i − 0.577350i
\(4\) 0 0
\(5\) 0 0
\(6\) 0 0
\(7\) − 4.00000i − 1.51186i −0.654654 0.755929i \(-0.727186\pi\)
0.654654 0.755929i \(-0.272814\pi\)
\(8\) 0 0
\(9\) −1.00000 −0.333333
\(10\) 0 0
\(11\) 2.00000 0.603023 0.301511 0.953463i \(-0.402509\pi\)
0.301511 + 0.953463i \(0.402509\pi\)
\(12\) 0 0
\(13\) − 6.00000i − 1.66410i −0.554700 0.832050i \(-0.687167\pi\)
0.554700 0.832050i \(-0.312833\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) − 2.00000i − 0.485071i −0.970143 0.242536i \(-0.922021\pi\)
0.970143 0.242536i \(-0.0779791\pi\)
\(18\) 0 0
\(19\) −1.00000 −0.229416
\(20\) 0 0
\(21\) −4.00000 −0.872872
\(22\) 0 0
\(23\) − 6.00000i − 1.25109i −0.780189 0.625543i \(-0.784877\pi\)
0.780189 0.625543i \(-0.215123\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 0 0
\(27\) 1.00000i 0.192450i
\(28\) 0 0
\(29\) −8.00000 −1.48556 −0.742781 0.669534i \(-0.766494\pi\)
−0.742781 + 0.669534i \(0.766494\pi\)
\(30\) 0 0
\(31\) −8.00000 −1.43684 −0.718421 0.695608i \(-0.755135\pi\)
−0.718421 + 0.695608i \(0.755135\pi\)
\(32\) 0 0
\(33\) − 2.00000i − 0.348155i
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) 10.0000i 1.64399i 0.569495 + 0.821995i \(0.307139\pi\)
−0.569495 + 0.821995i \(0.692861\pi\)
\(38\) 0 0
\(39\) −6.00000 −0.960769
\(40\) 0 0
\(41\) −4.00000 −0.624695 −0.312348 0.949968i \(-0.601115\pi\)
−0.312348 + 0.949968i \(0.601115\pi\)
\(42\) 0 0
\(43\) − 4.00000i − 0.609994i −0.952353 0.304997i \(-0.901344\pi\)
0.952353 0.304997i \(-0.0986555\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 6.00000i 0.875190i 0.899172 + 0.437595i \(0.144170\pi\)
−0.899172 + 0.437595i \(0.855830\pi\)
\(48\) 0 0
\(49\) −9.00000 −1.28571
\(50\) 0 0
\(51\) −2.00000 −0.280056
\(52\) 0 0
\(53\) − 12.0000i − 1.64833i −0.566352 0.824163i \(-0.691646\pi\)
0.566352 0.824163i \(-0.308354\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) 1.00000i 0.132453i
\(58\) 0 0
\(59\) 8.00000 1.04151 0.520756 0.853706i \(-0.325650\pi\)
0.520756 + 0.853706i \(0.325650\pi\)
\(60\) 0 0
\(61\) 2.00000 0.256074 0.128037 0.991769i \(-0.459132\pi\)
0.128037 + 0.991769i \(0.459132\pi\)
\(62\) 0 0
\(63\) 4.00000i 0.503953i
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) 4.00000i 0.488678i 0.969690 + 0.244339i \(0.0785709\pi\)
−0.969690 + 0.244339i \(0.921429\pi\)
\(68\) 0 0
\(69\) −6.00000 −0.722315
\(70\) 0 0
\(71\) 12.0000 1.42414 0.712069 0.702109i \(-0.247758\pi\)
0.712069 + 0.702109i \(0.247758\pi\)
\(72\) 0 0
\(73\) 10.0000i 1.17041i 0.810885 + 0.585206i \(0.198986\pi\)
−0.810885 + 0.585206i \(0.801014\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) − 8.00000i − 0.911685i
\(78\) 0 0
\(79\) 8.00000 0.900070 0.450035 0.893011i \(-0.351411\pi\)
0.450035 + 0.893011i \(0.351411\pi\)
\(80\) 0 0
\(81\) 1.00000 0.111111
\(82\) 0 0
\(83\) − 2.00000i − 0.219529i −0.993958 0.109764i \(-0.964990\pi\)
0.993958 0.109764i \(-0.0350096\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) 8.00000i 0.857690i
\(88\) 0 0
\(89\) 12.0000 1.27200 0.635999 0.771690i \(-0.280588\pi\)
0.635999 + 0.771690i \(0.280588\pi\)
\(90\) 0 0
\(91\) −24.0000 −2.51588
\(92\) 0 0
\(93\) 8.00000i 0.829561i
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) − 14.0000i − 1.42148i −0.703452 0.710742i \(-0.748359\pi\)
0.703452 0.710742i \(-0.251641\pi\)
\(98\) 0 0
\(99\) −2.00000 −0.201008
\(100\) 0 0
\(101\) 6.00000 0.597022 0.298511 0.954406i \(-0.403510\pi\)
0.298511 + 0.954406i \(0.403510\pi\)
\(102\) 0 0
\(103\) 8.00000i 0.788263i 0.919054 + 0.394132i \(0.128955\pi\)
−0.919054 + 0.394132i \(0.871045\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 8.00000i 0.773389i 0.922208 + 0.386695i \(0.126383\pi\)
−0.922208 + 0.386695i \(0.873617\pi\)
\(108\) 0 0
\(109\) 6.00000 0.574696 0.287348 0.957826i \(-0.407226\pi\)
0.287348 + 0.957826i \(0.407226\pi\)
\(110\) 0 0
\(111\) 10.0000 0.949158
\(112\) 0 0
