Properties

Label 570.2.u.h.541.1
Level $570$
Weight $2$
Character 570.541
Analytic conductor $4.551$
Analytic rank $0$
Dimension $6$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [570,2,Mod(61,570)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(570, base_ring=CyclotomicField(18))
 
chi = DirichletCharacter(H, H._module([0, 0, 2]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("570.61");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 570 = 2 \cdot 3 \cdot 5 \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 570.u (of order \(9\), degree \(6\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(4.55147291521\)
Analytic rank: \(0\)
Dimension: \(6\)
Coefficient field: \(\Q(\zeta_{18})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - x^{3} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{9}]$

Embedding invariants

Embedding label 541.1
Root \(-0.766044 + 0.642788i\) of defining polynomial
Character \(\chi\) \(=\) 570.541
Dual form 570.2.u.h.511.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.173648 + 0.984808i) q^{2} +(0.766044 - 0.642788i) q^{3} +(-0.939693 + 0.342020i) q^{4} +(0.939693 + 0.342020i) q^{5} +(0.766044 + 0.642788i) q^{6} +(1.32635 - 2.29731i) q^{7} +(-0.500000 - 0.866025i) q^{8} +(0.173648 - 0.984808i) q^{9} +O(q^{10})\) \(q+(0.173648 + 0.984808i) q^{2} +(0.766044 - 0.642788i) q^{3} +(-0.939693 + 0.342020i) q^{4} +(0.939693 + 0.342020i) q^{5} +(0.766044 + 0.642788i) q^{6} +(1.32635 - 2.29731i) q^{7} +(-0.500000 - 0.866025i) q^{8} +(0.173648 - 0.984808i) q^{9} +(-0.173648 + 0.984808i) q^{10} +(-0.560307 - 0.970481i) q^{11} +(-0.500000 + 0.866025i) q^{12} +(2.61334 + 2.19285i) q^{13} +(2.49273 + 0.907278i) q^{14} +(0.939693 - 0.342020i) q^{15} +(0.766044 - 0.642788i) q^{16} +(-0.733956 - 4.16247i) q^{17} +1.00000 q^{18} +(3.79086 + 2.15160i) q^{19} -1.00000 q^{20} +(-0.460637 - 2.61240i) q^{21} +(0.858441 - 0.720317i) q^{22} +(3.49273 - 1.27125i) q^{23} +(-0.939693 - 0.342020i) q^{24} +(0.766044 + 0.642788i) q^{25} +(-1.70574 + 2.95442i) q^{26} +(-0.500000 - 0.866025i) q^{27} +(-0.460637 + 2.61240i) q^{28} +(0.624485 - 3.54163i) q^{29} +(0.500000 + 0.866025i) q^{30} +(-1.35117 + 2.34029i) q^{31} +(0.766044 + 0.642788i) q^{32} +(-1.05303 - 0.383273i) q^{33} +(3.97178 - 1.44561i) q^{34} +(2.03209 - 1.70513i) q^{35} +(0.173648 + 0.984808i) q^{36} -7.33275 q^{37} +(-1.46064 + 4.10689i) q^{38} +3.41147 q^{39} +(-0.173648 - 0.984808i) q^{40} +(-5.00387 + 4.19875i) q^{41} +(2.49273 - 0.907278i) q^{42} +(10.6702 + 3.88365i) q^{43} +(0.858441 + 0.720317i) q^{44} +(0.500000 - 0.866025i) q^{45} +(1.85844 + 3.21891i) q^{46} +(-1.11334 + 6.31407i) q^{47} +(0.173648 - 0.984808i) q^{48} +(-0.0184183 - 0.0319015i) q^{49} +(-0.500000 + 0.866025i) q^{50} +(-3.23783 - 2.71686i) q^{51} +(-3.20574 - 1.16679i) q^{52} +(-1.68732 + 0.614134i) q^{53} +(0.766044 - 0.642788i) q^{54} +(-0.194593 - 1.10359i) q^{55} -2.65270 q^{56} +(4.28699 - 0.788496i) q^{57} +3.59627 q^{58} +(-0.0320889 - 0.181985i) q^{59} +(-0.766044 + 0.642788i) q^{60} +(5.54576 - 2.01849i) q^{61} +(-2.53936 - 0.924252i) q^{62} +(-2.03209 - 1.70513i) q^{63} +(-0.500000 + 0.866025i) q^{64} +(1.70574 + 2.95442i) q^{65} +(0.194593 - 1.10359i) q^{66} +(2.16978 - 12.3054i) q^{67} +(2.11334 + 3.66041i) q^{68} +(1.85844 - 3.21891i) q^{69} +(2.03209 + 1.70513i) q^{70} +(-8.89053 - 3.23589i) q^{71} +(-0.939693 + 0.342020i) q^{72} +(-5.10014 + 4.27952i) q^{73} +(-1.27332 - 7.22135i) q^{74} +1.00000 q^{75} +(-4.29813 - 0.725293i) q^{76} -2.97266 q^{77} +(0.592396 + 3.35965i) q^{78} +(-4.73783 + 3.97551i) q^{79} +(0.939693 - 0.342020i) q^{80} +(-0.939693 - 0.342020i) q^{81} +(-5.00387 - 4.19875i) q^{82} +(-5.37211 + 9.30477i) q^{83} +(1.32635 + 2.29731i) q^{84} +(0.733956 - 4.16247i) q^{85} +(-1.97178 + 11.1825i) q^{86} +(-1.79813 - 3.11446i) q^{87} +(-0.560307 + 0.970481i) q^{88} +(-9.03983 - 7.58532i) q^{89} +(0.939693 + 0.342020i) q^{90} +(8.50387 - 3.09516i) q^{91} +(-2.84730 + 2.38917i) q^{92} +(0.469255 + 2.66128i) q^{93} -6.41147 q^{94} +(2.82635 + 3.31839i) q^{95} +1.00000 q^{96} +(1.21554 + 6.89365i) q^{97} +(0.0282185 - 0.0236781i) q^{98} +(-1.05303 + 0.383273i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q + 9 q^{7} - 3 q^{8}+O(q^{10}) \) Copy content Toggle raw display \( 6 q + 9 q^{7} - 3 q^{8} - 9 q^{11} - 3 q^{12} + 9 q^{13} - 3 q^{14} - 9 q^{17} + 6 q^{18} - 9 q^{19} - 6 q^{20} + 6 q^{21} - 3 q^{22} + 3 q^{23} - 3 q^{27} + 6 q^{28} - 9 q^{29} + 3 q^{30} + 18 q^{31} + 6 q^{33} + 9 q^{34} + 3 q^{35} - 6 q^{37} - 6 q^{41} - 3 q^{42} + 21 q^{43} - 3 q^{44} + 3 q^{45} + 3 q^{46} - 12 q^{49} - 3 q^{50} - 9 q^{52} + 12 q^{53} + 3 q^{55} - 18 q^{56} + 18 q^{57} - 6 q^{58} + 9 q^{59} + 3 q^{61} - 24 q^{62} - 3 q^{63} - 3 q^{64} - 3 q^{66} + 36 q^{67} + 6 q^{68} + 3 q^{69} + 3 q^{70} - 36 q^{71} + 21 q^{73} - 21 q^{74} + 6 q^{75} - 12 q^{76} - 60 q^{77} - 9 q^{79} - 6 q^{82} - 3 q^{83} + 9 q^{84} + 9 q^{85} + 3 q^{86} + 3 q^{87} - 9 q^{88} + 3 q^{89} + 27 q^{91} - 15 q^{92} + 3 q^{93} - 18 q^{94} + 18 q^{95} + 6 q^{96} + 15 q^{98} + 6 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/570\mathbb{Z}\right)^\times\).

