Properties

Label 570.2.u.h.301.1
Level $570$
Weight $2$
Character 570.301
Analytic conductor $4.551$
Analytic rank $0$
Dimension $6$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [570,2,Mod(61,570)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(570, base_ring=CyclotomicField(18))
 
chi = DirichletCharacter(H, H._module([0, 0, 2]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("570.61");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 570 = 2 \cdot 3 \cdot 5 \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 570.u (of order \(9\), degree \(6\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(4.55147291521\)
Analytic rank: \(0\)
Dimension: \(6\)
Coefficient field: \(\Q(\zeta_{18})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - x^{3} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{9}]$

Embedding invariants

Embedding label 301.1
Root \(0.939693 - 0.342020i\) of defining polynomial
Character \(\chi\) \(=\) 570.301
Dual form 570.2.u.h.481.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.766044 + 0.642788i) q^{2} +(-0.939693 + 0.342020i) q^{3} +(0.173648 + 0.984808i) q^{4} +(-0.173648 + 0.984808i) q^{5} +(-0.939693 - 0.342020i) q^{6} +(0.733956 + 1.27125i) q^{7} +(-0.500000 + 0.866025i) q^{8} +(0.766044 - 0.642788i) q^{9} +O(q^{10})\) \(q+(0.766044 + 0.642788i) q^{2} +(-0.939693 + 0.342020i) q^{3} +(0.173648 + 0.984808i) q^{4} +(-0.173648 + 0.984808i) q^{5} +(-0.939693 - 0.342020i) q^{6} +(0.733956 + 1.27125i) q^{7} +(-0.500000 + 0.866025i) q^{8} +(0.766044 - 0.642788i) q^{9} +(-0.766044 + 0.642788i) q^{10} +(-1.67365 + 2.89884i) q^{11} +(-0.500000 - 0.866025i) q^{12} +(2.09240 + 0.761570i) q^{13} +(-0.254900 + 1.44561i) q^{14} +(-0.173648 - 0.984808i) q^{15} +(-0.939693 + 0.342020i) q^{16} +(-2.43969 - 2.04715i) q^{17} +1.00000 q^{18} +(-4.07398 - 1.55007i) q^{19} -1.00000 q^{20} +(-1.12449 - 0.943555i) q^{21} +(-3.14543 + 1.14484i) q^{22} +(0.745100 + 4.22567i) q^{23} +(0.173648 - 0.984808i) q^{24} +(-0.939693 - 0.342020i) q^{25} +(1.11334 + 1.92836i) q^{26} +(-0.500000 + 0.866025i) q^{27} +(-1.12449 + 0.943555i) q^{28} +(-5.08512 + 4.26692i) q^{29} +(0.500000 - 0.866025i) q^{30} +(5.40033 + 9.35365i) q^{31} +(-0.939693 - 0.342020i) q^{32} +(0.581252 - 3.29644i) q^{33} +(-0.553033 - 3.13641i) q^{34} +(-1.37939 + 0.502055i) q^{35} +(0.766044 + 0.642788i) q^{36} -3.02229 q^{37} +(-2.12449 - 3.80612i) q^{38} -2.22668 q^{39} +(-0.766044 - 0.642788i) q^{40} +(2.93242 - 1.06731i) q^{41} +(-0.254900 - 1.44561i) q^{42} +(0.578726 - 3.28212i) q^{43} +(-3.14543 - 1.14484i) q^{44} +(0.500000 + 0.866025i) q^{45} +(-2.14543 + 3.71599i) q^{46} +(-0.592396 + 0.497079i) q^{47} +(0.766044 - 0.642788i) q^{48} +(2.42262 - 4.19610i) q^{49} +(-0.500000 - 0.866025i) q^{50} +(2.99273 + 1.08926i) q^{51} +(-0.386659 + 2.19285i) q^{52} +(-1.30928 - 7.42528i) q^{53} +(-0.939693 + 0.342020i) q^{54} +(-2.56418 - 2.15160i) q^{55} -1.46791 q^{56} +(4.35844 + 0.0632028i) q^{57} -6.63816 q^{58} +(3.37939 + 2.83564i) q^{59} +(0.939693 - 0.342020i) q^{60} +(1.16385 + 6.60051i) q^{61} +(-1.87551 + 10.6366i) q^{62} +(1.37939 + 0.502055i) q^{63} +(-0.500000 - 0.866025i) q^{64} +(-1.11334 + 1.92836i) q^{65} +(2.56418 - 2.15160i) q^{66} +(10.6985 - 8.97708i) q^{67} +(1.59240 - 2.75811i) q^{68} +(-2.14543 - 3.71599i) q^{69} +(-1.37939 - 0.502055i) q^{70} +(-1.47519 + 8.36619i) q^{71} +(0.173648 + 0.984808i) q^{72} +(13.0706 - 4.75730i) q^{73} +(-2.31521 - 1.94269i) q^{74} +1.00000 q^{75} +(0.819078 - 4.28125i) q^{76} -4.91353 q^{77} +(-1.70574 - 1.43128i) q^{78} +(1.49273 - 0.543308i) q^{79} +(-0.173648 - 0.984808i) q^{80} +(0.173648 - 0.984808i) q^{81} +(2.93242 + 1.06731i) q^{82} +(-0.397804 - 0.689016i) q^{83} +(0.733956 - 1.27125i) q^{84} +(2.43969 - 2.04715i) q^{85} +(2.55303 - 2.14225i) q^{86} +(3.31908 - 5.74881i) q^{87} +(-1.67365 - 2.89884i) q^{88} +(10.2442 + 3.72859i) q^{89} +(-0.173648 + 0.984808i) q^{90} +(0.567581 + 3.21891i) q^{91} +(-4.03209 + 1.46756i) q^{92} +(-8.27379 - 6.94253i) q^{93} -0.773318 q^{94} +(2.23396 - 3.74292i) q^{95} +1.00000 q^{96} +(5.36231 + 4.49951i) q^{97} +(4.55303 - 1.65717i) q^{98} +(0.581252 + 3.29644i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q + 9 q^{7} - 3 q^{8}+O(q^{10}) \) Copy content Toggle raw display \( 6 q + 9 q^{7} - 3 q^{8} - 9 q^{11} - 3 q^{12} + 9 q^{13} - 3 q^{14} - 9 q^{17} + 6 q^{18} - 9 q^{19} - 6 q^{20} + 6 q^{21} - 3 q^{22} + 3 q^{23} - 3 q^{27} + 6 q^{28} - 9 q^{29} + 3 q^{30} + 18 q^{31} + 6 q^{33} + 9 q^{34} + 3 q^{35} - 6 q^{37} - 6 q^{41} - 3 q^{42} + 21 q^{43} - 3 q^{44} + 3 q^{45} + 3 q^{46} - 12 q^{49} - 3 q^{50} - 9 q^{52} + 12 q^{53} + 3 q^{55} - 18 q^{56} + 18 q^{57} - 6 q^{58} + 9 q^{59} + 3 q^{61} - 24 q^{62} - 3 q^{63} - 3 q^{64} - 3 q^{66} + 36 q^{67} + 6 q^{68} + 3 q^{69} + 3 q^{70} - 36 q^{71} + 21 q^{73} - 21 q^{74} + 6 q^{75} - 12 q^{76} - 60 q^{77} - 9 q^{79} - 6 q^{82} - 3 q^{83} + 9 q^{84} + 9 q^{85} + 3 q^{86} + 3 q^{87} - 9 q^{88} + 3 q^{89} + 27 q^{91} - 15 q^{92} + 3 q^{93} - 18 q^{94} + 18 q^{95} + 6 q^{96} + 15 q^{98} + 6 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/570\mathbb{Z}\right)^\times\).