\(113\) − 8.00000i − 0.752577i −0.926503 0.376288i \(-0.877200\pi\)
0.926503 0.376288i \(-0.122800\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) 6.00000i 0.554700i
\(118\) 0 0
\(119\) −8.00000 −0.733359
\(120\) 0 0
\(121\) −7.00000 −0.636364
\(122\) 0 0
\(123\) 4.00000i 0.360668i
\(124\) 0 0
\(125\) 0 0
\(126\) 0 0
\(127\) − 8.00000i − 0.709885i −0.934888 0.354943i \(-0.884500\pi\)
0.934888 0.354943i \(-0.115500\pi\)
\(128\) 0 0
\(129\) −4.00000 −0.352180
\(130\) 0 0
\(131\) −6.00000 −0.524222 −0.262111 0.965038i \(-0.584419\pi\)
−0.262111 + 0.965038i \(0.584419\pi\)
\(132\) 0 0
\(133\) 4.00000i 0.346844i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 22.0000i 1.87959i 0.341743 + 0.939793i \(0.388983\pi\)
−0.341743 + 0.939793i \(0.611017\pi\)
\(138\) 0 0
\(139\) −12.0000 −1.01783 −0.508913 0.860818i \(-0.669953\pi\)
−0.508913 + 0.860818i \(0.669953\pi\)
\(140\) 0 0
\(141\) 6.00000 0.505291
\(142\) 0 0
\(143\) − 12.0000i − 1.00349i
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) 9.00000i 0.742307i
\(148\) 0 0
\(149\) −6.00000 −0.491539 −0.245770 0.969328i \(-0.579041\pi\)
−0.245770 + 0.969328i \(0.579041\pi\)
\(150\) 0 0
\(151\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(152\) 0 0
\(153\) 2.00000i 0.161690i
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) 2.00000i 0.159617i 0.996810 + 0.0798087i \(0.0254309\pi\)
−0.996810 + 0.0798087i \(0.974569\pi\)
\(158\) 0 0
\(159\) −12.0000 −0.951662
\(160\) 0 0
\(161\) −24.0000 −1.89146
\(162\) 0 0
\(163\) 8.00000i 0.626608i 0.949653 + 0.313304i \(0.101436\pi\)
−0.949653 + 0.313304i \(0.898564\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) − 16.0000i − 1.23812i −0.785345 0.619059i \(-0.787514\pi\)
0.785345 0.619059i \(-0.212486\pi\)
\(168\) 0 0
\(169\) −23.0000 −1.76923
\(170\) 0 0
\(171\) 1.00000 0.0764719
\(172\) 0 0
\(173\) − 16.0000i − 1.21646i −0.793762 0.608229i \(-0.791880\pi\)
0.793762 0.608229i \(-0.208120\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) − 8.00000i − 0.601317i
\(178\) 0 0
\(179\) 16.0000 1.19590 0.597948 0.801535i \(-0.295983\pi\)
0.597948 + 0.801535i \(0.295983\pi\)
\(180\) 0 0
\(181\) 18.0000 1.33793 0.668965 0.743294i \(-0.266738\pi\)
0.668965 + 0.743294i \(0.266738\pi\)
\(182\) 0 0
\(183\) − 2.00000i − 0.147844i
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) − 4.00000i − 0.292509i
\(188\) 0 0
\(189\) 4.00000 0.290957
\(190\) 0 0
\(191\) −2.00000 −0.144715 −0.0723575 0.997379i \(-0.523052\pi\)
−0.0723575 + 0.997379i \(0.523052\pi\)
\(192\) 0 0
\(193\) 26.0000i 1.87152i 0.352636 + 0.935760i \(0.385285\pi\)
−0.352636 + 0.935760i \(0.614715\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) − 6.00000i − 0.427482i −0.976890 0.213741i \(-0.931435\pi\)
0.976890 0.213741i \(-0.0685649\pi\)
\(198\) 0 0
\(199\) 4.00000 0.283552 0.141776 0.989899i \(-0.454719\pi\)
0.141776 + 0.989899i \(0.454719\pi\)
\(200\) 0 0
\(201\) 4.00000 0.282138
\(202\) 0 0
\(203\) 32.0000i 2.24596i
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) 6.00000i 0.417029i
\(208\) 0 0
\(209\) −2.00000 −0.138343
\(210\) 0 0
\(211\) −20.0000 −1.37686 −0.688428 0.725304i \(-0.741699\pi\)
−0.688428 + 0.725304i \(0.741699\pi\)
\(212\) 0 0
\(213\) − 12.0000i − 0.822226i
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) 32.0000i 2.17230i
\(218\) 0 0
\(219\) 10.0000 0.675737
\(220\) 0 0
\(221\) −12.0000 −0.807207
\(222\) 0 0
\(223\) 16.0000i 1.07144i 0.844396 + 0.535720i \(0.179960\pi\)
−0.844396 + 0.535720i \(0.820040\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 12.0000i 0.796468i 0.917284 + 0.398234i \(0.130377\pi\)
−0.917284 + 0.398234i \(0.869623\pi\)
\(228\) 0 0
\(229\) −22.0000 −1.45380 −0.726900 0.686743i \(-0.759040\pi\)
−0.726900 + 0.686743i \(0.759040\pi\)
\(230\) 0 0
\(231\) −8.00000 −0.526361
\(232\) 0 0
\(233\) − 26.0000i − 1.70332i −0.524097 0.851658i \(-0.675597\pi\)