\(n\) \(191\) \(211\) \(457\)
\(\chi(n)\) \(1\) \(e\left(\frac{4}{9}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.173648 + 0.984808i 0.122788 + 0.696364i
\(3\) 0.766044 0.642788i 0.442276 0.371114i
\(4\) −0.939693 + 0.342020i −0.469846 + 0.171010i
\(5\) 0.939693 + 0.342020i 0.420243 + 0.152956i
\(6\) 0.766044 + 0.642788i 0.312736 + 0.262417i
\(7\) 1.32635 2.29731i 0.501314 0.868301i −0.498685 0.866783i \(-0.666184\pi\)
0.999999 0.00151779i \(-0.000483127\pi\)
\(8\) −0.500000 0.866025i −0.176777 0.306186i
\(9\) 0.173648 0.984808i 0.0578827 0.328269i
\(10\) −0.173648 + 0.984808i −0.0549124 + 0.311424i
\(11\) −0.560307 0.970481i −0.168939 0.292611i 0.769108 0.639119i \(-0.220701\pi\)
−0.938047 + 0.346508i \(0.887367\pi\)
\(12\) −0.500000 + 0.866025i −0.144338 + 0.250000i
\(13\) 2.61334 + 2.19285i 0.724810 + 0.608188i 0.928711 0.370803i \(-0.120918\pi\)
−0.203901 + 0.978992i \(0.565362\pi\)
\(14\) 2.49273 + 0.907278i 0.666209 + 0.242480i
\(15\) 0.939693 0.342020i 0.242628 0.0883092i
\(16\) 0.766044 0.642788i 0.191511 0.160697i
\(17\) −0.733956 4.16247i −0.178010 1.00955i −0.934611 0.355670i \(-0.884253\pi\)
0.756601 0.653877i \(-0.226858\pi\)
\(18\) 1.00000 0.235702
\(19\) 3.79086 + 2.15160i 0.869683 + 0.493611i
\(20\) −1.00000 −0.223607
\(21\) −0.460637 2.61240i −0.100519 0.570073i
\(22\) 0.858441 0.720317i 0.183020 0.153572i
\(23\) 3.49273 1.27125i 0.728284 0.265074i 0.0488455 0.998806i \(-0.484446\pi\)
0.679438 + 0.733733i \(0.262224\pi\)
\(24\) −0.939693 0.342020i −0.191814 0.0698146i
\(25\) 0.766044 + 0.642788i 0.153209 + 0.128558i
\(26\) −1.70574 + 2.95442i −0.334523 + 0.579410i
\(27\) −0.500000 0.866025i −0.0962250 0.166667i
\(28\) −0.460637 + 2.61240i −0.0870522 + 0.493698i
\(29\) 0.624485 3.54163i 0.115964 0.657664i −0.870304 0.492514i \(-0.836078\pi\)
0.986268 0.165150i \(-0.0528109\pi\)
\(30\) 0.500000 + 0.866025i 0.0912871 + 0.158114i
\(31\) −1.35117 + 2.34029i −0.242677 + 0.420328i −0.961476 0.274889i \(-0.911359\pi\)
0.718799 + 0.695218i \(0.244692\pi\)
\(32\) 0.766044 + 0.642788i 0.135419 + 0.113630i
\(33\) −1.05303 0.383273i −0.183310 0.0667192i
\(34\) 3.97178 1.44561i 0.681155 0.247920i
\(35\) 2.03209 1.70513i 0.343486 0.288219i
\(36\) 0.173648 + 0.984808i 0.0289414 + 0.164135i
\(37\) −7.33275 −1.20550 −0.602748 0.797931i \(-0.705928\pi\)
−0.602748 + 0.797931i \(0.705928\pi\)
\(38\) −1.46064 + 4.10689i −0.236947 + 0.666225i
\(39\) 3.41147 0.546273
\(40\) −0.173648 0.984808i −0.0274562 0.155712i
\(41\) −5.00387 + 4.19875i −0.781473 + 0.655734i −0.943619 0.331033i \(-0.892603\pi\)
0.162146 + 0.986767i \(0.448158\pi\)
\(42\) 2.49273 0.907278i 0.384636 0.139996i
\(43\) 10.6702 + 3.88365i 1.62720 + 0.592251i 0.984734 0.174065i \(-0.0556904\pi\)
0.642463 + 0.766317i \(0.277913\pi\)
\(44\) 0.858441 + 0.720317i 0.129415 + 0.108592i
\(45\) 0.500000 0.866025i 0.0745356 0.129099i
\(46\) 1.85844 + 3.21891i 0.274012 + 0.474603i
\(47\) −1.11334 + 6.31407i −0.162397 + 0.921002i 0.789310 + 0.613995i \(0.210439\pi\)
−0.951707 + 0.307007i \(0.900673\pi\)
\(48\) 0.173648 0.984808i 0.0250640 0.142145i
\(49\) −0.0184183 0.0319015i −0.00263119 0.00455735i
\(50\) −0.500000 + 0.866025i −0.0707107 + 0.122474i
\(51\) −3.23783 2.71686i −0.453386 0.380436i
\(52\) −3.20574 1.16679i −0.444556 0.161805i
\(53\) −1.68732 + 0.614134i −0.231771 + 0.0843578i −0.455295 0.890341i \(-0.650466\pi\)
0.223524 + 0.974698i \(0.428244\pi\)
\(54\) 0.766044 0.642788i 0.104245 0.0874723i
\(55\) −0.194593 1.10359i −0.0262389 0.148808i
\(56\) −2.65270 −0.354482
\(57\) 4.28699 0.788496i 0.567826 0.104439i
\(58\) 3.59627 0.472213
\(59\) −0.0320889 0.181985i −0.00417762 0.0236924i 0.982648 0.185482i \(-0.0593846\pi\)
−0.986825 + 0.161789i \(0.948273\pi\)
\(60\) −0.766044 + 0.642788i −0.0988959 + 0.0829835i
\(61\) 5.54576 2.01849i 0.710062 0.258441i 0.0383610 0.999264i \(-0.487786\pi\)
0.671701 + 0.740823i \(0.265564\pi\)
\(62\) −2.53936 0.924252i −0.322499 0.117380i
\(63\) −2.03209 1.70513i −0.256019 0.214826i
\(64\) −0.500000 + 0.866025i −0.0625000 + 0.108253i
\(65\) 1.70574 + 2.95442i 0.211571 + 0.366451i
\(66\) 0.194593 1.10359i 0.0239527 0.135843i
\(67\) 2.16978 12.3054i 0.265081 1.50335i −0.503725 0.863864i \(-0.668038\pi\)
0.768806 0.639482i \(-0.220851\pi\)
\(68\) 2.11334 + 3.66041i 0.256280 + 0.443890i
\(69\) 1.85844 3.21891i 0.223730 0.387512i
\(70\) 2.03209 + 1.70513i 0.242881 + 0.203801i
\(71\) −8.89053 3.23589i −1.05511 0.384029i −0.244522 0.969644i \(-0.578631\pi\)
−0.810590 + 0.585614i \(0.800853\pi\)
\(72\) −0.939693 + 0.342020i −0.110744 + 0.0403075i
\(73\) −5.10014 + 4.27952i −0.596926 + 0.500880i −0.890456 0.455070i \(-0.849614\pi\)
0.293530 + 0.955950i \(0.405170\pi\)
\(74\) −1.27332 7.22135i −0.148020 0.839465i
\(75\) 1.00000 0.115470
\(76\) −4.29813 0.725293i −0.493030 0.0831968i
\(77\) −2.97266 −0.338766
\(78\) 0.592396 + 3.35965i 0.0670757 + 0.380405i
\(79\) −4.73783 + 3.97551i −0.533047 + 0.447280i −0.869152 0.494545i \(-0.835335\pi\)
0.336105 + 0.941825i \(0.390890\pi\)
\(80\) 0.939693 0.342020i 0.105061 0.0382390i
\(81\) −0.939693 0.342020i −0.104410 0.0380022i
\(82\) −5.00387 4.19875i −0.552585 0.463674i
\(83\) −5.37211 + 9.30477i −0.589666 + 1.02133i 0.404610 + 0.914489i \(0.367407\pi\)
−0.994276 + 0.106842i \(0.965926\pi\)
\(84\) 1.32635 + 2.29731i 0.144717 + 0.250657i
\(85\) 0.733956 4.16247i 0.0796087 0.451483i
\(86\) −1.97178 + 11.1825i −0.212623 + 1.20584i
\(87\) −1.79813 3.11446i −0.192780 0.333905i
\(88\) −0.560307 + 0.970481i −0.0597290 + 0.103454i
\(89\) −9.03983 7.58532i −0.958220 0.804042i 0.0224426 0.999748i \(-0.492856\pi\)
−0.980663 + 0.195706i \(0.937300\pi\)
\(90\) 0.939693 + 0.342020i 0.0990523 + 0.0360521i
\(91\) 8.50387 3.09516i 0.891448 0.324460i
\(92\) −2.84730 + 2.38917i −0.296851 + 0.249088i
\(93\) 0.469255 + 2.66128i 0.0486595 + 0.275962i
\(94\) −6.41147 −0.661293
\(95\) 2.82635 + 3.31839i 0.289978 + 0.340460i
\(96\) 1.00000 0.102062
\(97\) 1.21554 + 6.89365i 0.123419 + 0.699945i 0.982234 + 0.187659i \(0.0600900\pi\)
−0.858815 + 0.512286i \(0.828799\pi\)
\(98\) 0.0282185 0.0236781i 0.00285050 0.00239185i
\(99\) −1.05303 + 0.383273i −0.105834 + 0.0385204i
\(100\) −0.939693 0.342020i −0.0939693 0.0342020i
\(101\) −8.91534 7.48086i −0.887110 0.744374i 0.0805184 0.996753i \(-0.474342\pi\)
−0.967628 + 0.252380i \(0.918787\pi\)
\(102\) 2.11334 3.66041i 0.209252 0.362435i
\(103\) 3.91875 + 6.78747i 0.386126 + 0.668789i 0.991925 0.126828i \(-0.0404798\pi\)