\(n\) \(191\) \(211\) \(457\)
\(\chi(n)\) \(1\) \(e\left(\frac{2}{9}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.766044 + 0.642788i 0.541675 + 0.454519i
\(3\) −0.939693 + 0.342020i −0.542532 + 0.197465i
\(4\) 0.173648 + 0.984808i 0.0868241 + 0.492404i
\(5\) −0.173648 + 0.984808i −0.0776578 + 0.440419i
\(6\) −0.939693 0.342020i −0.383628 0.139629i
\(7\) 0.733956 + 1.27125i 0.277409 + 0.480487i 0.970740 0.240133i \(-0.0771909\pi\)
−0.693331 + 0.720619i \(0.743858\pi\)
\(8\) −0.500000 + 0.866025i −0.176777 + 0.306186i
\(9\) 0.766044 0.642788i 0.255348 0.214263i
\(10\) −0.766044 + 0.642788i −0.242245 + 0.203267i
\(11\) −1.67365 + 2.89884i −0.504624 + 0.874034i 0.495362 + 0.868687i \(0.335036\pi\)
−0.999986 + 0.00534749i \(0.998298\pi\)
\(12\) −0.500000 0.866025i −0.144338 0.250000i
\(13\) 2.09240 + 0.761570i 0.580326 + 0.211222i 0.615469 0.788161i \(-0.288966\pi\)
−0.0351431 + 0.999382i \(0.511189\pi\)
\(14\) −0.254900 + 1.44561i −0.0681249 + 0.386356i
\(15\) −0.173648 0.984808i −0.0448358 0.254276i
\(16\) −0.939693 + 0.342020i −0.234923 + 0.0855050i
\(17\) −2.43969 2.04715i −0.591712 0.496506i 0.297057 0.954860i \(-0.403995\pi\)
−0.888770 + 0.458354i \(0.848439\pi\)
\(18\) 1.00000 0.235702
\(19\) −4.07398 1.55007i −0.934635 0.355609i
\(20\) −1.00000 −0.223607
\(21\) −1.12449 0.943555i −0.245383 0.205901i
\(22\) −3.14543 + 1.14484i −0.670608 + 0.244081i
\(23\) 0.745100 + 4.22567i 0.155364 + 0.881113i 0.958452 + 0.285253i \(0.0920777\pi\)
−0.803088 + 0.595860i \(0.796811\pi\)
\(24\) 0.173648 0.984808i 0.0354458 0.201023i
\(25\) −0.939693 0.342020i −0.187939 0.0684040i
\(26\) 1.11334 + 1.92836i 0.218344 + 0.378183i
\(27\) −0.500000 + 0.866025i −0.0962250 + 0.166667i
\(28\) −1.12449 + 0.943555i −0.212508 + 0.178315i
\(29\) −5.08512 + 4.26692i −0.944284 + 0.792348i −0.978326 0.207072i \(-0.933606\pi\)
0.0340421 + 0.999420i \(0.489162\pi\)
\(30\) 0.500000 0.866025i 0.0912871 0.158114i
\(31\) 5.40033 + 9.35365i 0.969928 + 1.67996i 0.695748 + 0.718286i \(0.255073\pi\)
0.274180 + 0.961678i \(0.411594\pi\)
\(32\) −0.939693 0.342020i −0.166116 0.0604612i
\(33\) 0.581252 3.29644i 0.101183 0.573837i
\(34\) −0.553033 3.13641i −0.0948444 0.537890i
\(35\) −1.37939 + 0.502055i −0.233159 + 0.0848628i
\(36\) 0.766044 + 0.642788i 0.127674 + 0.107131i
\(37\) −3.02229 −0.496861 −0.248431 0.968650i \(-0.579915\pi\)
−0.248431 + 0.968650i \(0.579915\pi\)
\(38\) −2.12449 3.80612i −0.344637 0.617434i
\(39\) −2.22668 −0.356554
\(40\) −0.766044 0.642788i −0.121122 0.101634i
\(41\) 2.93242 1.06731i 0.457967 0.166686i −0.102727 0.994710i \(-0.532757\pi\)
0.560694 + 0.828023i \(0.310535\pi\)
\(42\) −0.254900 1.44561i −0.0393319 0.223063i
\(43\) 0.578726 3.28212i 0.0882548 0.500518i −0.908352 0.418207i \(-0.862659\pi\)
0.996607 0.0823112i \(-0.0262302\pi\)
\(44\) −3.14543 1.14484i −0.474191 0.172592i
\(45\) 0.500000 + 0.866025i 0.0745356 + 0.129099i
\(46\) −2.14543 + 3.71599i −0.316326 + 0.547893i
\(47\) −0.592396 + 0.497079i −0.0864099 + 0.0725065i −0.684969 0.728572i \(-0.740184\pi\)
0.598560 + 0.801078i \(0.295740\pi\)
\(48\) 0.766044 0.642788i 0.110569 0.0927784i
\(49\) 2.42262 4.19610i 0.346088 0.599443i
\(50\) −0.500000 0.866025i −0.0707107 0.122474i
\(51\) 2.99273 + 1.08926i 0.419065 + 0.152527i
\(52\) −0.386659 + 2.19285i −0.0536200 + 0.304094i
\(53\) −1.30928 7.42528i −0.179843 1.01994i −0.932404 0.361418i \(-0.882293\pi\)
0.752561 0.658523i \(-0.228818\pi\)
\(54\) −0.939693 + 0.342020i −0.127876 + 0.0465430i
\(55\) −2.56418 2.15160i −0.345754 0.290122i
\(56\) −1.46791 −0.196158
\(57\) 4.35844 + 0.0632028i 0.577290 + 0.00837141i
\(58\) −6.63816 −0.871633
\(59\) 3.37939 + 2.83564i 0.439958 + 0.369169i 0.835694 0.549196i \(-0.185066\pi\)
−0.395735 + 0.918365i \(0.629510\pi\)
\(60\) 0.939693 0.342020i 0.121314 0.0441546i
\(61\) 1.16385 + 6.60051i 0.149015 + 0.845109i 0.964055 + 0.265703i \(0.0856041\pi\)
−0.815039 + 0.579406i \(0.803285\pi\)
\(62\) −1.87551 + 10.6366i −0.238191 + 1.35085i
\(63\) 1.37939 + 0.502055i 0.173786 + 0.0632530i
\(64\) −0.500000 0.866025i −0.0625000 0.108253i
\(65\) −1.11334 + 1.92836i −0.138093 + 0.239184i
\(66\) 2.56418 2.15160i 0.315628 0.264844i
\(67\) 10.6985 8.97708i 1.30703 1.09672i 0.318140 0.948044i \(-0.396942\pi\)
0.988885 0.148681i \(-0.0475027\pi\)
\(68\) 1.59240 2.75811i 0.193106 0.334470i
\(69\) −2.14543 3.71599i −0.258279 0.447353i
\(70\) −1.37939 0.502055i −0.164868 0.0600071i
\(71\) −1.47519 + 8.36619i −0.175072 + 0.992884i 0.762988 + 0.646412i \(0.223731\pi\)
−0.938060 + 0.346472i \(0.887380\pi\)
\(72\) 0.173648 + 0.984808i 0.0204646 + 0.116061i
\(73\) 13.0706 4.75730i 1.52980 0.556800i 0.566224 0.824252i \(-0.308404\pi\)
0.963571 + 0.267452i \(0.0861816\pi\)
\(74\) −2.31521 1.94269i −0.269137 0.225833i
\(75\) 1.00000 0.115470
\(76\) 0.819078 4.28125i 0.0939547 0.491093i
\(77\) −4.91353 −0.559949
\(78\) −1.70574 1.43128i −0.193137 0.162061i
\(79\) 1.49273 0.543308i 0.167945 0.0611269i −0.256679 0.966497i \(-0.582628\pi\)
0.424624 + 0.905370i \(0.360406\pi\)
\(80\) −0.173648 0.984808i −0.0194145 0.110105i
\(81\) 0.173648 0.984808i 0.0192942 0.109423i
\(82\) 2.93242 + 1.06731i 0.323831 + 0.117865i
\(83\) −0.397804 0.689016i −0.0436646 0.0756293i 0.843367 0.537338i \(-0.180570\pi\)
−0.887032 + 0.461708i \(0.847237\pi\)
\(84\) 0.733956 1.27125i 0.0800811 0.138705i
\(85\) 2.43969 2.04715i 0.264622 0.222044i
\(86\) 2.55303 2.14225i 0.275301 0.231005i
\(87\) 3.31908 5.74881i 0.355842 0.616337i
\(88\) −1.67365 2.89884i −0.178411 0.309018i
\(89\) 10.2442 + 3.72859i 1.08589 + 0.395230i 0.822095 0.569350i \(-0.192805\pi\)
0.263790 + 0.964580i \(0.415027\pi\)
\(90\) −0.173648 + 0.984808i −0.0183041 + 0.103808i
\(91\) 0.567581 + 3.21891i 0.0594987 + 0.337434i
\(92\) −4.03209 + 1.46756i −0.420374 + 0.153004i
\(93\) −8.27379 6.94253i −0.857952 0.719907i
\(94\) −0.773318 −0.0797617
\(95\) 2.23396 3.74292i 0.229199 0.384015i
\(96\) 1.00000 0.102062
\(97\) 5.36231 + 4.49951i 0.544460 + 0.456856i 0.873060 0.487613i \(-0.162132\pi\)
−0.328600 + 0.944469i \(0.606577\pi\)
\(98\) 4.55303 1.65717i 0.459926 0.167399i
\(99\) 0.581252 + 3.29644i 0.0584180 + 0.331305i
\(100\) 0.173648 0.984808i 0.0173648 0.0984808i
\(101\) 4.65910 + 1.69577i 0.463598 + 0.168736i 0.563250 0.826287i \(-0.309551\pi\)
−0.0996522 + 0.995022i \(0.531773\pi\)
\(102\) 1.59240 + 2.75811i 0.157671 + 0.273094i
\(103\) 1.02822 1.78093i 0.101313 0.175480i −0.810913 0.585167i \(-0.801029\pi\)