0.524097 0.851658i \(-0.324403\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) − 8.00000i − 0.519656i
\(238\) 0 0
\(239\) −6.00000 −0.388108 −0.194054 0.980991i \(-0.562164\pi\)
−0.194054 + 0.980991i \(0.562164\pi\)
\(240\) 0 0
\(241\) −10.0000 −0.644157 −0.322078 0.946713i \(-0.604381\pi\)
−0.322078 + 0.946713i \(0.604381\pi\)
\(242\) 0 0
\(243\) − 1.00000i − 0.0641500i
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) 6.00000i 0.381771i
\(248\) 0 0
\(249\) −2.00000 −0.126745
\(250\) 0 0
\(251\) −26.0000 −1.64111 −0.820553 0.571571i \(-0.806334\pi\)
−0.820553 + 0.571571i \(0.806334\pi\)
\(252\) 0 0
\(253\) − 12.0000i − 0.754434i
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 12.0000i 0.748539i 0.927320 + 0.374270i \(0.122107\pi\)
−0.927320 + 0.374270i \(0.877893\pi\)
\(258\) 0 0
\(259\) 40.0000 2.48548
\(260\) 0 0
\(261\) 8.00000 0.495188
\(262\) 0 0
\(263\) 22.0000i 1.35658i 0.734795 + 0.678289i \(0.237278\pi\)
−0.734795 + 0.678289i \(0.762722\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) − 12.0000i − 0.734388i
\(268\) 0 0
\(269\) −4.00000 −0.243884 −0.121942 0.992537i \(-0.538912\pi\)
−0.121942 + 0.992537i \(0.538912\pi\)
\(270\) 0 0
\(271\) 4.00000 0.242983 0.121491 0.992592i \(-0.461232\pi\)
0.121491 + 0.992592i \(0.461232\pi\)
\(272\) 0 0
\(273\) 24.0000i 1.45255i
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) − 10.0000i − 0.600842i −0.953807 0.300421i \(-0.902873\pi\)
0.953807 0.300421i \(-0.0971271\pi\)
\(278\) 0 0
\(279\) 8.00000 0.478947
\(280\) 0 0
\(281\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(282\) 0 0
\(283\) 4.00000i 0.237775i 0.992908 + 0.118888i \(0.0379328\pi\)
−0.992908 + 0.118888i \(0.962067\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 16.0000i 0.944450i
\(288\) 0 0
\(289\) 13.0000 0.764706
\(290\) 0 0
\(291\) −14.0000 −0.820695
\(292\) 0 0
\(293\) − 16.0000i − 0.934730i −0.884064 0.467365i \(-0.845203\pi\)
0.884064 0.467365i \(-0.154797\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) 2.00000i 0.116052i
\(298\) 0 0
\(299\) −36.0000 −2.08193
\(300\) 0 0
\(301\) −16.0000 −0.922225
\(302\) 0 0
\(303\) − 6.00000i − 0.344691i
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) 28.0000i 1.59804i 0.601302 + 0.799022i \(0.294649\pi\)
−0.601302 + 0.799022i \(0.705351\pi\)
\(308\) 0 0
\(309\) 8.00000 0.455104
\(310\) 0 0
\(311\) −22.0000 −1.24751 −0.623753 0.781622i \(-0.714393\pi\)
−0.623753 + 0.781622i \(0.714393\pi\)
\(312\) 0 0
\(313\) − 6.00000i − 0.339140i −0.985518 0.169570i \(-0.945762\pi\)
0.985518 0.169570i \(-0.0542379\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) − 24.0000i − 1.34797i −0.738743 0.673987i \(-0.764580\pi\)
0.738743 0.673987i \(-0.235420\pi\)
\(318\) 0 0
\(319\) −16.0000 −0.895828
\(320\) 0 0
\(321\) 8.00000 0.446516
\(322\) 0 0
\(323\) 2.00000i 0.111283i
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) − 6.00000i − 0.331801i
\(328\) 0 0
\(329\) 24.0000 1.32316
\(330\) 0 0
\(331\) 20.0000 1.09930 0.549650 0.835395i \(-0.314761\pi\)
0.549650 + 0.835395i \(0.314761\pi\)
\(332\) 0 0
\(333\) − 10.0000i − 0.547997i
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) − 22.0000i − 1.19842i −0.800593 0.599208i \(-0.795482\pi\)
0.800593 0.599208i \(-0.204518\pi\)
\(338\) 0 0
\(339\) −8.00000 −0.434500
\(340\) 0 0
\(341\) −16.0000 −0.866449
\(342\) 0 0
\(343\) 8.00000i 0.431959i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) − 18.0000i − 0.966291i −0.875540 0.483145i \(-0.839494\pi\)
0.875540 0.483145i \(-0.160506\pi\)
\(348\) 0 0
\(349\) 34.0000 1.81998 0.909989 0.414632i \(-0.136090\pi\)
0.909989 + 0.414632i \(0.136090\pi\)
\(350\) 0 0
\(351\) 6.00000 0.320256
\(352\) 0 0
\(353\) − 30.0000i − 1.59674i −0.602168 0.798369i \(-0.705696\pi\)
0.602168 0.798369i \(-0.294304\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) 8.00000i 0.423405i
\(358\) 0 0
\(359\) −22.0000 −1.16112 −0.580558 0.814219i \(-0.697165\pi\)