−0.605799 + 0.795618i \(0.707146\pi\)
\(104\) 0.592396 3.35965i 0.0580892 0.329440i
\(105\) 0.460637 2.61240i 0.0449536 0.254944i
\(106\) −0.897804 1.55504i −0.0872024 0.151039i
\(107\) −7.90420 + 13.6905i −0.764128 + 1.32351i 0.176579 + 0.984287i \(0.443497\pi\)
−0.940706 + 0.339222i \(0.889836\pi\)
\(108\) 0.766044 + 0.642788i 0.0737127 + 0.0618523i
\(109\) −5.79086 2.10770i −0.554664 0.201881i 0.0494537 0.998776i \(-0.484252\pi\)
−0.604117 + 0.796895i \(0.706474\pi\)
\(110\) 1.05303 0.383273i 0.100403 0.0365436i
\(111\) −5.61721 + 4.71340i −0.533162 + 0.447376i
\(112\) −0.460637 2.61240i −0.0435261 0.246849i
\(113\) −3.17705 −0.298872 −0.149436 0.988771i \(-0.547746\pi\)
−0.149436 + 0.988771i \(0.547746\pi\)
\(114\) 1.52094 + 4.08494i 0.142450 + 0.382590i
\(115\) 3.71688 0.346601
\(116\) 0.624485 + 3.54163i 0.0579820 + 0.328832i
\(117\) 2.61334 2.19285i 0.241603 0.202729i
\(118\) 0.173648 0.0632028i 0.0159856 0.00581829i
\(119\) −10.5360 3.83478i −0.965830 0.351533i
\(120\) −0.766044 0.642788i −0.0699300 0.0586782i
\(121\) 4.87211 8.43874i 0.442919 0.767159i
\(122\) 2.95084 + 5.11100i 0.267156 + 0.462728i
\(123\) −1.13429 + 6.43285i −0.102275 + 0.580031i
\(124\) 0.469255 2.66128i 0.0421404 0.238990i
\(125\) 0.500000 + 0.866025i 0.0447214 + 0.0774597i
\(126\) 1.32635 2.29731i 0.118161 0.204661i
\(127\) 9.03074 + 7.57769i 0.801349 + 0.672412i 0.948526 0.316698i \(-0.102574\pi\)
−0.147177 + 0.989110i \(0.547019\pi\)
\(128\) −0.939693 0.342020i −0.0830579 0.0302306i
\(129\) 10.6702 3.88365i 0.939463 0.341936i
\(130\) −2.61334 + 2.19285i −0.229205 + 0.192326i
\(131\) −3.15570 17.8968i −0.275715 1.56365i −0.736683 0.676238i \(-0.763609\pi\)
0.460969 0.887416i \(-0.347502\pi\)
\(132\) 1.12061 0.0975370
\(133\) 9.97090 5.85499i 0.864587 0.507692i
\(134\) 12.4953 1.07943
\(135\) −0.173648 0.984808i −0.0149453 0.0847588i
\(136\) −3.23783 + 2.71686i −0.277641 + 0.232969i
\(137\) −12.7836 + 4.65284i −1.09218 + 0.397519i −0.824426 0.565969i \(-0.808502\pi\)
−0.267749 + 0.963489i \(0.586280\pi\)
\(138\) 3.49273 + 1.27125i 0.297321 + 0.108216i
\(139\) −6.75490 5.66803i −0.572943 0.480756i 0.309678 0.950842i \(-0.399779\pi\)
−0.882621 + 0.470085i \(0.844223\pi\)
\(140\) −1.32635 + 2.29731i −0.112097 + 0.194158i
\(141\) 3.20574 + 5.55250i 0.269972 + 0.467605i
\(142\) 1.64290 9.31737i 0.137869 0.781896i
\(143\) 0.663848 3.76487i 0.0555138 0.314834i
\(144\) −0.500000 0.866025i −0.0416667 0.0721688i
\(145\) 1.79813 3.11446i 0.149327 0.258642i
\(146\) −5.10014 4.27952i −0.422090 0.354176i
\(147\) −0.0346151 0.0125989i −0.00285501 0.00103914i
\(148\) 6.89053 2.50795i 0.566398 0.206152i
\(149\) 3.13429 2.62998i 0.256771 0.215456i −0.505311 0.862938i \(-0.668622\pi\)
0.762081 + 0.647481i \(0.224178\pi\)
\(150\) 0.173648 + 0.984808i 0.0141783 + 0.0804092i
\(151\) −17.8307 −1.45104 −0.725520 0.688201i \(-0.758401\pi\)
−0.725520 + 0.688201i \(0.758401\pi\)
\(152\) −0.0320889 4.35878i −0.00260275 0.353544i
\(153\) −4.22668 −0.341707
\(154\) −0.516197 2.92750i −0.0415963 0.235904i
\(155\) −2.07011 + 1.73703i −0.166275 + 0.139521i
\(156\) −3.20574 + 1.16679i −0.256664 + 0.0934182i
\(157\) −9.44104 3.43626i −0.753477 0.274243i −0.0634088 0.997988i \(-0.520197\pi\)
−0.690068 + 0.723745i \(0.742419\pi\)
\(158\) −4.73783 3.97551i −0.376921 0.316274i
\(159\) −0.897804 + 1.55504i −0.0712005 + 0.123323i
\(160\) 0.500000 + 0.866025i 0.0395285 + 0.0684653i
\(161\) 1.71213 9.70999i 0.134935 0.765255i
\(162\) 0.173648 0.984808i 0.0136431 0.0773738i
\(163\) 0.354570 + 0.614134i 0.0277721 + 0.0481027i 0.879577 0.475756i \(-0.157825\pi\)
−0.851805 + 0.523858i \(0.824492\pi\)
\(164\) 3.26604 5.65695i 0.255035 0.441734i
\(165\) −0.858441 0.720317i −0.0668295 0.0560766i
\(166\) −10.0963 3.67474i −0.783622 0.285215i
\(167\) 3.84002 1.39765i 0.297150 0.108154i −0.189143 0.981950i \(-0.560571\pi\)
0.486293 + 0.873796i \(0.338349\pi\)
\(168\) −2.03209 + 1.70513i −0.156779 + 0.131553i
\(169\) −0.236482 1.34115i −0.0181909 0.103166i
\(170\) 4.22668 0.324172
\(171\) 2.77719 3.35965i 0.212377 0.256919i
\(172\) −11.3550 −0.865813
\(173\) 2.09714 + 11.8935i 0.159443 + 0.904246i 0.954611 + 0.297856i \(0.0962716\pi\)
−0.795168 + 0.606389i \(0.792617\pi\)
\(174\) 2.75490 2.31164i 0.208848 0.175245i
\(175\) 2.49273 0.907278i 0.188432 0.0685838i
\(176\) −1.05303 0.383273i −0.0793754 0.0288903i
\(177\) −0.141559 0.118782i −0.0106402 0.00892823i
\(178\) 5.90033 10.2197i 0.442248 0.765997i
\(179\) 7.88713 + 13.6609i 0.589511 + 1.02106i 0.994296 + 0.106652i \(0.0340130\pi\)
−0.404785 + 0.914412i \(0.632654\pi\)
\(180\) −0.173648 + 0.984808i −0.0129430 + 0.0734032i
\(181\) −0.131292 + 0.744596i −0.00975888 + 0.0553454i −0.989298 0.145907i \(-0.953390\pi\)
0.979539 + 0.201252i \(0.0645011\pi\)
\(182\) 4.52481 + 7.83721i 0.335402 + 0.580933i
\(183\) 2.95084 5.11100i 0.218132 0.377816i
\(184\) −2.84730 2.38917i −0.209905 0.176132i
\(185\) −6.89053 2.50795i −0.506602 0.184388i
\(186\) −2.53936 + 0.924252i −0.186195 + 0.0677695i
\(187\) −3.62836 + 3.04455i −0.265332 + 0.222640i
\(188\) −1.11334 6.31407i −0.0811987 0.460501i
\(189\) −2.65270 −0.192956
\(190\) −2.77719 + 3.35965i −0.201478 + 0.243734i
\(191\) 8.64590 0.625595 0.312798 0.949820i \(-0.398734\pi\)
0.312798 + 0.949820i \(0.398734\pi\)
\(192\) 0.173648 + 0.984808i 0.0125320 + 0.0710724i
\(193\) 5.84002 4.90036i 0.420374 0.352736i −0.407931 0.913013i \(-0.633750\pi\)
0.828305 + 0.560277i \(0.189305\pi\)
\(194\) −6.57785 + 2.39414i −0.472262 + 0.171889i
\(195\) 3.20574 + 1.16679i 0.229568 + 0.0835558i
\(196\) 0.0282185 + 0.0236781i 0.00201561 + 0.00169129i
\(197\) 3.03462 5.25611i 0.216207 0.374482i −0.737438 0.675415i \(-0.763965\pi\)
0.953645 + 0.300933i \(0.0972979\pi\)
\(198\) −0.560307 0.970481i −0.0398193 0.0689691i
\(199\) −3.67617 + 20.8486i −0.260597 + 1.47792i 0.520689 + 0.853746i \(0.325675\pi\)
−0.781286 + 0.624173i \(0.785436\pi\)
\(200\) 0.173648 0.984808i 0.0122788 0.0696364i
\(201\) −6.24763 10.8212i −0.440674 0.763269i
\(202\) 5.81908 10.0789i 0.409429 0.709152i
\(203\) −7.30793 6.13208i −0.512916 0.430388i
\(204\) 3.97178 + 1.44561i 0.278080 + 0.101213i
\(205\) −6.13816 + 2.23411i −0.428707 + 0.156037i
\(206\) −6.00387 + 5.03785i −0.418309 + 0.351003i
\(207\) −0.645430 3.66041i −0.0448605 0.254416i
\(208\) 3.41147 0.236543
\(209\) −0.0359593 4.88451i −0.00248736 0.337869i
\(210\) 2.65270 0.183054
\(211\) 0.423801 + 2.40349i 0.0291756 + 0.165463i 0.995914 0.0903027i \(-0.0287835\pi\)