0.912226 + 0.409687i \(0.134362\pi\)
\(104\) −1.70574 + 1.43128i −0.167261 + 0.140349i
\(105\) 1.12449 0.943555i 0.109739 0.0920815i
\(106\) 3.76991 6.52968i 0.366166 0.634219i
\(107\) 0.481582 + 0.834124i 0.0465563 + 0.0806378i 0.888364 0.459139i \(-0.151842\pi\)
−0.841808 + 0.539777i \(0.818509\pi\)
\(108\) −0.939693 0.342020i −0.0904220 0.0329109i
\(109\) 2.07398 11.7621i 0.198651 1.12661i −0.708471 0.705739i \(-0.750615\pi\)
0.907123 0.420867i \(-0.138274\pi\)
\(110\) −0.581252 3.29644i −0.0554202 0.314304i
\(111\) 2.84002 1.03368i 0.269563 0.0981129i
\(112\) −1.12449 0.943555i −0.106254 0.0891576i
\(113\) −14.4534 −1.35966 −0.679829 0.733371i \(-0.737946\pi\)
−0.679829 + 0.733371i \(0.737946\pi\)
\(114\) 3.29813 + 2.84997i 0.308898 + 0.266924i
\(115\) −4.29086 −0.400125
\(116\) −5.08512 4.26692i −0.472142 0.396174i
\(117\) 2.09240 0.761570i 0.193442 0.0704072i
\(118\) 0.766044 + 4.34445i 0.0705201 + 0.399939i
\(119\) 0.811804 4.60397i 0.0744179 0.422045i
\(120\) 0.939693 + 0.342020i 0.0857818 + 0.0312220i
\(121\) −0.102196 0.177009i −0.00929059 0.0160918i
\(122\) −3.35117 + 5.80439i −0.303400 + 0.525505i
\(123\) −2.39053 + 2.00589i −0.215547 + 0.180865i
\(124\) −8.27379 + 6.94253i −0.743008 + 0.623458i
\(125\) 0.500000 0.866025i 0.0447214 0.0774597i
\(126\) 0.733956 + 1.27125i 0.0653860 + 0.113252i
\(127\) 17.7738 + 6.46913i 1.57717 + 0.574042i 0.974586 0.224014i \(-0.0719162\pi\)
0.602583 + 0.798057i \(0.294138\pi\)
\(128\) 0.173648 0.984808i 0.0153485 0.0870455i
\(129\) 0.578726 + 3.28212i 0.0509540 + 0.288974i
\(130\) −2.09240 + 0.761570i −0.183515 + 0.0667941i
\(131\) 12.4311 + 10.4309i 1.08611 + 0.911353i 0.996414 0.0846165i \(-0.0269665\pi\)
0.0896944 + 0.995969i \(0.471411\pi\)
\(132\) 3.34730 0.291345
\(133\) −1.01960 6.31672i −0.0884106 0.547729i
\(134\) 13.9659 1.20647
\(135\) −0.766044 0.642788i −0.0659306 0.0553223i
\(136\) 2.99273 1.08926i 0.256624 0.0934035i
\(137\) −2.17112 12.3130i −0.185491 1.05197i −0.925322 0.379181i \(-0.876206\pi\)
0.739831 0.672793i \(-0.234906\pi\)
\(138\) 0.745100 4.22567i 0.0634271 0.359713i
\(139\) −10.2378 3.72626i −0.868361 0.316058i −0.130858 0.991401i \(-0.541773\pi\)
−0.737503 + 0.675344i \(0.763995\pi\)
\(140\) −0.733956 1.27125i −0.0620306 0.107440i
\(141\) 0.386659 0.669713i 0.0325626 0.0564000i
\(142\) −6.50774 + 5.46064i −0.546117 + 0.458247i
\(143\) −5.70961 + 4.79093i −0.477461 + 0.400638i
\(144\) −0.500000 + 0.866025i −0.0416667 + 0.0721688i
\(145\) −3.31908 5.74881i −0.275634 0.477413i
\(146\) 13.0706 + 4.75730i 1.08173 + 0.393717i
\(147\) −0.841367 + 4.77163i −0.0693947 + 0.393557i
\(148\) −0.524815 2.97637i −0.0431395 0.244656i
\(149\) 4.39053 1.59802i 0.359686 0.130915i −0.155855 0.987780i \(-0.549813\pi\)
0.515541 + 0.856865i \(0.327591\pi\)
\(150\) 0.766044 + 0.642788i 0.0625473 + 0.0524834i
\(151\) 9.31820 0.758304 0.379152 0.925334i \(-0.376216\pi\)
0.379152 + 0.925334i \(0.376216\pi\)
\(152\) 3.37939 2.75314i 0.274104 0.223309i
\(153\) −3.18479 −0.257475
\(154\) −3.76399 3.15836i −0.303311 0.254508i
\(155\) −10.1493 + 3.69404i −0.815211 + 0.296713i
\(156\) −0.386659 2.19285i −0.0309575 0.175569i
\(157\) 3.82682 21.7030i 0.305413 1.73209i −0.316139 0.948713i \(-0.602387\pi\)
0.621553 0.783372i \(-0.286502\pi\)
\(158\) 1.49273 + 0.543308i 0.118755 + 0.0432233i
\(159\) 3.76991 + 6.52968i 0.298974 + 0.517838i
\(160\) 0.500000 0.866025i 0.0395285 0.0684653i
\(161\) −4.82501 + 4.04866i −0.380264 + 0.319079i
\(162\) 0.766044 0.642788i 0.0601861 0.0505022i
\(163\) 4.28699 7.42528i 0.335783 0.581593i −0.647852 0.761766i \(-0.724332\pi\)
0.983635 + 0.180173i \(0.0576658\pi\)
\(164\) 1.56031 + 2.70253i 0.121840 + 0.211032i
\(165\) 3.14543 + 1.14484i 0.244871 + 0.0891259i
\(166\) 0.138156 0.783520i 0.0107230 0.0608129i
\(167\) 2.27719 + 12.9146i 0.176214 + 0.999360i 0.936733 + 0.350044i \(0.113834\pi\)
−0.760519 + 0.649316i \(0.775055\pi\)
\(168\) 1.37939 0.502055i 0.106422 0.0387344i
\(169\) −6.16044 5.16923i −0.473880 0.397633i
\(170\) 3.18479 0.244262
\(171\) −4.11721 + 1.43128i −0.314851 + 0.109453i
\(172\) 3.33275 0.254120
\(173\) −1.67159 1.40263i −0.127089 0.106640i 0.577028 0.816724i \(-0.304212\pi\)
−0.704117 + 0.710084i \(0.748657\pi\)
\(174\) 6.23783 2.27038i 0.472888 0.172117i
\(175\) −0.254900 1.44561i −0.0192686 0.109278i
\(176\) 0.581252 3.29644i 0.0438135 0.248479i
\(177\) −4.14543 1.50881i −0.311590 0.113409i
\(178\) 5.45084 + 9.44113i 0.408558 + 0.707642i
\(179\) −10.2121 + 17.6879i −0.763291 + 1.32206i 0.177855 + 0.984057i \(0.443084\pi\)
−0.941146 + 0.338002i \(0.890249\pi\)
\(180\) −0.766044 + 0.642788i −0.0570976 + 0.0479106i
\(181\) −15.7895 + 13.2490i −1.17363 + 0.984789i −1.00000 2.31067e-5i \(-0.999993\pi\)
−0.173625 + 0.984812i \(0.555548\pi\)
\(182\) −1.63429 + 2.83067i −0.121141 + 0.209823i
\(183\) −3.35117 5.80439i −0.247725 0.429073i
\(184\) −4.03209 1.46756i −0.297250 0.108190i
\(185\) 0.524815 2.97637i 0.0385852 0.218827i
\(186\) −1.87551 10.6366i −0.137519 0.779911i
\(187\) 10.0175 3.64609i 0.732555 0.266628i
\(188\) −0.592396 0.497079i −0.0432049 0.0362532i
\(189\) −1.46791 −0.106775
\(190\) 4.11721 1.43128i 0.298694 0.103836i
\(191\) −13.9067 −1.00626 −0.503128 0.864212i \(-0.667817\pi\)
−0.503128 + 0.864212i \(0.667817\pi\)
\(192\) 0.766044 + 0.642788i 0.0552845 + 0.0463892i
\(193\) 4.27719 1.55677i 0.307879 0.112059i −0.183460 0.983027i \(-0.558730\pi\)
0.491339 + 0.870968i \(0.336508\pi\)
\(194\) 1.21554 + 6.89365i 0.0872705 + 0.494936i
\(195\) 0.386659 2.19285i 0.0276892 0.157033i
\(196\) 4.55303 + 1.65717i 0.325217 + 0.118369i
\(197\) 3.84137 + 6.65344i 0.273686 + 0.474038i 0.969803 0.243890i \(-0.0784237\pi\)
−0.696117 + 0.717929i \(0.745090\pi\)
\(198\) −1.67365 + 2.89884i −0.118941 + 0.206012i
\(199\) −8.48680 + 7.12127i −0.601613 + 0.504813i −0.891964 0.452107i \(-0.850672\pi\)
0.290351 + 0.956920i \(0.406228\pi\)
\(200\) 0.766044 0.642788i 0.0541675 0.0454519i
\(201\) −6.98293 + 12.0948i −0.492538 + 0.853100i
\(202\) 2.47906 + 4.29385i 0.174426 + 0.302114i
\(203\) −9.15657 3.33272i −0.642666 0.233911i
\(204\) −0.553033 + 3.13641i −0.0387201 + 0.219593i
\(205\) 0.541889 + 3.07321i 0.0378472 + 0.214642i
\(206\) 1.93242 0.703343i 0.134638 0.0490042i
\(207\) 3.28699 + 2.75811i 0.228462 + 0.191702i
\(208\) −2.22668 −0.154393
\(209\) 11.3118 9.21556i 0.782454 0.637454i
\(210\) 1.46791 0.101295
\(211\) 5.96972 + 5.00919i 0.410973 + 0.344847i 0.824717 0.565546i \(-0.191335\pi\)