−0.580558 + 0.814219i \(0.697165\pi\)
\(360\) 0 0
\(361\) 1.00000 0.0526316
\(362\) 0 0
\(363\) 7.00000i 0.367405i
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) 8.00000i 0.417597i 0.977959 + 0.208798i \(0.0669552\pi\)
−0.977959 + 0.208798i \(0.933045\pi\)
\(368\) 0 0
\(369\) 4.00000 0.208232
\(370\) 0 0
\(371\) −48.0000 −2.49204
\(372\) 0 0
\(373\) − 26.0000i − 1.34623i −0.739538 0.673114i \(-0.764956\pi\)
0.739538 0.673114i \(-0.235044\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 48.0000i 2.47213i
\(378\) 0 0
\(379\) 20.0000 1.02733 0.513665 0.857991i \(-0.328287\pi\)
0.513665 + 0.857991i \(0.328287\pi\)
\(380\) 0 0
\(381\) −8.00000 −0.409852
\(382\) 0 0
\(383\) 12.0000i 0.613171i 0.951843 + 0.306586i \(0.0991866\pi\)
−0.951843 + 0.306586i \(0.900813\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 4.00000i 0.203331i
\(388\) 0 0
\(389\) −2.00000 −0.101404 −0.0507020 0.998714i \(-0.516146\pi\)
−0.0507020 + 0.998714i \(0.516146\pi\)
\(390\) 0 0
\(391\) −12.0000 −0.606866
\(392\) 0 0
\(393\) 6.00000i 0.302660i
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) 14.0000i 0.702640i 0.936255 + 0.351320i \(0.114267\pi\)
−0.936255 + 0.351320i \(0.885733\pi\)
\(398\) 0 0
\(399\) 4.00000 0.200250
\(400\) 0 0
\(401\) −20.0000 −0.998752 −0.499376 0.866385i \(-0.666437\pi\)
−0.499376 + 0.866385i \(0.666437\pi\)
\(402\) 0 0
\(403\) 48.0000i 2.39105i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 20.0000i 0.991363i
\(408\) 0 0
\(409\) 18.0000 0.890043 0.445021 0.895520i \(-0.353196\pi\)
0.445021 + 0.895520i \(0.353196\pi\)
\(410\) 0 0
\(411\) 22.0000 1.08518
\(412\) 0 0
\(413\) − 32.0000i − 1.57462i
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) 12.0000i 0.587643i
\(418\) 0 0
\(419\) 6.00000 0.293119 0.146560 0.989202i \(-0.453180\pi\)
0.146560 + 0.989202i \(0.453180\pi\)
\(420\) 0 0
\(421\) −14.0000 −0.682318 −0.341159 0.940006i \(-0.610819\pi\)
−0.341159 + 0.940006i \(0.610819\pi\)
\(422\) 0 0
\(423\) − 6.00000i − 0.291730i
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) − 8.00000i − 0.387147i
\(428\) 0 0
\(429\) −12.0000 −0.579365
\(430\) 0 0
\(431\) 28.0000 1.34871 0.674356 0.738406i \(-0.264421\pi\)
0.674356 + 0.738406i \(0.264421\pi\)
\(432\) 0 0
\(433\) − 38.0000i − 1.82616i −0.407777 0.913082i \(-0.633696\pi\)
0.407777 0.913082i \(-0.366304\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 6.00000i 0.287019i
\(438\) 0 0
\(439\) −16.0000 −0.763638 −0.381819 0.924237i \(-0.624702\pi\)
−0.381819 + 0.924237i \(0.624702\pi\)
\(440\) 0 0
\(441\) 9.00000 0.428571
\(442\) 0 0
\(443\) − 6.00000i − 0.285069i −0.989790 0.142534i \(-0.954475\pi\)
0.989790 0.142534i \(-0.0455251\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) 6.00000i 0.283790i
\(448\) 0 0
\(449\) −16.0000 −0.755087 −0.377543 0.925992i \(-0.623231\pi\)
−0.377543 + 0.925992i \(0.623231\pi\)
\(450\) 0 0
\(451\) −8.00000 −0.376705
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 14.0000i 0.654892i 0.944870 + 0.327446i \(0.106188\pi\)
−0.944870 + 0.327446i \(0.893812\pi\)
\(458\) 0 0
\(459\) 2.00000 0.0933520
\(460\) 0 0
\(461\) −42.0000 −1.95614 −0.978068 0.208288i \(-0.933211\pi\)
−0.978068 + 0.208288i \(0.933211\pi\)
\(462\) 0 0
\(463\) 32.0000i 1.48717i 0.668644 + 0.743583i \(0.266875\pi\)
−0.668644 + 0.743583i \(0.733125\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) − 6.00000i − 0.277647i −0.990317 0.138823i \(-0.955668\pi\)
0.990317 0.138823i \(-0.0443321\pi\)
\(468\) 0 0
\(469\) 16.0000 0.738811
\(470\) 0 0
\(471\) 2.00000 0.0921551
\(472\) 0 0
\(473\) − 8.00000i − 0.367840i
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) 12.0000i 0.549442i
\(478\) 0 0
\(479\) 42.0000 1.91903 0.959514 0.281659i \(-0.0908848\pi\)
0.959514 + 0.281659i \(0.0908848\pi\)
\(480\) 0 0
\(481\) 60.0000 2.73576
\(482\) 0 0
\(483\) 24.0000i 1.09204i
\(484\) 0 0
\(485\) 0 0
\(486\) 0 0