−0.966739 + 0.255766i \(0.917672\pi\)
\(212\) 1.37551 1.15419i 0.0944707 0.0792704i
\(213\) −8.89053 + 3.23589i −0.609169 + 0.221719i
\(214\) −14.8550 5.40679i −1.01547 0.369601i
\(215\) 8.69846 + 7.29888i 0.593230 + 0.497779i
\(216\) −0.500000 + 0.866025i −0.0340207 + 0.0589256i
\(217\) 3.58424 + 6.20809i 0.243314 + 0.421433i
\(218\) 1.07011 6.06888i 0.0724768 0.411037i
\(219\) −1.15611 + 6.55661i −0.0781225 + 0.443055i
\(220\) 0.560307 + 0.970481i 0.0377759 + 0.0654298i
\(221\) 7.20961 12.4874i 0.484971 0.839994i
\(222\) −5.61721 4.71340i −0.377003 0.316343i
\(223\) 23.1643 + 8.43112i 1.55120 + 0.564590i 0.968698 0.248242i \(-0.0798527\pi\)
0.582499 + 0.812831i \(0.302075\pi\)
\(224\) 2.49273 0.907278i 0.166552 0.0606201i
\(225\) 0.766044 0.642788i 0.0510696 0.0428525i
\(226\) −0.551689 3.12879i −0.0366978 0.208124i
\(227\) 11.5990 0.769850 0.384925 0.922948i \(-0.374227\pi\)
0.384925 + 0.922948i \(0.374227\pi\)
\(228\) −3.75877 + 2.20718i −0.248931 + 0.146174i
\(229\) −15.0915 −0.997276 −0.498638 0.866810i \(-0.666166\pi\)
−0.498638 + 0.866810i \(0.666166\pi\)
\(230\) 0.645430 + 3.66041i 0.0425584 + 0.241361i
\(231\) −2.27719 + 1.91079i −0.149828 + 0.125721i
\(232\) −3.37939 + 1.23000i −0.221868 + 0.0807532i
\(233\) 25.7246 + 9.36300i 1.68528 + 0.613390i 0.994018 0.109218i \(-0.0348345\pi\)
0.691258 + 0.722608i \(0.257057\pi\)
\(234\) 2.61334 + 2.19285i 0.170839 + 0.143351i
\(235\) −3.20574 + 5.55250i −0.209119 + 0.362205i
\(236\) 0.0923963 + 0.160035i 0.00601448 + 0.0104174i
\(237\) −1.07398 + 6.09083i −0.0697624 + 0.395642i
\(238\) 1.94697 11.0418i 0.126203 0.715733i
\(239\) 12.3118 + 21.3247i 0.796384 + 1.37938i 0.921956 + 0.387294i \(0.126590\pi\)
−0.125572 + 0.992085i \(0.540077\pi\)
\(240\) 0.500000 0.866025i 0.0322749 0.0559017i
\(241\) −17.9231 15.0393i −1.15453 0.968764i −0.154712 0.987960i \(-0.549445\pi\)
−0.999816 + 0.0191961i \(0.993889\pi\)
\(242\) 9.15657 + 3.33272i 0.588607 + 0.214235i
\(243\) −0.939693 + 0.342020i −0.0602813 + 0.0219406i
\(244\) −4.52094 + 3.79352i −0.289424 + 0.242855i
\(245\) −0.00639661 0.0362770i −0.000408665 0.00231765i
\(246\) −6.53209 −0.416471
\(247\) 5.18866 + 13.9357i 0.330147 + 0.886705i
\(248\) 2.70233 0.171598
\(249\) 1.86571 + 10.5810i 0.118235 + 0.670543i
\(250\) −0.766044 + 0.642788i −0.0484489 + 0.0406535i
\(251\) −9.64930 + 3.51206i −0.609058 + 0.221679i −0.628091 0.778140i \(-0.716164\pi\)
0.0190328 + 0.999819i \(0.493941\pi\)
\(252\) 2.49273 + 0.907278i 0.157027 + 0.0571531i
\(253\) −3.19072 2.67733i −0.200599 0.168323i
\(254\) −5.89440 + 10.2094i −0.369848 + 0.640595i
\(255\) −2.11334 3.66041i −0.132343 0.229224i
\(256\) 0.173648 0.984808i 0.0108530 0.0615505i
\(257\) −0.0410117 + 0.232589i −0.00255824 + 0.0145085i −0.986060 0.166389i \(-0.946789\pi\)
0.983502 + 0.180898i \(0.0579003\pi\)
\(258\) 5.67752 + 9.83375i 0.353467 + 0.612223i
\(259\) −9.72580 + 16.8456i −0.604332 + 1.04673i
\(260\) −2.61334 2.19285i −0.162073 0.135995i
\(261\) −3.37939 1.23000i −0.209179 0.0761348i
\(262\) 17.0770 6.21551i 1.05502 0.383995i
\(263\) 2.09105 1.75460i 0.128940 0.108193i −0.576037 0.817423i \(-0.695402\pi\)
0.704977 + 0.709230i \(0.250957\pi\)
\(264\) 0.194593 + 1.10359i 0.0119764 + 0.0679213i
\(265\) −1.79561 −0.110303
\(266\) 7.49747 + 8.80271i 0.459700 + 0.539729i
\(267\) −11.8007 −0.722189
\(268\) 2.16978 + 12.3054i 0.132540 + 0.751673i
\(269\) 5.30406 4.45064i 0.323394 0.271360i −0.466608 0.884464i \(-0.654524\pi\)
0.790002 + 0.613104i \(0.210079\pi\)
\(270\) 0.939693 0.342020i 0.0571879 0.0208147i
\(271\) 22.3799 + 8.14560i 1.35948 + 0.494810i 0.915893 0.401422i \(-0.131484\pi\)
0.443586 + 0.896232i \(0.353706\pi\)
\(272\) −3.23783 2.71686i −0.196322 0.164734i
\(273\) 4.52481 7.83721i 0.273854 0.474329i
\(274\) −6.80200 11.7814i −0.410924 0.711741i
\(275\) 0.194593 1.10359i 0.0117344 0.0665490i
\(276\) −0.645430 + 3.66041i −0.0388503 + 0.220331i
\(277\) 8.93882 + 15.4825i 0.537081 + 0.930252i 0.999059 + 0.0433609i \(0.0138065\pi\)
−0.461978 + 0.886891i \(0.652860\pi\)
\(278\) 4.40895 7.63652i 0.264431 0.458008i
\(279\) 2.07011 + 1.73703i 0.123934 + 0.103993i
\(280\) −2.49273 0.907278i −0.148969 0.0542202i
\(281\) −4.50000 + 1.63787i −0.268447 + 0.0977069i −0.472737 0.881204i \(-0.656734\pi\)
0.204289 + 0.978911i \(0.434512\pi\)
\(282\) −4.91147 + 4.12122i −0.292474 + 0.245415i
\(283\) −2.09193 11.8639i −0.124352 0.705237i −0.981690 0.190483i \(-0.938995\pi\)
0.857338 0.514754i \(-0.172117\pi\)
\(284\) 9.46110 0.561413
\(285\) 4.29813 + 0.725293i 0.254599 + 0.0429626i
\(286\) 3.82295 0.226056
\(287\) 3.00892 + 17.0644i 0.177611 + 1.00728i
\(288\) 0.766044 0.642788i 0.0451396 0.0378766i
\(289\) −0.812681 + 0.295792i −0.0478048 + 0.0173995i
\(290\) 3.37939 + 1.23000i 0.198444 + 0.0722278i
\(291\) 5.36231 + 4.49951i 0.314344 + 0.263766i
\(292\) 3.32888 5.76579i 0.194808 0.337417i
\(293\) 11.7208 + 20.3009i 0.684734 + 1.18599i 0.973520 + 0.228600i \(0.0734148\pi\)
−0.288787 + 0.957393i \(0.593252\pi\)
\(294\) 0.00639661 0.0362770i 0.000373058 0.00211572i
\(295\) 0.0320889 0.181985i 0.00186829 0.0105956i
\(296\) 3.66637 + 6.35035i 0.213104 + 0.369106i
\(297\) −0.560307 + 0.970481i −0.0325123 + 0.0563130i
\(298\) 3.13429 + 2.62998i 0.181564 + 0.152351i
\(299\) 11.9153 + 4.33683i 0.689082 + 0.250805i
\(300\) −0.939693 + 0.342020i −0.0542532 + 0.0197465i
\(301\) 23.0744 19.3618i 1.32999 1.11599i
\(302\) −3.09627 17.5598i −0.178170 1.01045i
\(303\) −11.6382 −0.668595
\(304\) 4.28699 0.788496i 0.245876 0.0452233i
\(305\) 5.90167 0.337929
\(306\) −0.733956 4.16247i −0.0419574 0.237953i
\(307\) −2.30999 + 1.93831i −0.131838 + 0.110625i −0.706322 0.707890i \(-0.749647\pi\)
0.574484 + 0.818516i \(0.305203\pi\)
\(308\) 2.79339 1.01671i 0.159168 0.0579324i
\(309\) 7.36484 + 2.68058i 0.418971 + 0.152493i
\(310\) −2.07011 1.73703i −0.117574 0.0986565i
\(311\) 9.31567 16.1352i 0.528243 0.914944i −0.471214 0.882019i \(-0.656184\pi\)
0.999458 0.0329257i \(-0.0104825\pi\)
\(312\) −1.70574 2.95442i −0.0965683 0.167261i
\(313\) 1.20620 6.84072i 0.0681787 0.386660i −0.931555 0.363599i \(-0.881548\pi\)
0.999734 0.0230610i \(-0.00734120\pi\)
\(314\) 1.74463 9.89431i 0.0984553 0.558368i
\(315\) −1.32635 2.29731i −0.0747315 0.129439i
\(316\) 3.09240 5.35619i 0.173961 0.301309i
\(317\) 1.69253 + 1.42020i 0.0950621 + 0.0797666i 0.689080 0.724685i \(-0.258015\pi\)
−0.594018 + 0.804452i \(0.702459\pi\)
\(318\) −1.68732 0.614134i −0.0946201 0.0344389i