−0.413744 + 0.910393i \(0.635779\pi\)
\(212\) 7.08512 2.57877i 0.486608 0.177111i
\(213\) −1.47519 8.36619i −0.101078 0.573242i
\(214\) −0.167252 + 0.948531i −0.0114331 + 0.0648402i
\(215\) 3.13176 + 1.13987i 0.213584 + 0.0777383i
\(216\) −0.500000 0.866025i −0.0340207 0.0589256i
\(217\) −7.92720 + 13.7303i −0.538134 + 0.932075i
\(218\) 9.14930 7.67717i 0.619669 0.519964i
\(219\) −10.6552 + 8.94080i −0.720014 + 0.604163i
\(220\) 1.67365 2.89884i 0.112837 0.195440i
\(221\) −3.54576 6.14144i −0.238514 0.413118i
\(222\) 2.84002 + 1.03368i 0.190610 + 0.0693763i
\(223\) −1.82934 + 10.3747i −0.122502 + 0.694743i 0.860258 + 0.509859i \(0.170302\pi\)
−0.982760 + 0.184885i \(0.940809\pi\)
\(224\) −0.254900 1.44561i −0.0170312 0.0965889i
\(225\) −0.939693 + 0.342020i −0.0626462 + 0.0228013i
\(226\) −11.0719 9.29044i −0.736493 0.617991i
\(227\) −22.9445 −1.52288 −0.761440 0.648236i \(-0.775507\pi\)
−0.761440 + 0.648236i \(0.775507\pi\)
\(228\) 0.694593 + 4.30320i 0.0460005 + 0.284986i
\(229\) −6.32770 −0.418146 −0.209073 0.977900i \(-0.567045\pi\)
−0.209073 + 0.977900i \(0.567045\pi\)
\(230\) −3.28699 2.75811i −0.216738 0.181864i
\(231\) 4.61721 1.68053i 0.303790 0.110571i
\(232\) −1.15270 6.53731i −0.0756787 0.429195i
\(233\) 1.84430 10.4596i 0.120824 0.685229i −0.862876 0.505415i \(-0.831339\pi\)
0.983701 0.179814i \(-0.0575495\pi\)
\(234\) 2.09240 + 0.761570i 0.136784 + 0.0497854i
\(235\) −0.386659 0.669713i −0.0252229 0.0436873i
\(236\) −2.20574 + 3.82045i −0.143581 + 0.248690i
\(237\) −1.21688 + 1.02108i −0.0790449 + 0.0663266i
\(238\) 3.58125 3.00503i 0.232138 0.194787i
\(239\) 6.22416 10.7806i 0.402607 0.697336i −0.591433 0.806354i \(-0.701437\pi\)
0.994040 + 0.109018i \(0.0347707\pi\)
\(240\) 0.500000 + 0.866025i 0.0322749 + 0.0559017i
\(241\) 11.5239 + 4.19437i 0.742322 + 0.270183i 0.685371 0.728194i \(-0.259640\pi\)
0.0569508 + 0.998377i \(0.481862\pi\)
\(242\) 0.0354925 0.201288i 0.00228154 0.0129393i
\(243\) 0.173648 + 0.984808i 0.0111395 + 0.0631754i
\(244\) −6.29813 + 2.29233i −0.403197 + 0.146752i
\(245\) 3.71167 + 3.11446i 0.237130 + 0.198975i
\(246\) −3.12061 −0.198963
\(247\) −7.34389 6.34597i −0.467281 0.403784i
\(248\) −10.8007 −0.685843
\(249\) 0.609470 + 0.511406i 0.0386236 + 0.0324091i
\(250\) 0.939693 0.342020i 0.0594314 0.0216313i
\(251\) 2.21941 + 12.5869i 0.140088 + 0.794477i 0.971181 + 0.238344i \(0.0766045\pi\)
−0.831093 + 0.556133i \(0.812284\pi\)
\(252\) −0.254900 + 1.44561i −0.0160572 + 0.0910649i
\(253\) −13.4966 4.91236i −0.848524 0.308837i
\(254\) 9.45723 + 16.3804i 0.593400 + 1.02780i
\(255\) −1.59240 + 2.75811i −0.0997197 + 0.172720i
\(256\) 0.766044 0.642788i 0.0478778 0.0401742i
\(257\) 2.87030 2.40847i 0.179044 0.150236i −0.548861 0.835914i \(-0.684938\pi\)
0.727905 + 0.685677i \(0.240494\pi\)
\(258\) −1.66637 + 2.88624i −0.103744 + 0.179690i
\(259\) −2.21823 3.84208i −0.137834 0.238735i
\(260\) −2.09240 0.761570i −0.129765 0.0472306i
\(261\) −1.15270 + 6.53731i −0.0713506 + 0.404649i
\(262\) 2.81790 + 15.9811i 0.174090 + 0.987315i
\(263\) 11.9474 4.34851i 0.736710 0.268141i 0.0537078 0.998557i \(-0.482896\pi\)
0.683002 + 0.730416i \(0.260674\pi\)
\(264\) 2.56418 + 2.15160i 0.157814 + 0.132422i
\(265\) 7.53983 0.463168
\(266\) 3.27925 5.49427i 0.201064 0.336875i
\(267\) −10.9017 −0.667172
\(268\) 10.6985 + 8.97708i 0.653513 + 0.548362i
\(269\) 15.0890 5.49194i 0.919992 0.334850i 0.161757 0.986831i \(-0.448284\pi\)
0.758235 + 0.651981i \(0.226062\pi\)
\(270\) −0.173648 0.984808i −0.0105679 0.0599335i
\(271\) 1.53297 8.69388i 0.0931211 0.528116i −0.902186 0.431347i \(-0.858038\pi\)
0.995307 0.0967683i \(-0.0308506\pi\)
\(272\) 2.99273 + 1.08926i 0.181461 + 0.0660463i
\(273\) −1.63429 2.83067i −0.0989114 0.171320i
\(274\) 6.25150 10.8279i 0.377667 0.654138i
\(275\) 2.56418 2.15160i 0.154626 0.129746i
\(276\) 3.28699 2.75811i 0.197853 0.166019i
\(277\) 1.35978 2.35522i 0.0817016 0.141511i −0.822279 0.569084i \(-0.807298\pi\)
0.903981 + 0.427573i \(0.140631\pi\)
\(278\) −5.44743 9.43523i −0.326715 0.565888i
\(279\) 10.1493 + 3.69404i 0.607623 + 0.221157i
\(280\) 0.254900 1.44561i 0.0152332 0.0863917i
\(281\) −4.50000 25.5208i −0.268447 1.52244i −0.759035 0.651050i \(-0.774329\pi\)
0.490588 0.871392i \(-0.336782\pi\)
\(282\) 0.726682 0.264490i 0.0432733 0.0157502i
\(283\) −18.4140 15.4512i −1.09460 0.918477i −0.0975486 0.995231i \(-0.531100\pi\)
−0.997050 + 0.0767534i \(0.975545\pi\)
\(284\) −8.49525 −0.504100
\(285\) −0.819078 + 4.28125i −0.0485180 + 0.253599i
\(286\) −7.45336 −0.440727
\(287\) 3.50908 + 2.94447i 0.207135 + 0.173807i
\(288\) −0.939693 + 0.342020i −0.0553719 + 0.0201537i
\(289\) −1.19072 6.75292i −0.0700425 0.397231i
\(290\) 1.15270 6.53731i 0.0676891 0.383884i
\(291\) −6.57785 2.39414i −0.385600 0.140347i
\(292\) 6.95471 + 12.0459i 0.406993 + 0.704933i
\(293\) −4.22328 + 7.31493i −0.246727 + 0.427343i −0.962616 0.270871i \(-0.912688\pi\)
0.715889 + 0.698214i \(0.246022\pi\)
\(294\) −3.71167 + 3.11446i −0.216469 + 0.181639i
\(295\) −3.37939 + 2.83564i −0.196755 + 0.165097i
\(296\) 1.51114 2.61738i 0.0878335 0.152132i
\(297\) −1.67365 2.89884i −0.0971149 0.168208i
\(298\) 4.39053 + 1.59802i 0.254337 + 0.0925709i
\(299\) −1.65910 + 9.40923i −0.0959482 + 0.544150i
\(300\) 0.173648 + 0.984808i 0.0100256 + 0.0568579i
\(301\) 4.59714 1.67322i 0.264975 0.0964430i
\(302\) 7.13816 + 5.98962i 0.410755 + 0.344664i
\(303\) −4.95811 −0.284836
\(304\) 4.35844 + 0.0632028i 0.249974 + 0.00362493i
\(305\) −6.70233 −0.383774
\(306\) −2.43969 2.04715i −0.139468 0.117028i
\(307\) −26.9971 + 9.82613i −1.54080 + 0.560807i −0.966238 0.257652i \(-0.917051\pi\)
−0.574566 + 0.818458i \(0.694829\pi\)
\(308\) −0.853226 4.83889i −0.0486171 0.275721i
\(309\) −0.357097 + 2.02520i −0.0203145 + 0.115209i
\(310\) −10.1493 3.69404i −0.576442 0.209808i
\(311\) −4.70826 8.15495i −0.266981 0.462425i 0.701100 0.713063i \(-0.252693\pi\)
−0.968081 + 0.250638i \(0.919359\pi\)
\(312\) 1.11334 1.92836i 0.0630305 0.109172i
\(313\) −20.2331 + 16.9776i −1.14364 + 0.959629i −0.999552 0.0299358i \(-0.990470\pi\)
−0.144089 + 0.989565i \(0.546025\pi\)
\(314\) 16.8819 14.1656i 0.952701 0.799411i
\(315\) −0.733956 + 1.27125i −0.0413537 + 0.0716267i
\(316\) 0.794263 + 1.37570i 0.0446808 + 0.0773894i
\(317\) −18.7763 6.83402i −1.05458 0.383837i −0.244192 0.969727i \(-0.578523\pi\)
−0.810390 + 0.585890i \(0.800745\pi\)
\(318\) −1.30928 + 7.42528i −0.0734206 + 0.416389i