\(487\) − 32.0000i − 1.45006i −0.688718 0.725029i \(-0.741826\pi\)
0.688718 0.725029i \(-0.258174\pi\)
\(488\) 0 0
\(489\) 8.00000 0.361773
\(490\) 0 0
\(491\) −14.0000 −0.631811 −0.315906 0.948791i \(-0.602308\pi\)
−0.315906 + 0.948791i \(0.602308\pi\)
\(492\) 0 0
\(493\) 16.0000i 0.720604i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) − 48.0000i − 2.15309i
\(498\) 0 0
\(499\) −44.0000 −1.96971 −0.984855 0.173379i \(-0.944532\pi\)
−0.984855 + 0.173379i \(0.944532\pi\)
\(500\) 0 0
\(501\) −16.0000 −0.714827
\(502\) 0 0
\(503\) − 26.0000i − 1.15928i −0.814872 0.579641i \(-0.803193\pi\)
0.814872 0.579641i \(-0.196807\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) 23.0000i 1.02147i
\(508\) 0 0
\(509\) 20.0000 0.886484 0.443242 0.896402i \(-0.353828\pi\)
0.443242 + 0.896402i \(0.353828\pi\)
\(510\) 0 0
\(511\) 40.0000 1.76950
\(512\) 0 0
\(513\) − 1.00000i − 0.0441511i
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) 12.0000i 0.527759i
\(518\) 0 0
\(519\) −16.0000 −0.702322
\(520\) 0 0
\(521\) −4.00000 −0.175243 −0.0876216 0.996154i \(-0.527927\pi\)
−0.0876216 + 0.996154i \(0.527927\pi\)
\(522\) 0 0
\(523\) − 28.0000i − 1.22435i −0.790721 0.612177i \(-0.790294\pi\)
0.790721 0.612177i \(-0.209706\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 16.0000i 0.696971i
\(528\) 0 0
\(529\) −13.0000 −0.565217
\(530\) 0 0
\(531\) −8.00000 −0.347170
\(532\) 0 0
\(533\) 24.0000i 1.03956i
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) − 16.0000i − 0.690451i
\(538\) 0 0
\(539\) −18.0000 −0.775315
\(540\) 0 0
\(541\) −30.0000 −1.28980 −0.644900 0.764267i \(-0.723101\pi\)
−0.644900 + 0.764267i \(0.723101\pi\)
\(542\) 0 0
\(543\) − 18.0000i − 0.772454i
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) 12.0000i 0.513083i 0.966533 + 0.256541i \(0.0825830\pi\)
−0.966533 + 0.256541i \(0.917417\pi\)
\(548\) 0 0
\(549\) −2.00000 −0.0853579
\(550\) 0 0
\(551\) 8.00000 0.340811
\(552\) 0 0
\(553\) − 32.0000i − 1.36078i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 30.0000i 1.27114i 0.772043 + 0.635570i \(0.219235\pi\)
−0.772043 + 0.635570i \(0.780765\pi\)
\(558\) 0 0
\(559\) −24.0000 −1.01509
\(560\) 0 0
\(561\) −4.00000 −0.168880
\(562\) 0 0
\(563\) − 4.00000i − 0.168580i −0.996441 0.0842900i \(-0.973138\pi\)
0.996441 0.0842900i \(-0.0268622\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) − 4.00000i − 0.167984i
\(568\) 0 0
\(569\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(570\) 0 0
\(571\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(572\) 0 0
\(573\) 2.00000i 0.0835512i
\(574\) 0 0
\(575\) 0 0
\(576\) 0 0
\(577\) 30.0000i 1.24892i 0.781058 + 0.624458i \(0.214680\pi\)
−0.781058 + 0.624458i \(0.785320\pi\)
\(578\) 0 0
\(579\) 26.0000 1.08052
\(580\) 0 0
\(581\) −8.00000 −0.331896
\(582\) 0 0
\(583\) − 24.0000i − 0.993978i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) − 6.00000i − 0.247647i −0.992304 0.123823i \(-0.960484\pi\)
0.992304 0.123823i \(-0.0395156\pi\)
\(588\) 0 0
\(589\) 8.00000 0.329634
\(590\) 0 0
\(591\) −6.00000 −0.246807
\(592\) 0 0
\(593\) 14.0000i 0.574911i 0.957794 + 0.287456i \(0.0928094\pi\)
−0.957794 + 0.287456i \(0.907191\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) − 4.00000i − 0.163709i
\(598\) 0 0
\(599\) −24.0000 −0.980613 −0.490307 0.871550i \(-0.663115\pi\)
−0.490307 + 0.871550i \(0.663115\pi\)
\(600\) 0 0
\(601\) 34.0000 1.38689 0.693444 0.720510i \(-0.256092\pi\)
0.693444 + 0.720510i \(0.256092\pi\)
\(602\) 0 0
\(603\) − 4.00000i − 0.162893i
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(608\) 0 0
\(609\) 32.0000 1.29671
\(610\) 0 0
\(611\) 36.0000 1.45640
\(612\) 0 0
\(613\) − 26.0000i − 1.05013i −0.851062 0.525065i \(-0.824041\pi\)
0.851062 0.525065i \(-0.175959\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) − 18.0000i − 0.724653i −0.932051 0.362326i \(-0.881983\pi\)
