Properties

Label 570.2.u.h.271.1
Level $570$
Weight $2$
Character 570.271
Analytic conductor $4.551$
Analytic rank $0$
Dimension $6$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [570,2,Mod(61,570)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(570, base_ring=CyclotomicField(18))
 
chi = DirichletCharacter(H, H._module([0, 0, 2]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("570.61");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 570 = 2 \cdot 3 \cdot 5 \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 570.u (of order \(9\), degree \(6\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(4.55147291521\)
Analytic rank: \(0\)
Dimension: \(6\)
Coefficient field: \(\Q(\zeta_{18})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - x^{3} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{9}]$

Embedding invariants

Embedding label 271.1
Root \(-0.173648 + 0.984808i\) of defining polynomial
Character \(\chi\) \(=\) 570.271
Dual form 570.2.u.h.61.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.939693 + 0.342020i) q^{2} +(0.173648 - 0.984808i) q^{3} +(0.766044 - 0.642788i) q^{4} +(-0.766044 - 0.642788i) q^{5} +(0.173648 + 0.984808i) q^{6} +(2.43969 + 4.22567i) q^{7} +(-0.500000 + 0.866025i) q^{8} +(-0.939693 - 0.342020i) q^{9} +O(q^{10})\) \(q+(-0.939693 + 0.342020i) q^{2} +(0.173648 - 0.984808i) q^{3} +(0.766044 - 0.642788i) q^{4} +(-0.766044 - 0.642788i) q^{5} +(0.173648 + 0.984808i) q^{6} +(2.43969 + 4.22567i) q^{7} +(-0.500000 + 0.866025i) q^{8} +(-0.939693 - 0.342020i) q^{9} +(0.939693 + 0.342020i) q^{10} +(-2.26604 + 3.92490i) q^{11} +(-0.500000 - 0.866025i) q^{12} +(-0.205737 - 1.16679i) q^{13} +(-3.73783 - 3.13641i) q^{14} +(-0.766044 + 0.642788i) q^{15} +(0.173648 - 0.984808i) q^{16} +(-1.32635 + 0.482753i) q^{17} +1.00000 q^{18} +(-4.21688 + 1.10359i) q^{19} -1.00000 q^{20} +(4.58512 - 1.66885i) q^{21} +(0.786989 - 4.46324i) q^{22} +(-2.73783 + 2.29731i) q^{23} +(0.766044 + 0.642788i) q^{24} +(0.173648 + 0.984808i) q^{25} +(0.592396 + 1.02606i) q^{26} +(-0.500000 + 0.866025i) q^{27} +(4.58512 + 1.66885i) q^{28} +(-0.0393628 - 0.0143269i) q^{29} +(0.500000 - 0.866025i) q^{30} +(4.95084 + 8.57510i) q^{31} +(0.173648 + 0.984808i) q^{32} +(3.47178 + 2.91317i) q^{33} +(1.08125 - 0.907278i) q^{34} +(0.847296 - 4.80526i) q^{35} +(-0.939693 + 0.342020i) q^{36} +7.35504 q^{37} +(3.58512 - 2.47929i) q^{38} -1.18479 q^{39} +(0.939693 - 0.342020i) q^{40} +(-0.928548 + 5.26606i) q^{41} +(-3.73783 + 3.13641i) q^{42} +(-0.748970 - 0.628461i) q^{43} +(0.786989 + 4.46324i) q^{44} +(0.500000 + 0.866025i) q^{45} +(1.78699 - 3.09516i) q^{46} +(1.70574 + 0.620838i) q^{47} +(-0.939693 - 0.342020i) q^{48} +(-8.40420 + 14.5565i) q^{49} +(-0.500000 - 0.866025i) q^{50} +(0.245100 + 1.39003i) q^{51} +(-0.907604 - 0.761570i) q^{52} +(8.99660 - 7.54904i) q^{53} +(0.173648 - 0.984808i) q^{54} +(4.25877 - 1.55007i) q^{55} -4.87939 q^{56} +(0.354570 + 4.34445i) q^{57} +0.0418891 q^{58} +(1.15270 - 0.419550i) q^{59} +(-0.173648 + 0.984808i) q^{60} +(-5.20961 + 4.37138i) q^{61} +(-7.58512 - 6.36467i) q^{62} +(-0.847296 - 4.80526i) q^{63} +(-0.500000 - 0.866025i) q^{64} +(-0.592396 + 1.02606i) q^{65} +(-4.25877 - 1.55007i) q^{66} +(5.13176 + 1.86781i) q^{67} +(-0.705737 + 1.22237i) q^{68} +(1.78699 + 3.09516i) q^{69} +(0.847296 + 4.80526i) q^{70} +(-7.63429 - 6.40593i) q^{71} +(0.766044 - 0.642788i) q^{72} +(2.52956 - 14.3459i) q^{73} +(-6.91147 + 2.51557i) q^{74} +1.00000 q^{75} +(-2.52094 + 3.55596i) q^{76} -22.1138 q^{77} +(1.11334 - 0.405223i) q^{78} +(-1.25490 + 7.11689i) q^{79} +(-0.766044 + 0.642788i) q^{80} +(0.766044 + 0.642788i) q^{81} +(-0.928548 - 5.26606i) q^{82} +(4.26991 + 7.39571i) q^{83} +(2.43969 - 4.22567i) q^{84} +(1.32635 + 0.482753i) q^{85} +(0.918748 + 0.334397i) q^{86} +(-0.0209445 + 0.0362770i) q^{87} +(-2.26604 - 3.92490i) q^{88} +(0.295607 + 1.67647i) q^{89} +(-0.766044 - 0.642788i) q^{90} +(4.42855 - 3.71599i) q^{91} +(-0.620615 + 3.51968i) q^{92} +(9.30453 - 3.38657i) q^{93} -1.81521 q^{94} +(3.93969 + 1.86516i) q^{95} +1.00000 q^{96} +(-6.57785 + 2.39414i) q^{97} +(2.91875 - 16.5530i) q^{98} +(3.47178 - 2.91317i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q + 9 q^{7} - 3 q^{8}+O(q^{10}) \) Copy content Toggle raw display \( 6 q + 9 q^{7} - 3 q^{8} - 9 q^{11} - 3 q^{12} + 9 q^{13} - 3 q^{14} - 9 q^{17} + 6 q^{18} - 9 q^{19} - 6 q^{20} + 6 q^{21} - 3 q^{22} + 3 q^{23} - 3 q^{27} + 6 q^{28} - 9 q^{29} + 3 q^{30} + 18 q^{31} + 6 q^{33} + 9 q^{34} + 3 q^{35} - 6 q^{37} - 6 q^{41} - 3 q^{42} + 21 q^{43} - 3 q^{44} + 3 q^{45} + 3 q^{46} - 12 q^{49} - 3 q^{50} - 9 q^{52} + 12 q^{53} + 3 q^{55} - 18 q^{56} + 18 q^{57} - 6 q^{58} + 9 q^{59} + 3 q^{61} - 24 q^{62} - 3 q^{63} - 3 q^{64} - 3 q^{66} + 36 q^{67} + 6 q^{68} + 3 q^{69} + 3 q^{70} - 36 q^{71} + 21 q^{73} - 21 q^{74} + 6 q^{75} - 12 q^{76} - 60 q^{77} - 9 q^{79} - 6 q^{82} - 3 q^{83} + 9 q^{84} + 9 q^{85} + 3 q^{86} + 3 q^{87} - 9 q^{88} + 3 q^{89} + 27 q^{91} - 15 q^{92} + 3 q^{93} - 18 q^{94} + 18 q^{95} + 6 q^{96} + 15 q^{98} + 6 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/570\mathbb{Z}\right)^\times\).