\(319\) −3.85844 21.8823i −0.216031 1.22517i
\(320\) 0.939693 0.342020i 0.0525304 0.0191195i
\(321\) −0.737826 0.619109i −0.0411814 0.0345553i
\(322\) −6.29860 −0.351007
\(323\) 6.76604 + 12.1217i 0.376473 + 0.674470i
\(324\) 1.00000 0.0555556
\(325\) −1.70574 1.43128i −0.0946173 0.0793933i
\(326\) 8.05690 2.93247i 0.446231 0.162415i
\(327\) 2.07398 + 11.7621i 0.114691 + 0.650446i
\(328\) −0.541889 + 3.07321i −0.0299208 + 0.169689i
\(329\) −1.06670 0.388249i −0.0588093 0.0214048i
\(330\) 1.67365 + 2.89884i 0.0921313 + 0.159576i
\(331\) −12.3444 + 21.3811i −0.678507 + 1.17521i 0.296923 + 0.954901i \(0.404040\pi\)
−0.975430 + 0.220308i \(0.929294\pi\)
\(332\) 0.609470 0.511406i 0.0334490 0.0280671i
\(333\) −2.31521 + 1.94269i −0.126873 + 0.106459i
\(334\) −6.55690 + 11.3569i −0.358778 + 0.621421i
\(335\) 6.98293 + 12.0948i 0.381518 + 0.660809i
\(336\) 1.37939 + 0.502055i 0.0752516 + 0.0273894i
\(337\) 1.65776 9.40160i 0.0903037 0.512138i −0.905782 0.423744i \(-0.860716\pi\)
0.996086 0.0883937i \(-0.0281733\pi\)
\(338\) −1.39646 7.91971i −0.0759574 0.430776i
\(339\) 13.5817 4.94334i 0.737658 0.268485i
\(340\) 2.43969 + 2.04715i 0.132311 + 0.111022i
\(341\) −36.1530 −1.95780
\(342\) −4.07398 1.55007i −0.220295 0.0838180i
\(343\) 17.3878 0.938851
\(344\) 2.55303 + 2.14225i 0.137650 + 0.115502i
\(345\) 4.03209 1.46756i 0.217080 0.0790108i
\(346\) −0.378918 2.14895i −0.0203708 0.115528i
\(347\) 3.62819 20.5765i 0.194772 1.10460i −0.717972 0.696072i \(-0.754929\pi\)
0.912744 0.408533i \(-0.133959\pi\)
\(348\) 6.23783 + 2.27038i 0.334383 + 0.121705i
\(349\) 16.1766 + 28.0188i 0.865916 + 1.49981i 0.866135 + 0.499810i \(0.166597\pi\)
−0.000219262 1.00000i \(0.500070\pi\)
\(350\) 0.733956 1.27125i 0.0392316 0.0679511i
\(351\) −1.70574 + 1.43128i −0.0910455 + 0.0763963i
\(352\) 2.56418 2.15160i 0.136671 0.114681i
\(353\) 10.7023 18.5370i 0.569628 0.986624i −0.426975 0.904263i \(-0.640421\pi\)
0.996603 0.0823607i \(-0.0262459\pi\)
\(354\) −2.20574 3.82045i −0.117234 0.203055i
\(355\) −7.98293 2.90555i −0.423690 0.154210i
\(356\) −1.89306 + 10.7361i −0.100332 + 0.569010i
\(357\) 0.811804 + 4.60397i 0.0429652 + 0.243668i
\(358\) −19.1925 + 6.98551i −1.01436 + 0.369196i
\(359\) 11.9081 + 9.99206i 0.628484 + 0.527361i 0.900457 0.434944i \(-0.143232\pi\)
−0.271974 + 0.962305i \(0.587676\pi\)
\(360\) −1.00000 −0.0527046
\(361\) 14.1946 + 12.6299i 0.747084 + 0.664730i
\(362\) −20.6117 −1.08333
\(363\) 0.156574 + 0.131381i 0.00821801 + 0.00689573i
\(364\) −3.07145 + 1.11792i −0.160988 + 0.0585948i
\(365\) 2.41534 + 13.6981i 0.126425 + 0.716991i
\(366\) 1.16385 6.60051i 0.0608353 0.345014i
\(367\) 10.0198 + 3.64690i 0.523027 + 0.190366i 0.590022 0.807387i \(-0.299119\pi\)
−0.0669950 + 0.997753i \(0.521341\pi\)
\(368\) −2.14543 3.71599i −0.111838 0.193710i
\(369\) 1.56031 2.70253i 0.0812264 0.140688i
\(370\) 2.31521 1.94269i 0.120362 0.100996i
\(371\) 8.47843 7.11424i 0.440178 0.369353i
\(372\) 5.40033 9.35365i 0.279994 0.484964i
\(373\) 13.5351 + 23.4434i 0.700820 + 1.21386i 0.968179 + 0.250259i \(0.0805157\pi\)
−0.267359 + 0.963597i \(0.586151\pi\)
\(374\) 10.0175 + 3.64609i 0.517995 + 0.188535i
\(375\) −0.173648 + 0.984808i −0.00896715 + 0.0508553i
\(376\) −0.134285 0.761570i −0.00692524 0.0392750i
\(377\) −13.8897 + 5.05542i −0.715353 + 0.260367i
\(378\) −1.12449 0.943555i −0.0578373 0.0485312i
\(379\) −28.3432 −1.45589 −0.727946 0.685635i \(-0.759525\pi\)
−0.727946 + 0.685635i \(0.759525\pi\)
\(380\) 4.07398 + 1.55007i 0.208991 + 0.0795167i
\(381\) −18.9145 −0.969018
\(382\) −10.6532 8.93907i −0.545064 0.457363i
\(383\) 6.39945 2.32921i 0.326997 0.119017i −0.173305 0.984868i \(-0.555445\pi\)
0.500302 + 0.865851i \(0.333222\pi\)
\(384\) 0.173648 + 0.984808i 0.00886145 + 0.0502558i
\(385\) 0.853226 4.83889i 0.0434844 0.246612i
\(386\) 4.27719 + 1.55677i 0.217703 + 0.0792375i
\(387\) −1.66637 2.88624i −0.0847066 0.146716i
\(388\) −3.50000 + 6.06218i −0.177686 + 0.307760i
\(389\) 5.19072 4.35553i 0.263180 0.220834i −0.501643 0.865075i \(-0.667271\pi\)
0.764823 + 0.644240i \(0.222826\pi\)
\(390\) 1.70574 1.43128i 0.0863734 0.0724758i
\(391\) 6.83275 11.8347i 0.345547 0.598505i
\(392\) 2.42262 + 4.19610i 0.122361 + 0.211935i
\(393\) −15.2490 5.55017i −0.769209 0.279969i
\(394\) −1.33409 + 7.56602i −0.0672106 + 0.381170i
\(395\) 0.275845 + 1.56439i 0.0138792 + 0.0787131i
\(396\) −3.14543 + 1.14484i −0.158064 + 0.0575305i
\(397\) 22.2861 + 18.7003i 1.11851 + 0.938540i 0.998528 0.0542368i \(-0.0172726\pi\)
0.119980 + 0.992776i \(0.461717\pi\)
\(398\) −11.0787 −0.555326
\(399\) 3.11856 + 5.58705i 0.156123 + 0.279702i
\(400\) 1.00000 0.0500000
\(401\) −2.77513 2.32861i −0.138583 0.116285i 0.570861 0.821047i \(-0.306610\pi\)
−0.709444 + 0.704762i \(0.751054\pi\)
\(402\) −13.1236 + 4.77660i −0.654546 + 0.238235i
\(403\) 4.17617 + 23.6843i 0.208030 + 1.17980i
\(404\) −0.860967 + 4.88279i −0.0428347 + 0.242928i
\(405\) 0.939693 + 0.342020i 0.0466937 + 0.0169951i
\(406\) −4.87211 8.43874i −0.241799 0.418808i
\(407\) 5.05825 8.76114i 0.250728 0.434274i
\(408\) −2.43969 + 2.04715i −0.120783 + 0.101349i
\(409\) −6.72849 + 5.64588i −0.332703 + 0.279171i −0.793800 0.608179i \(-0.791900\pi\)
0.461097 + 0.887350i \(0.347456\pi\)
\(410\) −1.56031 + 2.70253i −0.0770581 + 0.133469i
\(411\) 6.25150 + 10.8279i 0.308364 + 0.534101i
\(412\) 1.93242 + 0.703343i 0.0952034 + 0.0346512i
\(413\) −1.12449 + 6.37727i −0.0553323 + 0.313805i
\(414\) 0.745100 + 4.22567i 0.0366197 + 0.207680i
\(415\) 0.747626 0.272114i 0.0366995 0.0133575i
\(416\) −1.70574 1.43128i −0.0836306 0.0701744i
\(417\) 10.8949 0.533524
\(418\) 14.5890 + 0.211558i 0.713571 + 0.0103477i
\(419\) 27.5672 1.34674 0.673372 0.739304i \(-0.264845\pi\)
0.673372 + 0.739304i \(0.264845\pi\)
\(420\) 1.12449 + 0.943555i 0.0548693 + 0.0460408i
\(421\) −0.634285 + 0.230861i −0.0309132 + 0.0112515i −0.357430 0.933940i \(-0.616347\pi\)
0.326517 + 0.945191i \(0.394125\pi\)
\(422\) 1.35323 + 7.67453i 0.0658740 + 0.373590i
\(423\) −0.134285 + 0.761570i −0.00652918 + 0.0370288i
\(424\) 7.08512 + 2.57877i 0.344084 + 0.125236i
\(425\) 1.59240 + 2.75811i 0.0772426 + 0.133788i
\(426\) 4.24763 7.35710i 0.205798 0.356453i
\(427\) −7.53667 + 6.32402i −0.364725 + 0.306041i
\(428\) −0.737826 + 0.619109i −0.0356642 + 0.0299258i
\(429\) 3.72668 6.45480i 0.179926 0.311641i
\(430\) 1.66637 + 2.88624i 0.0803597 + 0.139187i
\(431\) 0.226682 + 0.0825054i 0.0109189 + 0.00397414i 0.347474 0.937690i \(-0.387040\pi\)