0.932051 0.362326i \(-0.118017\pi\)
\(618\) 0 0
\(619\) −28.0000 −1.12542 −0.562708 0.826656i \(-0.690240\pi\)
−0.562708 + 0.826656i \(0.690240\pi\)
\(620\) 0 0
\(621\) 6.00000 0.240772
\(622\) 0 0
\(623\) − 48.0000i − 1.92308i
\(624\) 0 0
\(625\) 0 0
\(626\) 0 0
\(627\) 2.00000i 0.0798723i
\(628\) 0 0
\(629\) 20.0000 0.797452
\(630\) 0 0
\(631\) 8.00000 0.318475 0.159237 0.987240i \(-0.449096\pi\)
0.159237 + 0.987240i \(0.449096\pi\)
\(632\) 0 0
\(633\) 20.0000i 0.794929i
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) 54.0000i 2.13956i
\(638\) 0 0
\(639\) −12.0000 −0.474713
\(640\) 0 0
\(641\) 12.0000 0.473972 0.236986 0.971513i \(-0.423841\pi\)
0.236986 + 0.971513i \(0.423841\pi\)
\(642\) 0 0
\(643\) 4.00000i 0.157745i 0.996885 + 0.0788723i \(0.0251319\pi\)
−0.996885 + 0.0788723i \(0.974868\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) − 50.0000i − 1.96570i −0.184399 0.982851i \(-0.559034\pi\)
0.184399 0.982851i \(-0.440966\pi\)
\(648\) 0 0
\(649\) 16.0000 0.628055
\(650\) 0 0
\(651\) 32.0000 1.25418
\(652\) 0 0
\(653\) 18.0000i 0.704394i 0.935926 + 0.352197i \(0.114565\pi\)
−0.935926 + 0.352197i \(0.885435\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) − 10.0000i − 0.390137i
\(658\) 0 0
\(659\) −12.0000 −0.467454 −0.233727 0.972302i \(-0.575092\pi\)
−0.233727 + 0.972302i \(0.575092\pi\)
\(660\) 0 0
\(661\) −2.00000 −0.0777910 −0.0388955 0.999243i \(-0.512384\pi\)
−0.0388955 + 0.999243i \(0.512384\pi\)
\(662\) 0 0
\(663\) 12.0000i 0.466041i
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 48.0000i 1.85857i
\(668\) 0 0
\(669\) 16.0000 0.618596
\(670\) 0 0
\(671\) 4.00000 0.154418
\(672\) 0 0
\(673\) 2.00000i 0.0770943i 0.999257 + 0.0385472i \(0.0122730\pi\)
−0.999257 + 0.0385472i \(0.987727\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) − 36.0000i − 1.38359i −0.722093 0.691796i \(-0.756820\pi\)
0.722093 0.691796i \(-0.243180\pi\)
\(678\) 0 0
\(679\) −56.0000 −2.14908
\(680\) 0 0
\(681\) 12.0000 0.459841
\(682\) 0 0
\(683\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) 22.0000i 0.839352i
\(688\) 0 0
\(689\) −72.0000 −2.74298
\(690\) 0 0
\(691\) −8.00000 −0.304334 −0.152167 0.988355i \(-0.548625\pi\)
−0.152167 + 0.988355i \(0.548625\pi\)
\(692\) 0 0
\(693\) 8.00000i 0.303895i
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) 8.00000i 0.303022i
\(698\) 0 0
\(699\) −26.0000 −0.983410
\(700\) 0 0
\(701\) 22.0000 0.830929 0.415464 0.909610i \(-0.363619\pi\)
0.415464 + 0.909610i \(0.363619\pi\)
\(702\) 0 0
\(703\) − 10.0000i − 0.377157i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) − 24.0000i − 0.902613i
\(708\) 0 0
\(709\) −10.0000 −0.375558 −0.187779 0.982211i \(-0.560129\pi\)
−0.187779 + 0.982211i \(0.560129\pi\)
\(710\) 0 0
\(711\) −8.00000 −0.300023
\(712\) 0 0
\(713\) 48.0000i 1.79761i
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 6.00000i 0.224074i
\(718\) 0 0
\(719\) −50.0000 −1.86469 −0.932343 0.361576i \(-0.882239\pi\)
−0.932343 + 0.361576i \(0.882239\pi\)
\(720\) 0 0
\(721\) 32.0000 1.19174
\(722\) 0 0
\(723\) 10.0000i 0.371904i
\(724\) 0 0
\(725\) 0 0
\(726\) 0 0
\(727\) − 48.0000i − 1.78022i −0.455744 0.890111i \(-0.650627\pi\)
0.455744 0.890111i \(-0.349373\pi\)
\(728\) 0 0
\(729\) −1.00000 −0.0370370
\(730\) 0 0
\(731\) −8.00000 −0.295891
\(732\) 0 0
\(733\) 46.0000i 1.69905i 0.527549 + 0.849524i \(0.323111\pi\)
−0.527549 + 0.849524i \(0.676889\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 8.00000i 0.294684i
\(738\) 0 0
\(739\) −4.00000 −0.147142 −0.0735712 0.997290i \(-0.523440\pi\)
−0.0735712 + 0.997290i \(0.523440\pi\)
\(740\) 0 0
\(741\) 6.00000 0.220416
\(742\) 0 0
\(743\) 36.0000i 1.32071i 0.750953 + 0.660356i \(0.229595\pi\)
−0.750953 + 0.660356i \(0.770405\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) 2.00000i 0.0731762i
\(748\) 0 0
\(749\) 32.0000 1.16925
\(750\) 0 0
\(751\) −8.00000 −0.291924 −0.145962 0.989290i \(-0.546628\pi\)