\(319\) −3.78699 + 1.37835i −0.212031 + 0.0771729i
\(320\) −0.766044 + 0.642788i −0.0428232 + 0.0359329i
\(321\) 2.74510 + 15.5682i 0.153217 + 0.868934i
\(322\) 9.85978 0.549464
\(323\) 6.17365 17.3585i 0.343511 0.965854i
\(324\) 1.00000 0.0555556
\(325\) 0.592396 + 3.35965i 0.0328602 + 0.186360i
\(326\) −0.543233 + 0.455827i −0.0300869 + 0.0252459i
\(327\) −5.79086 + 2.10770i −0.320235 + 0.116556i
\(328\) 6.13816 + 2.23411i 0.338923 + 0.123358i
\(329\) 13.0287 + 10.9324i 0.718295 + 0.602721i
\(330\) 0.560307 0.970481i 0.0308439 0.0534232i
\(331\) 14.5694 + 25.2349i 0.800806 + 1.38704i 0.919086 + 0.394057i \(0.128929\pi\)
−0.118280 + 0.992980i \(0.537738\pi\)
\(332\) 1.86571 10.5810i 0.102394 0.580707i
\(333\) −1.27332 + 7.22135i −0.0697774 + 0.395727i
\(334\) 2.04323 + 3.53898i 0.111801 + 0.193645i
\(335\) 6.24763 10.8212i 0.341344 0.591226i
\(336\) −2.03209 1.70513i −0.110860 0.0930222i
\(337\) −19.5672 7.12187i −1.06589 0.387953i −0.251253 0.967921i \(-0.580843\pi\)
−0.814639 + 0.579969i \(0.803065\pi\)
\(338\) 1.27972 0.465778i 0.0696073 0.0253350i
\(339\) −2.43376 + 2.04217i −0.132184 + 0.110915i
\(340\) 0.733956 + 4.16247i 0.0398043 + 0.225742i
\(341\) 3.02827 0.163990
\(342\) 3.79086 + 2.15160i 0.204986 + 0.116345i
\(343\) 18.4712 0.997352
\(344\) −1.97178 11.1825i −0.106311 0.602922i
\(345\) 2.84730 2.38917i 0.153293 0.128628i
\(346\) −11.3486 + 4.13057i −0.610107 + 0.222061i
\(347\) −28.1377 10.2413i −1.51051 0.549782i −0.551755 0.834006i \(-0.686042\pi\)
−0.958758 + 0.284224i \(0.908264\pi\)
\(348\) 2.75490 + 2.31164i 0.147678 + 0.123917i
\(349\) −11.0437 + 19.1282i −0.591156 + 1.02391i 0.402921 + 0.915235i \(0.367995\pi\)
−0.994077 + 0.108677i \(0.965339\pi\)
\(350\) 1.32635 + 2.29731i 0.0708965 + 0.122796i
\(351\) 0.592396 3.35965i 0.0316198 0.179325i
\(352\) 0.194593 1.10359i 0.0103718 0.0588216i
\(353\) −1.90167 3.29380i −0.101216 0.175311i 0.810970 0.585088i \(-0.198940\pi\)
−0.912186 + 0.409777i \(0.865607\pi\)
\(354\) 0.0923963 0.160035i 0.00491081 0.00850577i
\(355\) −7.24763 6.08148i −0.384664 0.322771i
\(356\) 11.0890 + 4.03606i 0.587715 + 0.213911i
\(357\) −10.5360 + 3.83478i −0.557622 + 0.202958i
\(358\) −12.0838 + 10.1395i −0.638648 + 0.535889i
\(359\) −2.99407 16.9802i −0.158021 0.896182i −0.955972 0.293459i \(-0.905194\pi\)
0.797951 0.602723i \(-0.205917\pi\)
\(360\) −1.00000 −0.0527046
\(361\) 9.74123 + 16.3128i 0.512696 + 0.858570i
\(362\) −0.756082 −0.0397388
\(363\) −1.69207 9.59619i −0.0888105 0.503669i
\(364\) −6.93242 + 5.81699i −0.363357 + 0.304893i
\(365\) −6.25624 + 2.27709i −0.327467 + 0.119188i
\(366\) 5.54576 + 2.01849i 0.289881 + 0.105508i
\(367\) 26.0560 + 21.8636i 1.36011 + 1.14127i 0.975947 + 0.218007i \(0.0699555\pi\)
0.384166 + 0.923264i \(0.374489\pi\)
\(368\) 1.85844 3.21891i 0.0968779 0.167797i
\(369\) 3.26604 + 5.65695i 0.170023 + 0.294489i
\(370\) 1.27332 7.22135i 0.0661967 0.375420i
\(371\) −0.827123 + 4.69085i −0.0429421 + 0.243537i
\(372\) −1.35117 2.34029i −0.0700547 0.121338i
\(373\) −13.7567 + 23.8273i −0.712296 + 1.23373i 0.251698 + 0.967806i \(0.419011\pi\)
−0.963993 + 0.265926i \(0.914322\pi\)
\(374\) −3.62836 3.04455i −0.187618 0.157430i
\(375\) 0.939693 + 0.342020i 0.0485255 + 0.0176618i
\(376\) 6.02481 2.19285i 0.310706 0.113088i
\(377\) 9.39827 7.88609i 0.484036 0.406154i
\(378\) −0.460637 2.61240i −0.0236926 0.134368i
\(379\) −20.8057 −1.06872 −0.534359 0.845258i \(-0.679447\pi\)
−0.534359 + 0.845258i \(0.679447\pi\)
\(380\) −3.79086 2.15160i −0.194467 0.110375i
\(381\) 11.7888 0.603959
\(382\) 1.50134 + 8.51455i 0.0768155 + 0.435642i
\(383\) −22.3837 + 18.7822i −1.14375 + 0.959724i −0.999555 0.0298244i \(-0.990505\pi\)
−0.144200 + 0.989549i \(0.546061\pi\)
\(384\) −0.939693 + 0.342020i −0.0479535 + 0.0174536i
\(385\) −2.79339 1.01671i −0.142364 0.0518163i
\(386\) 5.84002 + 4.90036i 0.297249 + 0.249422i
\(387\) 5.67752 9.83375i 0.288604 0.499878i
\(388\) −3.50000 6.06218i −0.177686 0.307760i
\(389\) 4.81268 27.2941i 0.244013 1.38386i −0.578762 0.815497i \(-0.696464\pi\)
0.822775 0.568368i \(-0.192425\pi\)
\(390\) −0.592396 + 3.35965i −0.0299972 + 0.170122i
\(391\) −7.85504 13.6053i −0.397246 0.688051i
\(392\) −0.0184183 + 0.0319015i −0.000930265 + 0.00161127i
\(393\) −13.9213 11.6813i −0.702235 0.589245i
\(394\) 5.70321 + 2.07580i 0.287324 + 0.104577i
\(395\) −5.81180 + 2.11532i −0.292424 + 0.106433i
\(396\) 0.858441 0.720317i 0.0431383 0.0361973i
\(397\) −3.67799 20.8589i −0.184593 1.04688i −0.926477 0.376350i \(-0.877179\pi\)
0.741885 0.670528i \(-0.233932\pi\)
\(398\) −21.1702 −1.06117
\(399\) 3.87464 10.8944i 0.193974 0.545400i
\(400\) 1.00000 0.0500000
\(401\) −1.68257 9.54233i −0.0840236 0.476521i −0.997563 0.0697713i \(-0.977773\pi\)
0.913539 0.406750i \(-0.133338\pi\)
\(402\) 9.57192 8.03179i 0.477404 0.400589i
\(403\) −8.66297 + 3.15306i −0.431533 + 0.157065i
\(404\) 10.9363 + 3.98048i 0.544101 + 0.198036i
\(405\) −0.766044 0.642788i −0.0380651 0.0319404i
\(406\) 4.76991 8.26173i 0.236727 0.410023i
\(407\) 4.10859 + 7.11629i 0.203655 + 0.352741i
\(408\) −0.733956 + 4.16247i −0.0363362 + 0.206073i
\(409\) 5.64038 31.9882i 0.278899 1.58171i −0.447400 0.894334i \(-0.647650\pi\)
0.726299 0.687379i \(-0.241239\pi\)
\(410\) −3.26604 5.65695i −0.161298 0.279377i
\(411\) −6.80200 + 11.7814i −0.335518 + 0.581134i
\(412\) −6.00387 5.03785i −0.295789 0.248197i
\(413\) −0.460637 0.167658i −0.0226665 0.00824992i
\(414\) 3.49273 1.27125i 0.171658 0.0624784i
\(415\) −8.23055 + 6.90625i −0.404022 + 0.339015i
\(416\) 0.592396 + 3.35965i 0.0290446 + 0.164720i
\(417\) −8.81790 −0.431814
\(418\) 4.80406 0.883600i 0.234974 0.0432183i
\(419\) −0.909415 −0.0444278 −0.0222139 0.999753i \(-0.507071\pi\)
−0.0222139 + 0.999753i \(0.507071\pi\)
\(420\) 0.460637 + 2.61240i 0.0224768 + 0.127472i
\(421\) 5.52481 4.63587i 0.269263 0.225938i −0.498151 0.867090i \(-0.665988\pi\)
0.767414 + 0.641152i \(0.221543\pi\)
\(422\) −2.29339 + 0.834724i −0.111640 + 0.0406337i
\(423\) 6.02481 + 2.19285i 0.292937 + 0.106620i
\(424\) 1.37551 + 1.15419i 0.0668009 + 0.0560526i
\(425\) 2.11334 3.66041i 0.102512 0.177556i
\(426\) −4.73055 8.19356i −0.229196 0.396979i
\(427\) 2.71853 15.4176i 0.131559 0.746108i
\(428\) 2.74510 15.5682i 0.132689 0.752519i
\(429\) −1.91147 3.31077i −0.0922868 0.159845i
\(430\) −5.67752 + 9.83375i −0.273794 + 0.474226i
\(431\) −5.41147 4.54077i −0.260662 0.218721i 0.503086 0.864237i \(-0.332198\pi\)
−0.763747 + 0.645516i \(0.776643\pi\)