−0.336555 + 0.941664i \(0.609262\pi\)
\(432\) 0.173648 0.984808i 0.00835465 0.0473816i
\(433\) 5.10488 + 28.9512i 0.245325 + 1.39131i 0.819736 + 0.572741i \(0.194120\pi\)
−0.574411 + 0.818567i \(0.694769\pi\)
\(434\) −14.8983 + 5.42253i −0.715140 + 0.260290i
\(435\) 5.08512 + 4.26692i 0.243813 + 0.204583i
\(436\) 11.9436 0.571993
\(437\) 3.51455 18.3702i 0.168124 0.878768i
\(438\) −13.9094 −0.664618
\(439\) −20.3384 17.0660i −0.970700 0.814514i 0.0119602 0.999928i \(-0.496193\pi\)
−0.982660 + 0.185414i \(0.940637\pi\)
\(440\) 3.14543 1.14484i 0.149952 0.0545782i
\(441\) −0.841367 4.77163i −0.0400651 0.227220i
\(442\) 1.23143 6.98378i 0.0585731 0.332185i
\(443\) −29.6498 10.7916i −1.40870 0.512726i −0.477954 0.878385i \(-0.658621\pi\)
−0.930749 + 0.365659i \(0.880844\pi\)
\(444\) 1.51114 + 2.61738i 0.0717157 + 0.124215i
\(445\) −5.45084 + 9.44113i −0.258394 + 0.447552i
\(446\) −8.07011 + 6.77162i −0.382131 + 0.320646i
\(447\) −3.57919 + 3.00330i −0.169290 + 0.142051i
\(448\) 0.733956 1.27125i 0.0346761 0.0600608i
\(449\) 1.84477 + 3.19524i 0.0870601 + 0.150792i 0.906267 0.422705i \(-0.138919\pi\)
−0.819207 + 0.573498i \(0.805586\pi\)
\(450\) −0.939693 0.342020i −0.0442975 0.0161230i
\(451\) −1.81386 + 10.2869i −0.0854115 + 0.484393i
\(452\) −2.50980 14.2338i −0.118051 0.669501i
\(453\) −8.75624 + 3.18701i −0.411404 + 0.149739i
\(454\) −17.5765 14.7484i −0.824906 0.692178i
\(455\) −3.26857 −0.153233
\(456\) −2.23396 + 3.74292i −0.104615 + 0.175278i
\(457\) −7.69728 −0.360064 −0.180032 0.983661i \(-0.557620\pi\)
−0.180032 + 0.983661i \(0.557620\pi\)
\(458\) −4.84730 4.06736i −0.226499 0.190055i
\(459\) 2.99273 1.08926i 0.139688 0.0508425i
\(460\) −0.745100 4.22567i −0.0347405 0.197023i
\(461\) 2.68938 15.2522i 0.125257 0.710367i −0.855898 0.517144i \(-0.826995\pi\)
0.981155 0.193222i \(-0.0618939\pi\)
\(462\) 4.61721 + 1.68053i 0.214812 + 0.0781852i
\(463\) −1.17483 2.03487i −0.0545990 0.0945682i 0.837434 0.546538i \(-0.184055\pi\)
−0.892033 + 0.451970i \(0.850721\pi\)
\(464\) 3.31908 5.74881i 0.154084 0.266882i
\(465\) 8.27379 6.94253i 0.383688 0.321952i
\(466\) 8.13610 6.82700i 0.376897 0.316254i
\(467\) 18.7913 32.5475i 0.869559 1.50612i 0.00711073 0.999975i \(-0.497737\pi\)
0.862448 0.506145i \(-0.168930\pi\)
\(468\) 1.11334 + 1.92836i 0.0514642 + 0.0891386i
\(469\) 19.2643 + 7.01163i 0.889542 + 0.323767i
\(470\) 0.134285 0.761570i 0.00619412 0.0351286i
\(471\) 3.82682 + 21.7030i 0.176330 + 1.00002i
\(472\) −4.14543 + 1.50881i −0.190809 + 0.0694487i
\(473\) 8.54576 + 7.17074i 0.392934 + 0.329711i
\(474\) −1.58853 −0.0729634
\(475\) 3.29813 + 2.84997i 0.151329 + 0.130765i
\(476\) 4.67499 0.214278
\(477\) −5.77584 4.84651i −0.264458 0.221906i
\(478\) 11.6976 4.25757i 0.535035 0.194737i
\(479\) −2.46404 13.9743i −0.112585 0.638501i −0.987918 0.154980i \(-0.950469\pi\)
0.875333 0.483521i \(-0.160642\pi\)
\(480\) −0.173648 + 0.984808i −0.00792592 + 0.0449501i
\(481\) −6.32383 2.30168i −0.288342 0.104948i
\(482\) 6.13176 + 10.6205i 0.279294 + 0.483751i
\(483\) 3.14930 5.45475i 0.143298 0.248200i
\(484\) 0.156574 0.131381i 0.00711700 0.00597187i
\(485\) −5.36231 + 4.49951i −0.243490 + 0.204312i
\(486\) −0.500000 + 0.866025i −0.0226805 + 0.0392837i
\(487\) −2.58260 4.47319i −0.117029 0.202699i 0.801560 0.597914i \(-0.204004\pi\)
−0.918589 + 0.395215i \(0.870670\pi\)
\(488\) −6.29813 2.29233i −0.285103 0.103769i
\(489\) −1.48886 + 8.44372i −0.0673284 + 0.381838i
\(490\) 0.841367 + 4.77163i 0.0380091 + 0.215560i
\(491\) 11.0505 4.02206i 0.498702 0.181513i −0.0804079 0.996762i \(-0.525622\pi\)
0.579110 + 0.815249i \(0.303400\pi\)
\(492\) −2.39053 2.00589i −0.107773 0.0904326i
\(493\) 21.1411 0.952149
\(494\) −1.54664 9.58186i −0.0695865 0.431108i
\(495\) −3.34730 −0.150450
\(496\) −8.27379 6.94253i −0.371504 0.311729i
\(497\) −11.7182 + 4.26509i −0.525634 + 0.191315i
\(498\) 0.138156 + 0.783520i 0.00619091 + 0.0351104i
\(499\) 5.43629 30.8307i 0.243362 1.38017i −0.580905 0.813971i \(-0.697301\pi\)
0.824267 0.566202i \(-0.191588\pi\)
\(500\) 0.939693 + 0.342020i 0.0420243 + 0.0152956i
\(501\) −6.55690 11.3569i −0.292941 0.507388i
\(502\) −6.39053 + 11.0687i −0.285223 + 0.494021i
\(503\) 19.4520 16.3222i 0.867323 0.727770i −0.0962099 0.995361i \(-0.530672\pi\)
0.963533 + 0.267591i \(0.0862276\pi\)
\(504\) −1.12449 + 0.943555i −0.0500885 + 0.0420293i
\(505\) −2.47906 + 4.29385i −0.110317 + 0.191074i
\(506\) −7.18139 12.4385i −0.319252 0.552960i
\(507\) 7.55690 + 2.75049i 0.335614 + 0.122153i
\(508\) −3.28446 + 18.6271i −0.145724 + 0.826445i
\(509\) −6.11112 34.6579i −0.270871 1.53618i −0.751780 0.659413i \(-0.770805\pi\)
0.480910 0.876770i \(-0.340306\pi\)
\(510\) −2.99273 + 1.08926i −0.132520 + 0.0482334i
\(511\) 15.6409 + 13.1243i 0.691914 + 0.580585i
\(512\) 1.00000 0.0441942
\(513\) 3.37939 2.75314i 0.149204 0.121554i
\(514\) 3.74691 0.165269
\(515\) 1.57532 + 1.32185i 0.0694170 + 0.0582478i
\(516\) −3.13176 + 1.13987i −0.137868 + 0.0501799i
\(517\) −0.449493 2.54920i −0.0197687 0.112114i
\(518\) 0.770382 4.36905i 0.0338486 0.191965i
\(519\) 2.05051 + 0.746324i 0.0900073 + 0.0327600i
\(520\) −1.11334 1.92836i −0.0488232 0.0845643i
\(521\) 5.37164 9.30396i 0.235336 0.407614i −0.724034 0.689764i \(-0.757714\pi\)
0.959370 + 0.282150i \(0.0910476\pi\)
\(522\) −5.08512 + 4.26692i −0.222570 + 0.186758i
\(523\) 20.8066 17.4588i 0.909809 0.763420i −0.0622739 0.998059i \(-0.519835\pi\)
0.972083 + 0.234639i \(0.0753908\pi\)
\(524\) −8.11381 + 14.0535i −0.354453 + 0.613931i
\(525\) 0.733956 + 1.27125i 0.0320324 + 0.0554818i
\(526\) 11.9474 + 4.34851i 0.520933 + 0.189604i
\(527\) 5.97313 33.8753i 0.260193 1.47563i
\(528\) 0.581252 + 3.29644i 0.0252957 + 0.143459i
\(529\) 4.31180 1.56937i 0.187470 0.0682334i
\(530\) 5.77584 + 4.84651i 0.250887 + 0.210519i
\(531\) 4.41147 0.191442
\(532\) 6.04370 2.10100i 0.262028 0.0910898i
\(533\) 6.94862 0.300978
\(534\) −8.35117 7.00746i −0.361390 0.303242i
\(535\) −0.905078 + 0.329421i −0.0391299 + 0.0142421i
\(536\) 2.42514 + 13.7537i 0.104750 + 0.594068i
\(537\) 3.54664 20.1140i 0.153049 0.867982i
\(538\) 15.0890 + 5.49194i 0.650533 + 0.236775i
\(539\) 8.10922 + 14.0456i 0.349289 + 0.604986i
\(540\) 0.500000 0.866025i 0.0215166 0.0372678i
\(541\) −9.69846 + 8.13798i −0.416969 + 0.349879i −0.827009 0.562189i \(-0.809959\pi\)
0.410039 + 0.912068i \(0.365515\pi\)
\(542\) 6.76264 5.67453i 0.290480 0.243742i
\(543\) 10.3059 17.8503i 0.442267 0.766030i