−0.145962 + 0.989290i \(0.546628\pi\)
\(752\) 0 0
\(753\) 26.0000i 0.947493i
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) − 10.0000i − 0.363456i −0.983349 0.181728i \(-0.941831\pi\)
0.983349 0.181728i \(-0.0581691\pi\)
\(758\) 0 0
\(759\) −12.0000 −0.435572
\(760\) 0 0
\(761\) −50.0000 −1.81250 −0.906249 0.422744i \(-0.861067\pi\)
−0.906249 + 0.422744i \(0.861067\pi\)
\(762\) 0 0
\(763\) − 24.0000i − 0.868858i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) − 48.0000i − 1.73318i
\(768\) 0 0
\(769\) 42.0000 1.51456 0.757279 0.653091i \(-0.226528\pi\)
0.757279 + 0.653091i \(0.226528\pi\)
\(770\) 0 0
\(771\) 12.0000 0.432169
\(772\) 0 0
\(773\) − 24.0000i − 0.863220i −0.902060 0.431610i \(-0.857946\pi\)
0.902060 0.431610i \(-0.142054\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) − 40.0000i − 1.43499i
\(778\) 0 0
\(779\) 4.00000 0.143315
\(780\) 0 0
\(781\) 24.0000 0.858788
\(782\) 0 0
\(783\) − 8.00000i − 0.285897i
\(784\) 0 0
\(785\) 0 0
\(786\) 0 0
\(787\) 28.0000i 0.998092i 0.866575 + 0.499046i \(0.166316\pi\)
−0.866575 + 0.499046i \(0.833684\pi\)
\(788\) 0 0
\(789\) 22.0000 0.783221
\(790\) 0 0
\(791\) −32.0000 −1.13779
\(792\) 0 0
\(793\) − 12.0000i − 0.426132i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) − 16.0000i − 0.566749i −0.959009 0.283375i \(-0.908546\pi\)
0.959009 0.283375i \(-0.0914540\pi\)
\(798\) 0 0
\(799\) 12.0000 0.424529
\(800\) 0 0
\(801\) −12.0000 −0.423999
\(802\) 0 0
\(803\) 20.0000i 0.705785i
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 4.00000i 0.140807i
\(808\) 0 0
\(809\) 46.0000 1.61727 0.808637 0.588308i \(-0.200206\pi\)
0.808637 + 0.588308i \(0.200206\pi\)
\(810\) 0 0
\(811\) −28.0000 −0.983213 −0.491606 0.870817i \(-0.663590\pi\)
−0.491606 + 0.870817i \(0.663590\pi\)
\(812\) 0 0
\(813\) − 4.00000i − 0.140286i
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) 4.00000i 0.139942i
\(818\) 0 0
\(819\) 24.0000 0.838628
\(820\) 0 0
\(821\) 38.0000 1.32621 0.663105 0.748527i \(-0.269238\pi\)
0.663105 + 0.748527i \(0.269238\pi\)
\(822\) 0 0
\(823\) 44.0000i 1.53374i 0.641800 + 0.766872i \(0.278188\pi\)
−0.641800 + 0.766872i \(0.721812\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 8.00000i 0.278187i 0.990279 + 0.139094i \(0.0444189\pi\)
−0.990279 + 0.139094i \(0.955581\pi\)
\(828\) 0 0
\(829\) −2.00000 −0.0694629 −0.0347314 0.999397i \(-0.511058\pi\)
−0.0347314 + 0.999397i \(0.511058\pi\)
\(830\) 0 0
\(831\) −10.0000 −0.346896
\(832\) 0 0
\(833\) 18.0000i 0.623663i
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) − 8.00000i − 0.276520i
\(838\) 0 0
\(839\) −12.0000 −0.414286 −0.207143 0.978311i \(-0.566417\pi\)
−0.207143 + 0.978311i \(0.566417\pi\)
\(840\) 0 0
\(841\) 35.0000 1.20690
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 0 0
\(846\) 0 0
\(847\) 28.0000i 0.962091i
\(848\) 0 0
\(849\) 4.00000 0.137280
\(850\) 0 0
\(851\) 60.0000 2.05677
\(852\) 0 0
\(853\) − 46.0000i − 1.57501i −0.616308 0.787505i \(-0.711372\pi\)
0.616308 0.787505i \(-0.288628\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) − 48.0000i − 1.63965i −0.572615 0.819824i \(-0.694071\pi\)
0.572615 0.819824i \(-0.305929\pi\)
\(858\) 0 0
\(859\) −4.00000 −0.136478 −0.0682391 0.997669i \(-0.521738\pi\)
−0.0682391 + 0.997669i \(0.521738\pi\)
\(860\) 0 0
\(861\) 16.0000 0.545279
\(862\) 0 0
\(863\) − 4.00000i − 0.136162i −0.997680 0.0680808i \(-0.978312\pi\)
0.997680 0.0680808i \(-0.0216876\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) − 13.0000i − 0.441503i
\(868\) 0 0
\(869\) 16.0000 0.542763
\(870\) 0 0
\(871\) 24.0000 0.813209
\(872\) 0 0
\(873\) 14.0000i 0.473828i
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) − 6.00000i − 0.202606i −0.994856 0.101303i \(-0.967699\pi\)
0.994856 0.101303i \(-0.0323011\pi\)
\(878\) 0 0
\(879\) −16.0000 −0.539667
\(880\) 0 0
\(881\) 22.0000 0.741199 0.370599 0.928793i \(-0.379152\pi\)