\(432\) −0.939693 0.342020i −0.0452110 0.0164555i
\(433\) 15.4315 5.61662i 0.741593 0.269918i 0.0565290 0.998401i \(-0.481997\pi\)
0.685064 + 0.728483i \(0.259774\pi\)
\(434\) −5.49138 + 4.60782i −0.263595 + 0.221182i
\(435\) −0.624485 3.54163i −0.0299418 0.169808i
\(436\) 6.16250 0.295130
\(437\) 15.9757 + 2.69583i 0.764219 + 0.128959i
\(438\) −6.65776 −0.318120
\(439\) 5.15539 + 29.2377i 0.246053 + 1.39544i 0.818033 + 0.575171i \(0.195064\pi\)
−0.571980 + 0.820268i \(0.693824\pi\)
\(440\) −0.858441 + 0.720317i −0.0409246 + 0.0343398i
\(441\) −0.0346151 + 0.0125989i −0.00164834 + 0.000599946i
\(442\) 13.5496 + 4.93166i 0.644490 + 0.234575i
\(443\) −7.18938 6.03260i −0.341578 0.286618i 0.455820 0.890072i \(-0.349346\pi\)
−0.797398 + 0.603454i \(0.793791\pi\)
\(444\) 3.66637 6.35035i 0.173998 0.301374i
\(445\) −5.90033 10.2197i −0.279702 0.484459i
\(446\) −4.28059 + 24.2764i −0.202692 + 1.14952i
\(447\) 0.710485 4.02936i 0.0336048 0.190582i
\(448\) 1.32635 + 2.29731i 0.0626642 + 0.108538i
\(449\) 11.3439 19.6482i 0.535351 0.927256i −0.463795 0.885943i \(-0.653513\pi\)
0.999146 0.0413132i \(-0.0131541\pi\)
\(450\) 0.766044 + 0.642788i 0.0361117 + 0.0303013i
\(451\) 6.87851 + 2.50357i 0.323896 + 0.117889i
\(452\) 2.98545 1.08662i 0.140424 0.0511101i
\(453\) −13.6591 + 11.4613i −0.641761 + 0.538501i
\(454\) 2.01414 + 11.4227i 0.0945282 + 0.536096i
\(455\) 9.04963 0.424253
\(456\) −2.82635 3.31839i −0.132356 0.155398i
\(457\) −18.5449 −0.867493 −0.433746 0.901035i \(-0.642809\pi\)
−0.433746 + 0.901035i \(0.642809\pi\)
\(458\) −2.62061 14.8622i −0.122453 0.694467i
\(459\) −3.23783 + 2.71686i −0.151129 + 0.126812i
\(460\) −3.49273 + 1.27125i −0.162849 + 0.0592723i
\(461\) −5.33915 1.94329i −0.248669 0.0905080i 0.214679 0.976685i \(-0.431130\pi\)
−0.463347 + 0.886177i \(0.653352\pi\)
\(462\) −2.27719 1.91079i −0.105944 0.0888979i
\(463\) 19.3148 33.4542i 0.897635 1.55475i 0.0671252 0.997745i \(-0.478617\pi\)
0.830510 0.557004i \(-0.188049\pi\)
\(464\) −1.79813 3.11446i −0.0834762 0.144585i
\(465\) −0.469255 + 2.66128i −0.0217612 + 0.123414i
\(466\) −4.75372 + 26.9597i −0.220212 + 1.24888i
\(467\) −3.59761 6.23124i −0.166478 0.288348i 0.770701 0.637196i \(-0.219906\pi\)
−0.937179 + 0.348849i \(0.886573\pi\)
\(468\) −1.70574 + 2.95442i −0.0788477 + 0.136568i
\(469\) −25.3915 21.3060i −1.17247 0.983818i
\(470\) −6.02481 2.19285i −0.277904 0.101149i
\(471\) −9.44104 + 3.43626i −0.435020 + 0.158334i
\(472\) −0.141559 + 0.118782i −0.00651579 + 0.00546740i
\(473\) −2.20961 12.5313i −0.101598 0.576190i
\(474\) −6.18479 −0.284077
\(475\) 1.52094 + 4.08494i 0.0697857 + 0.187430i
\(476\) 11.2121 0.513907
\(477\) 0.311804 + 1.76833i 0.0142765 + 0.0809662i
\(478\) −18.8628 + 15.8278i −0.862763 + 0.723944i
\(479\) −7.72416 + 2.81136i −0.352926 + 0.128454i −0.512398 0.858748i \(-0.671243\pi\)
0.159473 + 0.987202i \(0.449021\pi\)
\(480\) 0.939693 + 0.342020i 0.0428909 + 0.0156110i
\(481\) −19.1630 16.0796i −0.873756 0.733169i
\(482\) 11.6985 20.2623i 0.532850 0.922924i
\(483\) −4.92989 8.53882i −0.224318 0.388530i
\(484\) −1.69207 + 9.59619i −0.0769121 + 0.436190i
\(485\) −1.21554 + 6.89365i −0.0551947 + 0.313025i
\(486\) −0.500000 0.866025i −0.0226805 0.0392837i
\(487\) −8.59879 + 14.8935i −0.389648 + 0.674891i −0.992402 0.123036i \(-0.960737\pi\)
0.602754 + 0.797927i \(0.294070\pi\)
\(488\) −4.52094 3.79352i −0.204654 0.171725i
\(489\) 0.666374 + 0.242540i 0.0301345 + 0.0109681i
\(490\) 0.0346151 0.0125989i 0.00156375 0.000569159i
\(491\) 18.2515 15.3148i 0.823679 0.691148i −0.130152 0.991494i \(-0.541546\pi\)
0.953830 + 0.300346i \(0.0971021\pi\)
\(492\) −1.13429 6.43285i −0.0511375 0.290015i
\(493\) −15.2003 −0.684586
\(494\) −12.8229 + 7.52974i −0.576932 + 0.338779i
\(495\) −1.12061 −0.0503679
\(496\) 0.469255 + 2.66128i 0.0210702 + 0.119495i
\(497\) −19.2258 + 16.1324i −0.862395 + 0.723635i
\(498\) −10.0963 + 3.67474i −0.452425 + 0.164669i
\(499\) −6.57532 2.39322i −0.294352 0.107135i 0.190623 0.981663i \(-0.438949\pi\)
−0.484975 + 0.874528i \(0.661171\pi\)
\(500\) −0.766044 0.642788i −0.0342585 0.0287463i
\(501\) 2.04323 3.53898i 0.0912849 0.158110i
\(502\) −5.13429 8.89284i −0.229154 0.396907i
\(503\) 0.525225 2.97870i 0.0234186 0.132814i −0.970857 0.239660i \(-0.922964\pi\)
0.994276 + 0.106846i \(0.0340752\pi\)
\(504\) −0.460637 + 2.61240i −0.0205184 + 0.116366i
\(505\) −5.81908 10.0789i −0.258946 0.448507i
\(506\) 2.08260 3.60716i 0.0925827 0.160358i
\(507\) −1.04323 0.875377i −0.0463316 0.0388768i
\(508\) −11.0778 4.03201i −0.491500 0.178891i
\(509\) 26.3901 9.60522i 1.16972 0.425744i 0.317161 0.948372i \(-0.397271\pi\)
0.852561 + 0.522628i \(0.175048\pi\)
\(510\) 3.23783 2.71686i 0.143373 0.120305i
\(511\) 3.06681 + 17.3927i 0.135668 + 0.769410i
\(512\) 1.00000 0.0441942
\(513\) −0.0320889 4.35878i −0.00141676 0.192445i
\(514\) −0.236177 −0.0104173
\(515\) 1.36097 + 7.71843i 0.0599714 + 0.340115i
\(516\) −8.69846 + 7.29888i −0.382928 + 0.321315i
\(517\) 6.75150 2.45734i 0.296930 0.108074i
\(518\) −18.2785 6.65284i −0.803113 0.292309i
\(519\) 9.25150 + 7.76293i 0.406096 + 0.340755i
\(520\) 1.70574 2.95442i 0.0748015 0.129560i
\(521\) 10.1108 + 17.5124i 0.442963 + 0.767234i 0.997908 0.0646529i \(-0.0205940\pi\)
−0.554945 + 0.831887i \(0.687261\pi\)
\(522\) 0.624485 3.54163i 0.0273330 0.155013i
\(523\) 5.88367 33.3679i 0.257275 1.45908i −0.532891 0.846184i \(-0.678894\pi\)
0.790165 0.612894i \(-0.209995\pi\)
\(524\) 9.08647 + 15.7382i 0.396944 + 0.687527i
\(525\) 1.32635 2.29731i 0.0578867 0.100263i
\(526\) 2.09105 + 1.75460i 0.0911742 + 0.0765042i
\(527\) 10.7331 + 3.90652i 0.467540 + 0.170171i
\(528\) −1.05303 + 0.383273i −0.0458274 + 0.0166798i
\(529\) −7.03596 + 5.90387i −0.305911 + 0.256690i
\(530\) −0.311804 1.76833i −0.0135439 0.0768113i
\(531\) −0.184793 −0.00801931
\(532\) −7.36706 + 8.91215i −0.319403 + 0.386391i
\(533\) −22.2841 −0.965229
\(534\) −2.04916 11.6214i −0.0886760 0.502906i
\(535\) −12.1099 + 10.1614i −0.523558 + 0.439318i
\(536\) −11.7417 + 4.27363i −0.507164 + 0.184593i
\(537\) 14.8229 + 5.39511i 0.639657 + 0.232816i
\(538\) 5.30406 + 4.45064i 0.228674 + 0.191881i
\(539\) −0.0206398 + 0.0357492i −0.000889021 + 0.00153983i
\(540\) 0.500000 + 0.866025i 0.0215166 + 0.0372678i
\(541\) −1.16978 + 6.63414i −0.0502927 + 0.285224i −0.999573 0.0292058i \(-0.990702\pi\)
0.949281 + 0.314430i \(0.101813\pi\)
\(542\) −4.13563 + 23.4543i −0.177640 + 1.00745i