\(544\) 1.59240 + 2.75811i 0.0682734 + 0.118253i
\(545\) 11.2233 + 4.08494i 0.480752 + 0.174980i
\(546\) 0.567581 3.21891i 0.0242902 0.137757i
\(547\) 2.96657 + 16.8242i 0.126841 + 0.719352i 0.980197 + 0.198024i \(0.0634523\pi\)
−0.853356 + 0.521329i \(0.825437\pi\)
\(548\) 11.7490 4.27628i 0.501891 0.182673i
\(549\) 5.13429 + 4.30818i 0.219126 + 0.183869i
\(550\) 3.34730 0.142729
\(551\) 27.3307 9.50108i 1.16433 0.404760i
\(552\) 4.29086 0.182631
\(553\) 1.78627 + 1.49886i 0.0759601 + 0.0637381i
\(554\) 2.55556 0.930148i 0.108575 0.0395182i
\(555\) 0.524815 + 2.97637i 0.0222772 + 0.126340i
\(556\) 1.89187 10.7293i 0.0802333 0.455026i
\(557\) −16.9611 6.17334i −0.718665 0.261573i −0.0433061 0.999062i \(-0.513789\pi\)
−0.675359 + 0.737489i \(0.736011\pi\)
\(558\) 5.40033 + 9.35365i 0.228614 + 0.395971i
\(559\) 3.71048 6.42675i 0.156937 0.271822i
\(560\) 1.12449 0.943555i 0.0475182 0.0398725i
\(561\) −8.16637 + 6.85240i −0.344785 + 0.289309i
\(562\) 12.9572 22.4426i 0.546568 0.946683i
\(563\) 18.9718 + 32.8601i 0.799565 + 1.38489i 0.919899 + 0.392154i \(0.128270\pi\)
−0.120334 + 0.992733i \(0.538397\pi\)
\(564\) 0.726682 + 0.264490i 0.0305988 + 0.0111371i
\(565\) 2.50980 14.2338i 0.105588 0.598820i
\(566\) −4.17412 23.6726i −0.175451 0.995033i
\(567\) 1.37939 0.502055i 0.0579287 0.0210843i
\(568\) −6.50774 5.46064i −0.273059 0.229123i
\(569\) 11.5253 0.483165 0.241582 0.970380i \(-0.422334\pi\)
0.241582 + 0.970380i \(0.422334\pi\)
\(570\) −3.37939 + 2.75314i −0.141547 + 0.115316i
\(571\) −23.9932 −1.00408 −0.502042 0.864843i \(-0.667418\pi\)
−0.502042 + 0.864843i \(0.667418\pi\)
\(572\) −5.70961 4.79093i −0.238731 0.200319i
\(573\) 13.0680 4.75638i 0.545926 0.198701i
\(574\) 0.795445 + 4.51119i 0.0332012 + 0.188294i
\(575\) 0.745100 4.22567i 0.0310728 0.176223i
\(576\) −0.939693 0.342020i −0.0391539 0.0142508i
\(577\) −4.19119 7.25935i −0.174481 0.302211i 0.765500 0.643436i \(-0.222492\pi\)
−0.939982 + 0.341225i \(0.889158\pi\)
\(578\) 3.42855 5.93842i 0.142609 0.247006i
\(579\) −3.48680 + 2.92577i −0.144906 + 0.121591i
\(580\) 5.08512 4.26692i 0.211148 0.177174i
\(581\) 0.583940 1.01141i 0.0242259 0.0419605i
\(582\) −3.50000 6.06218i −0.145080 0.251285i
\(583\) 23.7160 + 8.63192i 0.982217 + 0.357498i
\(584\) −2.41534 + 13.6981i −0.0999477 + 0.566831i
\(585\) 0.386659 + 2.19285i 0.0159864 + 0.0906633i
\(586\) −7.93717 + 2.88889i −0.327881 + 0.119339i
\(587\) 11.2337 + 9.42620i 0.463665 + 0.389061i 0.844477 0.535591i \(-0.179911\pi\)
−0.380813 + 0.924652i \(0.624356\pi\)
\(588\) −4.84524 −0.199814
\(589\) −7.50206 46.4774i −0.309117 1.91507i
\(590\) −4.41147 −0.181618
\(591\) −5.88532 4.93837i −0.242090 0.203137i
\(592\) 2.84002 1.03368i 0.116724 0.0424841i
\(593\) 6.76563 + 38.3698i 0.277831 + 1.57566i 0.729822 + 0.683637i \(0.239603\pi\)
−0.451991 + 0.892023i \(0.649286\pi\)
\(594\) 0.581252 3.29644i 0.0238491 0.135255i
\(595\) 4.39306 + 1.59894i 0.180098 + 0.0655502i
\(596\) 2.33615 + 4.04633i 0.0956925 + 0.165744i
\(597\) 5.53936 9.59446i 0.226711 0.392675i
\(598\) −7.31908 + 6.14144i −0.299299 + 0.251142i
\(599\) −21.7781 + 18.2740i −0.889830 + 0.746656i −0.968176 0.250270i \(-0.919481\pi\)
0.0783461 + 0.996926i \(0.475036\pi\)
\(600\) −0.500000 + 0.866025i −0.0204124 + 0.0353553i
\(601\) 20.0501 + 34.7278i 0.817861 + 1.41658i 0.907256 + 0.420580i \(0.138173\pi\)
−0.0893951 + 0.995996i \(0.528493\pi\)
\(602\) 4.59714 + 1.67322i 0.187366 + 0.0681955i
\(603\) 2.42514 13.7537i 0.0987595 0.560093i
\(604\) 1.61809 + 9.17664i 0.0658391 + 0.373392i
\(605\) 0.192066 0.0699065i 0.00780861 0.00284210i
\(606\) −3.79813 3.18701i −0.154289 0.129464i
\(607\) −20.0182 −0.812512 −0.406256 0.913759i \(-0.633166\pi\)
−0.406256 + 0.913759i \(0.633166\pi\)
\(608\) 3.29813 + 2.84997i 0.133757 + 0.115581i
\(609\) 9.74422 0.394856
\(610\) −5.13429 4.30818i −0.207881 0.174433i
\(611\) −1.61809 + 0.588936i −0.0654609 + 0.0238258i
\(612\) −0.553033 3.13641i −0.0223551 0.126782i
\(613\) 1.21466 6.88868i 0.0490597 0.278231i −0.950403 0.311022i \(-0.899329\pi\)
0.999462 + 0.0327913i \(0.0104397\pi\)
\(614\) −26.9971 9.82613i −1.08951 0.396550i
\(615\) −1.56031 2.70253i −0.0629177 0.108977i
\(616\) 2.45677 4.25524i 0.0989860 0.171449i
\(617\) 27.2704 22.8826i 1.09786 0.921217i 0.100585 0.994929i \(-0.467929\pi\)
0.997280 + 0.0737110i \(0.0234843\pi\)
\(618\) −1.57532 + 1.32185i −0.0633687 + 0.0531727i
\(619\) −8.40167 + 14.5521i −0.337692 + 0.584899i −0.983998 0.178179i \(-0.942979\pi\)
0.646306 + 0.763078i \(0.276313\pi\)
\(620\) −5.40033 9.35365i −0.216882 0.375651i
\(621\) −4.03209 1.46756i −0.161802 0.0588912i
\(622\) 1.63516 9.27347i 0.0655641 0.371832i
\(623\) 2.77884 + 15.7596i 0.111332 + 0.631394i
\(624\) 2.09240 0.761570i 0.0837629 0.0304872i
\(625\) 0.766044 + 0.642788i 0.0306418 + 0.0257115i
\(626\) −26.4124 −1.05565
\(627\) −7.47771 + 12.5287i −0.298631 + 0.500346i
\(628\) 22.0378 0.879403
\(629\) 7.37346 + 6.18706i 0.293999 + 0.246694i
\(630\) −1.37939 + 0.502055i −0.0549560 + 0.0200024i
\(631\) −7.57516 42.9609i −0.301562 1.71025i −0.639260 0.768991i \(-0.720759\pi\)
0.337698 0.941255i \(-0.390352\pi\)
\(632\) −0.275845 + 1.56439i −0.0109725 + 0.0622282i
\(633\) −7.32295 2.66534i −0.291061 0.105938i
\(634\) −9.99067 17.3043i −0.396780 0.687243i
\(635\) −9.45723 + 16.3804i −0.375299 + 0.650037i
\(636\) −5.77584 + 4.84651i −0.229027 + 0.192177i
\(637\) 8.26470 6.93491i 0.327459 0.274771i
\(638\) 11.1099 19.2430i 0.439847 0.761837i
\(639\) 4.24763 + 7.35710i 0.168033 + 0.291043i
\(640\) 0.939693 + 0.342020i 0.0371446 + 0.0135195i
\(641\) 5.50387 31.2140i 0.217390 1.23288i −0.659321 0.751861i \(-0.729156\pi\)
0.876711 0.481017i \(-0.159733\pi\)
\(642\) −0.167252 0.948531i −0.00660089 0.0374355i
\(643\) 20.1677 7.34045i 0.795337 0.289479i 0.0877843 0.996140i \(-0.472021\pi\)
0.707553 + 0.706660i \(0.249799\pi\)
\(644\) −4.82501 4.04866i −0.190132 0.159540i
\(645\) −3.33275 −0.131227
\(646\) −2.60859 + 13.6349i −0.102634 + 0.536458i
\(647\) 30.0137 1.17996 0.589981 0.807417i \(-0.299135\pi\)
0.589981 + 0.807417i \(0.299135\pi\)
\(648\) 0.766044 + 0.642788i 0.0300931 + 0.0252511i
\(649\) −13.8760 + 5.05044i −0.544680 + 0.198247i
\(650\) −0.386659 2.19285i −0.0151660 0.0860108i
\(651\) 2.75309 15.6135i 0.107902 0.611943i
\(652\) 8.05690 + 2.93247i 0.315533 + 0.114845i
\(653\) 0.786112 + 1.36159i 0.0307629 + 0.0532829i 0.880997 0.473122i \(-0.156873\pi\)