0.370599 + 0.928793i \(0.379152\pi\)
\(882\) 0 0
\(883\) 32.0000i 1.07689i 0.842662 + 0.538443i \(0.180987\pi\)
−0.842662 + 0.538443i \(0.819013\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(888\) 0 0
\(889\) −32.0000 −1.07325
\(890\) 0 0
\(891\) 2.00000 0.0670025
\(892\) 0 0
\(893\) − 6.00000i − 0.200782i
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) 36.0000i 1.20201i
\(898\) 0 0
\(899\) 64.0000 2.13452
\(900\) 0 0
\(901\) −24.0000 −0.799556
\(902\) 0 0
\(903\) 16.0000i 0.532447i
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) − 36.0000i − 1.19536i −0.801735 0.597680i \(-0.796089\pi\)
0.801735 0.597680i \(-0.203911\pi\)
\(908\) 0 0
\(909\) −6.00000 −0.199007
\(910\) 0 0
\(911\) 24.0000 0.795155 0.397578 0.917568i \(-0.369851\pi\)
0.397578 + 0.917568i \(0.369851\pi\)
\(912\) 0 0
\(913\) − 4.00000i − 0.132381i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 24.0000i 0.792550i
\(918\) 0 0
\(919\) −16.0000 −0.527791 −0.263896 0.964551i \(-0.585007\pi\)
−0.263896 + 0.964551i \(0.585007\pi\)
\(920\) 0 0
\(921\) 28.0000 0.922631
\(922\) 0 0
\(923\) − 72.0000i − 2.36991i
\(924\) 0 0
\(925\) 0 0
\(926\) 0 0
\(927\) − 8.00000i − 0.262754i
\(928\) 0 0
\(929\) 6.00000 0.196854 0.0984268 0.995144i \(-0.468619\pi\)
0.0984268 + 0.995144i \(0.468619\pi\)
\(930\) 0 0
\(931\) 9.00000 0.294963
\(932\) 0 0
\(933\) 22.0000i 0.720248i
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) − 30.0000i − 0.980057i −0.871706 0.490029i \(-0.836986\pi\)
0.871706 0.490029i \(-0.163014\pi\)
\(938\) 0 0
\(939\) −6.00000 −0.195803
\(940\) 0 0
\(941\) −4.00000 −0.130396 −0.0651981 0.997872i \(-0.520768\pi\)
−0.0651981 + 0.997872i \(0.520768\pi\)
\(942\) 0 0
\(943\) 24.0000i 0.781548i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 38.0000i 1.23483i 0.786636 + 0.617417i \(0.211821\pi\)
−0.786636 + 0.617417i \(0.788179\pi\)
\(948\) 0 0
\(949\) 60.0000 1.94768
\(950\) 0 0
\(951\) −24.0000 −0.778253
\(952\) 0 0
\(953\) 12.0000i 0.388718i 0.980930 + 0.194359i \(0.0622627\pi\)
−0.980930 + 0.194359i \(0.937737\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) 16.0000i 0.517207i
\(958\) 0 0
\(959\) 88.0000 2.84167
\(960\) 0 0
\(961\) 33.0000 1.06452
\(962\) 0 0
\(963\) − 8.00000i − 0.257796i
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) − 4.00000i − 0.128631i −0.997930 0.0643157i \(-0.979514\pi\)
0.997930 0.0643157i \(-0.0204865\pi\)
\(968\) 0 0
\(969\) 2.00000 0.0642493
\(970\) 0 0
\(971\) −20.0000 −0.641831 −0.320915 0.947108i \(-0.603990\pi\)
−0.320915 + 0.947108i \(0.603990\pi\)
\(972\) 0 0
\(973\) 48.0000i 1.53881i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 8.00000i 0.255943i 0.991778 + 0.127971i \(0.0408466\pi\)
−0.991778 + 0.127971i \(0.959153\pi\)
\(978\) 0 0
\(979\) 24.0000 0.767043
\(980\) 0 0
\(981\) −6.00000 −0.191565
\(982\) 0 0
\(983\) − 48.0000i − 1.53096i −0.643458 0.765481i \(-0.722501\pi\)
0.643458 0.765481i \(-0.277499\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) − 24.0000i − 0.763928i
\(988\) 0 0
\(989\) −24.0000 −0.763156
\(990\) 0 0
\(991\) −16.0000 −0.508257 −0.254128 0.967170i \(-0.581789\pi\)
−0.254128 + 0.967170i \(0.581789\pi\)
\(992\) 0 0
\(993\) − 20.0000i − 0.634681i
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) − 22.0000i − 0.696747i −0.937356 0.348373i \(-0.886734\pi\)
0.937356 0.348373i \(-0.113266\pi\)
\(998\) 0 0
\(999\) −10.0000 −0.316386
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 5700.2.f.i.3649.1 2
5.2 odd 4 5700.2.a.h.1.1 1
5.3 odd 4 1140.2.a.b.1.1 1
5.4 even 2 inner 5700.2.f.i.3649.2 2
15.8 even 4 3420.2.a.a.1.1 1
20.3 even 4 4560.2.a.i.1.1 1
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1140.2.a.b.1.1 1 5.3 odd 4
3420.2.a.a.1.1 1 15.8 even 4
4560.2.a.i.1.1 1 20.3 even 4
5700.2.a.h.1.1 1 5.2 odd 4
5700.2.f.i.3649.1 2 1.1 even 1 trivial
5700.2.f.i.3649.2 2 5.4 even 2 inner