\(543\) 0.378041 + 0.654786i 0.0162233 + 0.0280996i
\(544\) 2.11334 3.66041i 0.0906087 0.156939i
\(545\) −4.72075 3.96118i −0.202215 0.169678i
\(546\) 8.50387 + 3.09516i 0.363932 + 0.132460i
\(547\) −3.49912 + 1.27358i −0.149612 + 0.0544542i −0.415741 0.909483i \(-0.636478\pi\)
0.266129 + 0.963937i \(0.414255\pi\)
\(548\) 10.4213 8.74449i 0.445175 0.373546i
\(549\) −1.02481 5.81201i −0.0437380 0.248051i
\(550\) 1.12061 0.0477832
\(551\) 9.98751 12.0822i 0.425482 0.514718i
\(552\) −3.71688 −0.158201
\(553\) 2.84895 + 16.1572i 0.121149 + 0.687073i
\(554\) −13.6951 + 11.4915i −0.581847 + 0.488228i
\(555\) −6.89053 + 2.50795i −0.292487 + 0.106456i
\(556\) 8.28611 + 3.01590i 0.351409 + 0.127903i
\(557\) 2.46585 + 2.06910i 0.104481 + 0.0876704i 0.693532 0.720426i \(-0.256054\pi\)
−0.589050 + 0.808096i \(0.700498\pi\)
\(558\) −1.35117 + 2.34029i −0.0571994 + 0.0990724i
\(559\) 19.3687 + 33.5476i 0.819209 + 1.41891i
\(560\) 0.460637 2.61240i 0.0194655 0.110394i
\(561\) −0.822481 + 4.66452i −0.0347252 + 0.196936i
\(562\) −2.39440 4.14722i −0.101002 0.174940i
\(563\) 16.0813 27.8535i 0.677744 1.17389i −0.297915 0.954592i \(-0.596291\pi\)
0.975659 0.219294i \(-0.0703755\pi\)
\(564\) −4.91147 4.12122i −0.206810 0.173535i
\(565\) −2.98545 1.08662i −0.125599 0.0457143i
\(566\) 11.3204 4.12030i 0.475833 0.173189i
\(567\) −2.03209 + 1.70513i −0.0853397 + 0.0716085i
\(568\) 1.64290 + 9.31737i 0.0689347 + 0.390948i
\(569\) −10.2713 −0.430594 −0.215297 0.976549i \(-0.569072\pi\)
−0.215297 + 0.976549i \(0.569072\pi\)
\(570\) 0.0320889 + 4.35878i 0.00134406 + 0.182569i
\(571\) −3.38144 −0.141509 −0.0707545 0.997494i \(-0.522541\pi\)
−0.0707545 + 0.997494i \(0.522541\pi\)
\(572\) 0.663848 + 3.76487i 0.0277569 + 0.157417i
\(573\) 6.62314 5.55748i 0.276686 0.232167i
\(574\) −16.2827 + 5.92642i −0.679627 + 0.247364i
\(575\) 3.49273 + 1.27125i 0.145657 + 0.0530147i
\(576\) 0.766044 + 0.642788i 0.0319185 + 0.0267828i
\(577\) 10.5680 18.3044i 0.439954 0.762022i −0.557732 0.830021i \(-0.688328\pi\)
0.997685 + 0.0679993i \(0.0216616\pi\)
\(578\) −0.432419 0.748971i −0.0179862 0.0311531i
\(579\) 1.32383 7.50779i 0.0550163 0.312013i
\(580\) −0.624485 + 3.54163i −0.0259303 + 0.147058i
\(581\) 14.2506 + 24.6828i 0.591215 + 1.02401i
\(582\) −3.50000 + 6.06218i −0.145080 + 0.251285i
\(583\) 1.54142 + 1.29341i 0.0638392 + 0.0535674i
\(584\) 6.25624 + 2.27709i 0.258885 + 0.0942265i
\(585\) 3.20574 1.16679i 0.132541 0.0482409i
\(586\) −17.9572 + 15.0679i −0.741806 + 0.622450i
\(587\) 2.44000 + 13.8379i 0.100709 + 0.571152i 0.992848 + 0.119389i \(0.0380936\pi\)
−0.892138 + 0.451763i \(0.850795\pi\)
\(588\) 0.0368366 0.00151912
\(589\) −10.1575 + 5.96454i −0.418530 + 0.245764i
\(590\) 0.184793 0.00760779
\(591\) −1.05391 5.97702i −0.0433521 0.245862i
\(592\) −5.61721 + 4.71340i −0.230866 + 0.193720i
\(593\) −30.2396 + 11.0063i −1.24179 + 0.451976i −0.877621 0.479356i \(-0.840870\pi\)
−0.364172 + 0.931332i \(0.618648\pi\)
\(594\) −1.05303 0.383273i −0.0432065 0.0157259i
\(595\) −8.58899 7.20702i −0.352114 0.295459i
\(596\) −2.04576 + 3.54336i −0.0837976 + 0.145142i
\(597\) 10.5851 + 18.3340i 0.433220 + 0.750359i
\(598\) −2.20187 + 12.4874i −0.0900410 + 0.510648i
\(599\) 5.42144 30.7465i 0.221514 1.25627i −0.647725 0.761875i \(-0.724279\pi\)
0.869238 0.494393i \(-0.164610\pi\)
\(600\) −0.500000 0.866025i −0.0204124 0.0353553i
\(601\) −9.16179 + 15.8687i −0.373717 + 0.647297i −0.990134 0.140123i \(-0.955250\pi\)
0.616417 + 0.787420i \(0.288584\pi\)
\(602\) 23.0744 + 19.3618i 0.940444 + 0.789126i
\(603\) −11.7417 4.27363i −0.478159 0.174036i
\(604\) 16.7554 6.09845i 0.681766 0.248143i
\(605\) 7.46451 6.26347i 0.303475 0.254646i
\(606\) −2.02094 11.4613i −0.0820953 0.465585i
\(607\) −19.0178 −0.771911 −0.385955 0.922517i \(-0.626128\pi\)
−0.385955 + 0.922517i \(0.626128\pi\)
\(608\) 1.52094 + 4.08494i 0.0616824 + 0.165666i
\(609\) −9.53983 −0.386573
\(610\) 1.02481 + 5.81201i 0.0414935 + 0.235322i
\(611\) −16.7554 + 14.0594i −0.677850 + 0.568783i
\(612\) 3.97178 1.44561i 0.160550 0.0584353i
\(613\) −28.6104 10.4133i −1.15556 0.420591i −0.308053 0.951369i \(-0.599677\pi\)
−0.847511 + 0.530779i \(0.821900\pi\)
\(614\) −2.30999 1.93831i −0.0932237 0.0782240i
\(615\) −3.26604 + 5.65695i −0.131700 + 0.228110i
\(616\) 1.48633 + 2.57440i 0.0598859 + 0.103725i
\(617\) 8.22147 46.6263i 0.330984 1.87710i −0.132783 0.991145i \(-0.542391\pi\)
0.463767 0.885957i \(-0.346498\pi\)
\(618\) −1.36097 + 7.71843i −0.0547461 + 0.310481i
\(619\) −9.30066 16.1092i −0.373825 0.647484i 0.616325 0.787492i \(-0.288621\pi\)
−0.990150 + 0.140008i \(0.955287\pi\)
\(620\) 1.35117 2.34029i 0.0542642 0.0939883i
\(621\) −2.84730 2.38917i −0.114258 0.0958739i
\(622\) 17.5077 + 6.37230i 0.701996 + 0.255506i
\(623\) −29.4158 + 10.7065i −1.17852 + 0.428946i
\(624\) 2.61334 2.19285i 0.104617 0.0877844i
\(625\) 0.173648 + 0.984808i 0.00694593 + 0.0393923i
\(626\) 6.94625 0.277628
\(627\) −3.16725 3.71864i −0.126488 0.148508i
\(628\) 10.0469 0.400917
\(629\) 5.38191 + 30.5223i 0.214591 + 1.21701i
\(630\) 2.03209 1.70513i 0.0809604 0.0679338i
\(631\) 19.6660 7.15783i 0.782890 0.284949i 0.0805126 0.996754i \(-0.474344\pi\)
0.702377 + 0.711805i \(0.252122\pi\)
\(632\) 5.81180 + 2.11532i 0.231181 + 0.0841431i
\(633\) 1.86959 + 1.56877i 0.0743093 + 0.0623529i
\(634\) −1.10472 + 1.91344i −0.0438741 + 0.0759922i
\(635\) 5.89440 + 10.2094i 0.233912 + 0.405148i
\(636\) 0.311804 1.76833i 0.0123638 0.0701188i
\(637\) 0.0218219 0.123758i 0.000864614 0.00490347i
\(638\) −2.01501 3.49011i −0.0797752 0.138175i
\(639\) −4.73055 + 8.19356i −0.187138 + 0.324132i
\(640\) −0.766044 0.642788i −0.0302806 0.0254084i
\(641\) 1.42855 + 0.519949i 0.0564243 + 0.0205368i 0.370078 0.929001i \(-0.379331\pi\)
−0.313654 + 0.949537i \(0.601553\pi\)
\(642\) −14.8550 + 5.40679i −0.586282 + 0.213389i
\(643\) 20.4743 17.1800i 0.807428 0.677512i −0.142565 0.989786i \(-0.545535\pi\)
0.949992 + 0.312273i \(0.101090\pi\)
\(644\) 1.71213 + 9.70999i 0.0674675 + 0.382627i
\(645\) 11.3550 0.447104
\(646\) 18.1668 + 3.06558i 0.714765 + 0.120614i
\(647\) −30.3509 −1.19322 −0.596609 0.802532i \(-0.703486\pi\)
−0.596609 + 0.802532i \(0.703486\pi\)
\(648\) 0.173648 + 0.984808i 0.00682154 + 0.0386869i
\(649\) −0.158633 + 0.133109i −0.00622691 + 0.00522500i
\(650\) −3.20574 + 1.16679i −0.125739 + 0.0457654i
\(651\) 6.73618 + 2.45177i 0.264012 + 0.0960924i
\(652\) −0.543233 0.455827i −0.0212747 0.0178516i