−0.850234 + 0.526405i \(0.823540\pi\)
\(654\) −5.97178 + 10.3434i −0.233515 + 0.404460i
\(655\) −12.4311 + 10.4309i −0.485722 + 0.407569i
\(656\) −2.39053 + 2.00589i −0.0933345 + 0.0783169i
\(657\) 6.95471 12.0459i 0.271329 0.469956i
\(658\) −0.567581 0.983080i −0.0221266 0.0383244i
\(659\) −35.7276 13.0038i −1.39175 0.506556i −0.466031 0.884768i \(-0.654317\pi\)
−0.925719 + 0.378212i \(0.876539\pi\)
\(660\) −0.581252 + 3.29644i −0.0226252 + 0.128314i
\(661\) −3.91828 22.2217i −0.152403 0.864323i −0.961121 0.276126i \(-0.910949\pi\)
0.808718 0.588197i \(-0.200162\pi\)
\(662\) −23.1998 + 8.44404i −0.901686 + 0.328187i
\(663\) 5.43242 + 4.55834i 0.210978 + 0.177031i
\(664\) 0.795607 0.0308755
\(665\) 6.39780 + 0.0927760i 0.248096 + 0.00359770i
\(666\) −3.02229 −0.117111
\(667\) −21.8195 18.3088i −0.844856 0.708918i
\(668\) −12.3229 + 4.48519i −0.476789 + 0.173537i
\(669\) −1.82934 10.3747i −0.0707266 0.401110i
\(670\) −2.42514 + 13.7537i −0.0936915 + 0.531351i
\(671\) −21.0817 7.67312i −0.813851 0.296217i
\(672\) 0.733956 + 1.27125i 0.0283130 + 0.0490395i
\(673\) −2.88800 + 5.00217i −0.111324 + 0.192819i −0.916304 0.400482i \(-0.868843\pi\)
0.804980 + 0.593302i \(0.202176\pi\)
\(674\) 7.31315 6.13646i 0.281692 0.236368i
\(675\) 0.766044 0.642788i 0.0294851 0.0247409i
\(676\) 4.02094 6.96448i 0.154652 0.267865i
\(677\) 24.4167 + 42.2909i 0.938410 + 1.62537i 0.768438 + 0.639924i \(0.221034\pi\)
0.169971 + 0.985449i \(0.445632\pi\)
\(678\) 13.5817 + 4.94334i 0.521603 + 0.189848i
\(679\) −1.78430 + 10.1193i −0.0684752 + 0.388342i
\(680\) 0.553033 + 3.13641i 0.0212079 + 0.120276i
\(681\) 21.5608 7.84748i 0.826211 0.300716i
\(682\) −27.6948 23.2387i −1.06049 0.889856i
\(683\) −0.315836 −0.0120851 −0.00604257 0.999982i \(-0.501923\pi\)
−0.00604257 + 0.999982i \(0.501923\pi\)
\(684\) −2.12449 3.80612i −0.0812317 0.145531i
\(685\) 12.5030 0.477715
\(686\) 13.3198 + 11.1766i 0.508552 + 0.426726i
\(687\) 5.94609 2.16420i 0.226857 0.0825694i
\(688\) 0.578726 + 3.28212i 0.0220637 + 0.125130i
\(689\) 2.91534 16.5337i 0.111066 0.629885i
\(690\) 4.03209 + 1.46756i 0.153499 + 0.0558691i
\(691\) −8.34183 14.4485i −0.317338 0.549646i 0.662593 0.748979i \(-0.269456\pi\)
−0.979932 + 0.199333i \(0.936122\pi\)
\(692\) 1.09105 1.88976i 0.0414756 0.0718378i
\(693\) −3.76399 + 3.15836i −0.142982 + 0.119976i
\(694\) 16.0057 13.4304i 0.607567 0.509810i
\(695\) 5.44743 9.43523i 0.206633 0.357899i
\(696\) 3.31908 + 5.74881i 0.125809 + 0.217908i
\(697\) −9.33915 3.39917i −0.353745 0.128753i
\(698\) −5.61809 + 31.8618i −0.212648 + 1.20599i
\(699\) 1.84430 + 10.4596i 0.0697580 + 0.395617i
\(700\) 1.37939 0.502055i 0.0521359 0.0189759i
\(701\) 0.265329 + 0.222638i 0.0100213 + 0.00840891i 0.647785 0.761824i \(-0.275696\pi\)
−0.637763 + 0.770233i \(0.720140\pi\)
\(702\) −2.22668 −0.0840407
\(703\) 12.3127 + 4.68475i 0.464384 + 0.176689i
\(704\) 3.34730 0.126156
\(705\) 0.592396 + 0.497079i 0.0223109 + 0.0187211i
\(706\) 20.1138 7.32083i 0.756993 0.275523i
\(707\) 1.26382 + 7.16750i 0.0475310 + 0.269561i
\(708\) 0.766044 4.34445i 0.0287897 0.163275i
\(709\) 1.95842 + 0.712805i 0.0735498 + 0.0267700i 0.378533 0.925588i \(-0.376429\pi\)
−0.304983 + 0.952358i \(0.598651\pi\)
\(710\) −4.24763 7.35710i −0.159411 0.276107i
\(711\) 0.794263 1.37570i 0.0297872 0.0515929i
\(712\) −8.35117 + 7.00746i −0.312973 + 0.262616i
\(713\) −35.5016 + 29.7894i −1.32955 + 1.11562i
\(714\) −2.33750 + 4.04866i −0.0874786 + 0.151517i
\(715\) −3.72668 6.45480i −0.139370 0.241396i
\(716\) −19.1925 6.98551i −0.717259 0.261061i
\(717\) −2.16163 + 12.2592i −0.0807274 + 0.457828i
\(718\) 2.69934 + 15.3087i 0.100738 + 0.571316i
\(719\) −9.00134 + 3.27622i −0.335693 + 0.122182i −0.504367 0.863490i \(-0.668274\pi\)
0.168673 + 0.985672i \(0.446052\pi\)
\(720\) −0.766044 0.642788i −0.0285488 0.0239553i
\(721\) 3.01867 0.112421
\(722\) 2.75537 + 18.7991i 0.102544 + 0.699632i
\(723\) −12.2635 −0.456085
\(724\) −15.7895 13.2490i −0.586813 0.492394i
\(725\) 6.23783 2.27038i 0.231667 0.0843199i
\(726\) 0.0354925 + 0.201288i 0.00131725 + 0.00747049i
\(727\) −2.20146 + 12.4851i −0.0816475 + 0.463046i 0.916382 + 0.400304i \(0.131096\pi\)
−0.998030 + 0.0627417i \(0.980016\pi\)
\(728\) −3.07145 1.11792i −0.113836 0.0414328i
\(729\) −0.500000 0.866025i −0.0185185 0.0320750i
\(730\) −6.95471 + 12.0459i −0.257405 + 0.445839i
\(731\) −8.13088 + 6.82262i −0.300732 + 0.252344i
\(732\) 5.13429 4.30818i 0.189769 0.159235i
\(733\) −1.77672 + 3.07737i −0.0656247 + 0.113665i −0.896971 0.442090i \(-0.854237\pi\)
0.831346 + 0.555755i \(0.187571\pi\)
\(734\) 5.33140 + 9.23426i 0.196786 + 0.340843i
\(735\) −4.55303 1.65717i −0.167941 0.0611256i
\(736\) 0.745100 4.22567i 0.0274647 0.155760i
\(737\) 8.11768 + 46.0376i 0.299019 + 1.69582i
\(738\) 2.93242 1.06731i 0.107944 0.0392883i
\(739\) −39.6823 33.2974i −1.45974 1.22487i −0.925066 0.379805i \(-0.875991\pi\)
−0.534671 0.845060i \(-0.679565\pi\)
\(740\) 3.02229 0.111102
\(741\) 9.07145 + 3.45150i 0.333248 + 0.126794i
\(742\) 11.0678 0.406312
\(743\) 29.0822 + 24.4029i 1.06692 + 0.895254i 0.994770 0.102140i \(-0.0325689\pi\)
0.0721519 + 0.997394i \(0.477013\pi\)
\(744\) 10.1493 3.69404i 0.372091 0.135430i
\(745\) 0.811337 + 4.60132i 0.0297251 + 0.168579i
\(746\) −4.70068 + 26.6589i −0.172104 + 0.976052i
\(747\) −0.747626 0.272114i −0.0273542 0.00995612i
\(748\) 5.33022 + 9.23222i 0.194892 + 0.337563i
\(749\) −0.706919 + 1.22442i −0.0258303 + 0.0447393i
\(750\) −0.766044 + 0.642788i −0.0279720 + 0.0234713i
\(751\) 24.3214 20.4080i 0.887499 0.744700i −0.0802080 0.996778i \(-0.525558\pi\)
0.967707 + 0.252078i \(0.0811140\pi\)
\(752\) 0.386659 0.669713i 0.0141000 0.0244219i
\(753\) −6.39053 11.0687i −0.232884 0.403367i
\(754\) −13.8897 5.05542i −0.505831 0.184108i
\(755\) −1.61809 + 9.17664i −0.0588883 + 0.333972i
\(756\) −0.254900 1.44561i −0.00927063 0.0525763i
\(757\) −5.02007 + 1.82716i −0.182457 + 0.0664091i −0.431633 0.902049i \(-0.642063\pi\)
0.249176 + 0.968458i \(0.419840\pi\)
\(758\) −21.7121 18.2186i −0.788620 0.661731i
\(759\) 14.3628 0.521336
\(760\) 2.12449 + 3.80612i 0.0770632 + 0.138063i
\(761\) −15.7948 −0.572561 −0.286280 0.958146i \(-0.592419\pi\)
−0.286280 + 0.958146i \(0.592419\pi\)
\(762\) −14.4893 12.1580i −0.524893 0.440437i
\(763\) 16.4748 5.99633i 0.596427 0.217082i
\(764\) −2.41488 13.6955i −0.0873672 0.495484i
\(765\) 0.553033 3.13641i 0.0199950 0.113397i
\(766\) 6.39945 + 2.32921i 0.231222 + 0.0841578i