\(653\) −25.1780 + 43.6095i −0.985291 + 1.70657i −0.344653 + 0.938730i \(0.612003\pi\)
−0.640637 + 0.767843i \(0.721330\pi\)
\(654\) −3.08125 5.33688i −0.120486 0.208689i
\(655\) 3.15570 17.8968i 0.123303 0.699288i
\(656\) −1.13429 + 6.43285i −0.0442864 + 0.251161i
\(657\) 3.32888 + 5.76579i 0.129872 + 0.224945i
\(658\) −8.50387 + 14.7291i −0.331515 + 0.574201i
\(659\) −1.32707 1.11354i −0.0516952 0.0433774i 0.616574 0.787297i \(-0.288520\pi\)
−0.668269 + 0.743920i \(0.732965\pi\)
\(660\) 1.05303 + 0.383273i 0.0409893 + 0.0149189i
\(661\) −19.9338 + 7.25530i −0.775334 + 0.282198i −0.699225 0.714901i \(-0.746472\pi\)
−0.0761081 + 0.997100i \(0.524249\pi\)
\(662\) −22.3216 + 18.7300i −0.867554 + 0.727964i
\(663\) −2.50387 14.2002i −0.0972423 0.551488i
\(664\) 10.7442 0.416957
\(665\) 11.3721 2.09165i 0.440992 0.0811105i
\(666\) −7.33275 −0.284138
\(667\) −2.32114 13.1638i −0.0898748 0.509705i
\(668\) −3.13041 + 2.62673i −0.121119 + 0.101631i
\(669\) 23.1643 8.43112i 0.895584 0.325966i
\(670\) 11.7417 + 4.27363i 0.453621 + 0.165105i
\(671\) −5.06624 4.25108i −0.195580 0.164111i
\(672\) 1.32635 2.29731i 0.0511651 0.0886206i
\(673\) −13.3576 23.1360i −0.514896 0.891826i −0.999851 0.0172870i \(-0.994497\pi\)
0.484954 0.874539i \(-0.338836\pi\)
\(674\) 3.61587 20.5066i 0.139278 0.789885i
\(675\) 0.173648 0.984808i 0.00668372 0.0379053i
\(676\) 0.680922 + 1.17939i 0.0261893 + 0.0453612i
\(677\) 23.3956 40.5223i 0.899165 1.55740i 0.0706019 0.997505i \(-0.477508\pi\)
0.828563 0.559895i \(-0.189159\pi\)
\(678\) −2.43376 2.04217i −0.0934681 0.0784290i
\(679\) 17.4491 + 6.35095i 0.669634 + 0.243727i
\(680\) −3.97178 + 1.44561i −0.152311 + 0.0554366i
\(681\) 8.88532 7.45566i 0.340486 0.285702i
\(682\) 0.525854 + 2.98227i 0.0201360 + 0.114197i
\(683\) −11.9195 −0.456088 −0.228044 0.973651i \(-0.573233\pi\)
−0.228044 + 0.973651i \(0.573233\pi\)
\(684\) −1.46064 + 4.10689i −0.0558489 + 0.157031i
\(685\) −13.6040 −0.519782
\(686\) 3.20749 + 18.1906i 0.122463 + 0.694520i
\(687\) −11.5608 + 9.70064i −0.441071 + 0.370103i
\(688\) 10.6702 3.88365i 0.406799 0.148063i
\(689\) −5.75624 2.09510i −0.219295 0.0798170i
\(690\) 2.84730 + 2.38917i 0.108395 + 0.0909540i
\(691\) 6.84611 11.8578i 0.260438 0.451093i −0.705920 0.708292i \(-0.749466\pi\)
0.966358 + 0.257199i \(0.0827996\pi\)
\(692\) −6.03849 10.4590i −0.229549 0.397590i
\(693\) −0.516197 + 2.92750i −0.0196087 + 0.111206i
\(694\) 5.19965 29.4887i 0.197376 1.11937i
\(695\) −4.40895 7.63652i −0.167241 0.289670i
\(696\) −1.79813 + 3.11446i −0.0681581 + 0.118053i
\(697\) 21.1498 + 17.7468i 0.801105 + 0.672207i
\(698\) −20.7554 7.55434i −0.785602 0.285936i
\(699\) 25.7246 9.36300i 0.972995 0.354141i
\(700\) −2.03209 + 1.70513i −0.0768057 + 0.0644477i
\(701\) 4.66802 + 26.4737i 0.176309 + 0.999897i 0.936622 + 0.350341i \(0.113934\pi\)
−0.760314 + 0.649556i \(0.774955\pi\)
\(702\) 3.41147 0.128758
\(703\) −27.7974 15.7771i −1.04840 0.595046i
\(704\) 1.12061 0.0422348
\(705\) 1.11334 + 6.31407i 0.0419308 + 0.237802i
\(706\) 2.91353 2.44474i 0.109652 0.0920092i
\(707\) −29.0107 + 10.5590i −1.09106 + 0.397114i
\(708\) 0.173648 + 0.0632028i 0.00652610 + 0.00237531i
\(709\) −32.7695 27.4969i −1.23068 1.03267i −0.998194 0.0600683i \(-0.980868\pi\)
−0.232490 0.972599i \(-0.574687\pi\)
\(710\) 4.73055 8.19356i 0.177534 0.307499i
\(711\) 3.09240 + 5.35619i 0.115974 + 0.200873i
\(712\) −2.04916 + 11.6214i −0.0767956 + 0.435530i
\(713\) −1.74417 + 9.89166i −0.0653195 + 0.370446i
\(714\) −5.60607 9.70999i −0.209802 0.363387i
\(715\) 1.91147 3.31077i 0.0714851 0.123816i
\(716\) −12.0838 10.1395i −0.451592 0.378931i
\(717\) 23.1386 + 8.42177i 0.864128 + 0.314517i
\(718\) 16.2023 5.89717i 0.604666 0.220080i
\(719\) −16.6518 + 13.9725i −0.621008 + 0.521088i −0.898120 0.439750i \(-0.855067\pi\)
0.277112 + 0.960838i \(0.410623\pi\)
\(720\) −0.173648 0.984808i −0.00647149 0.0367016i
\(721\) 20.7906 0.774281
\(722\) −14.3735 + 12.4259i −0.534925 + 0.462445i
\(723\) −23.3969 −0.870141
\(724\) −0.131292 0.744596i −0.00487944 0.0276727i
\(725\) 2.75490 2.31164i 0.102314 0.0858520i
\(726\) 9.15657 3.33272i 0.339832 0.123689i
\(727\) 32.4342 + 11.8051i 1.20292 + 0.437827i 0.864242 0.503076i \(-0.167798\pi\)
0.338677 + 0.940903i \(0.390021\pi\)
\(728\) −6.93242 5.81699i −0.256933 0.215592i
\(729\) −0.500000 + 0.866025i −0.0185185 + 0.0320750i
\(730\) −3.32888 5.76579i −0.123207 0.213401i
\(731\) 8.33409 47.2650i 0.308248 1.74816i
\(732\) −1.02481 + 5.81201i −0.0378782 + 0.214818i
\(733\) −17.7208 30.6932i −0.654531 1.13368i −0.982011 0.188823i \(-0.939533\pi\)
0.327480 0.944858i \(-0.393801\pi\)
\(734\) −17.0069 + 29.4568i −0.627735 + 1.08727i
\(735\) −0.0282185 0.0236781i −0.00104085 0.000873381i
\(736\) 3.49273 + 1.27125i 0.128744 + 0.0468588i
\(737\) −13.1579 + 4.78909i −0.484678 + 0.176408i
\(738\) −5.00387 + 4.19875i −0.184195 + 0.154558i
\(739\) −1.65595 9.39133i −0.0609149 0.345466i −0.999998 0.00177662i \(-0.999434\pi\)
0.939083 0.343689i \(-0.111677\pi\)
\(740\) 7.33275 0.269557
\(741\) 12.9324 + 7.34013i 0.475084 + 0.269646i
\(742\) −4.76321 −0.174863
\(743\) −1.31449 7.45486i −0.0482240 0.273492i 0.951156 0.308712i \(-0.0998979\pi\)
−0.999380 + 0.0352199i \(0.988787\pi\)
\(744\) 2.07011 1.73703i 0.0758938 0.0636825i
\(745\) 3.84477 1.39938i 0.140861 0.0512694i
\(746\) −25.8542 9.41014i −0.946588 0.344530i
\(747\) 8.23055 + 6.90625i 0.301140 + 0.252687i
\(748\) 2.36824 4.10191i 0.0865915 0.149981i
\(749\) 20.9675 + 36.3168i 0.766136 + 1.32699i
\(750\) −0.173648 + 0.984808i −0.00634073 + 0.0359601i
\(751\) −1.90777 + 10.8195i −0.0696154 + 0.394808i 0.930012 + 0.367528i \(0.119796\pi\)
−0.999628 + 0.0272804i \(0.991315\pi\)
\(752\) 3.20574 + 5.55250i 0.116901 + 0.202479i
\(753\) −5.13429 + 8.89284i −0.187104 + 0.324073i
\(754\) 9.39827 + 7.88609i 0.342265 + 0.287194i
\(755\) −16.7554 6.09845i −0.609790 0.221945i
\(756\) 2.49273 0.907278i 0.0906596 0.0329974i
\(757\) 20.3516 17.0770i 0.739693 0.620676i −0.193062 0.981186i \(-0.561842\pi\)
0.932755 + 0.360511i \(0.117398\pi\)
\(758\) −3.61287 20.4896i −0.131225 0.744217i
\(759\) −4.16519 −0.151187
\(760\) 1.46064 4.10689i 0.0529829 0.148973i
\(761\) 47.0823 1.70673 0.853367 0.521311i \(-0.174557\pi\)
0.853367 + 0.521311i \(0.174557\pi\)
\(762\) 2.04710 + 11.6097i 0.0741587 + 0.420575i
\(763\) −12.5228 + 10.5078i −0.453354 + 0.380409i
\(764\) −8.12449 + 2.95707i −0.293934 + 0.106983i
\(765\) −3.97178 1.44561i −0.143600 0.0522661i
\(766\) −22.3837