\(n\) \(191\) \(211\) \(457\)
\(\chi(n)\) \(1\) \(e\left(\frac{8}{9}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.939693 + 0.342020i −0.664463 + 0.241845i
\(3\) 0.173648 0.984808i 0.100256 0.568579i
\(4\) 0.766044 0.642788i 0.383022 0.321394i
\(5\) −0.766044 0.642788i −0.342585 0.287463i
\(6\) 0.173648 + 0.984808i 0.0708916 + 0.402046i
\(7\) 2.43969 + 4.22567i 0.922117 + 1.59715i 0.796133 + 0.605121i \(0.206875\pi\)
0.125984 + 0.992032i \(0.459791\pi\)
\(8\) −0.500000 + 0.866025i −0.176777 + 0.306186i
\(9\) −0.939693 0.342020i −0.313231 0.114007i
\(10\) 0.939693 + 0.342020i 0.297157 + 0.108156i
\(11\) −2.26604 + 3.92490i −0.683238 + 1.18340i 0.290749 + 0.956799i \(0.406096\pi\)
−0.973987 + 0.226604i \(0.927238\pi\)
\(12\) −0.500000 0.866025i −0.144338 0.250000i
\(13\) −0.205737 1.16679i −0.0570612 0.323610i 0.942894 0.333093i \(-0.108092\pi\)
−0.999955 + 0.00948328i \(0.996981\pi\)
\(14\) −3.73783 3.13641i −0.998976 0.838240i
\(15\) −0.766044 + 0.642788i −0.197792 + 0.165967i
\(16\) 0.173648 0.984808i 0.0434120 0.246202i
\(17\) −1.32635 + 0.482753i −0.321688 + 0.117085i −0.497816 0.867282i \(-0.665865\pi\)
0.176129 + 0.984367i \(0.443642\pi\)
\(18\) 1.00000 0.235702
\(19\) −4.21688 + 1.10359i −0.967419 + 0.253181i
\(20\) −1.00000 −0.223607
\(21\) 4.58512 1.66885i 1.00056 0.364172i
\(22\) 0.786989 4.46324i 0.167787 0.951565i
\(23\) −2.73783 + 2.29731i −0.570876 + 0.479022i −0.881937 0.471368i \(-0.843760\pi\)
0.311060 + 0.950390i \(0.399316\pi\)
\(24\) 0.766044 + 0.642788i 0.156368 + 0.131208i
\(25\) 0.173648 + 0.984808i 0.0347296 + 0.196962i
\(26\) 0.592396 + 1.02606i 0.116178 + 0.201227i
\(27\) −0.500000 + 0.866025i −0.0962250 + 0.166667i
\(28\) 4.58512 + 1.66885i 0.866507 + 0.315383i
\(29\) −0.0393628 0.0143269i −0.00730950 0.00266044i 0.338363 0.941016i \(-0.390127\pi\)
−0.345672 + 0.938355i \(0.612349\pi\)
\(30\) 0.500000 0.866025i 0.0912871 0.158114i
\(31\) 4.95084 + 8.57510i 0.889197 + 1.54013i 0.840827 + 0.541304i \(0.182069\pi\)
0.0483697 + 0.998830i \(0.484597\pi\)
\(32\) 0.173648 + 0.984808i 0.0306970 + 0.174091i
\(33\) 3.47178 + 2.91317i 0.604360 + 0.507118i
\(34\) 1.08125 0.907278i 0.185433 0.155597i
\(35\) 0.847296 4.80526i 0.143219 0.812237i
\(36\) −0.939693 + 0.342020i −0.156615 + 0.0570034i
\(37\) 7.35504 1.20916 0.604580 0.796544i \(-0.293341\pi\)
0.604580 + 0.796544i \(0.293341\pi\)
\(38\) 3.58512 2.47929i 0.581584 0.402195i
\(39\) −1.18479 −0.189719
\(40\) 0.939693 0.342020i 0.148578 0.0540781i
\(41\) −0.928548 + 5.26606i −0.145015 + 0.822420i 0.822340 + 0.568996i \(0.192668\pi\)
−0.967355 + 0.253424i \(0.918443\pi\)
\(42\) −3.73783 + 3.13641i −0.576759 + 0.483958i
\(43\) −0.748970 0.628461i −0.114217 0.0958394i 0.583890 0.811832i \(-0.301530\pi\)
−0.698107 + 0.715993i \(0.745974\pi\)
\(44\) 0.786989 + 4.46324i 0.118643 + 0.672858i
\(45\) 0.500000 + 0.866025i 0.0745356 + 0.129099i
\(46\) 1.78699 3.09516i 0.263477 0.456356i
\(47\) 1.70574 + 0.620838i 0.248807 + 0.0905585i 0.463413 0.886142i \(-0.346625\pi\)
−0.214606 + 0.976701i \(0.568847\pi\)
\(48\) −0.939693 0.342020i −0.135633 0.0493664i
\(49\) −8.40420 + 14.5565i −1.20060 + 2.07950i
\(50\) −0.500000 0.866025i −0.0707107 0.122474i
\(51\) 0.245100 + 1.39003i 0.0343209 + 0.194643i
\(52\) −0.907604 0.761570i −0.125862 0.105611i
\(53\) 8.99660 7.54904i 1.23578 1.03694i 0.237935 0.971281i \(-0.423529\pi\)
0.997842 0.0656595i \(-0.0209151\pi\)
\(54\) 0.173648 0.984808i 0.0236305 0.134015i
\(55\) 4.25877 1.55007i 0.574252 0.209011i
\(56\) −4.87939 −0.652035
\(57\) 0.354570 + 4.34445i 0.0469640 + 0.575437i
\(58\) 0.0418891 0.00550030
\(59\) 1.15270 0.419550i 0.150069 0.0546207i −0.265893 0.964002i \(-0.585667\pi\)
0.415963 + 0.909382i \(0.363445\pi\)
\(60\) −0.173648 + 0.984808i −0.0224179 + 0.127138i
\(61\) −5.20961 + 4.37138i −0.667022 + 0.559698i −0.912182 0.409785i \(-0.865604\pi\)
0.245160 + 0.969483i \(0.421159\pi\)
\(62\) −7.58512 6.36467i −0.963311 0.808314i
\(63\) −0.847296 4.80526i −0.106749 0.605405i
\(64\) −0.500000 0.866025i −0.0625000 0.108253i
\(65\) −0.592396 + 1.02606i −0.0734777 + 0.127267i
\(66\) −4.25877 1.55007i −0.524218 0.190800i
\(67\) 5.13176 + 1.86781i 0.626944 + 0.228189i 0.635901 0.771771i \(-0.280629\pi\)
−0.00895655 + 0.999960i \(0.502851\pi\)
\(68\) −0.705737 + 1.22237i −0.0855832 + 0.148234i
\(69\) 1.78699 + 3.09516i 0.215128 + 0.372613i
\(70\) 0.847296 + 4.80526i 0.101271 + 0.574338i
\(71\) −7.63429 6.40593i −0.906023 0.760244i 0.0653353 0.997863i \(-0.479188\pi\)
−0.971358 + 0.237620i \(0.923633\pi\)
\(72\) 0.766044 0.642788i 0.0902792 0.0757532i
\(73\) 2.52956 14.3459i 0.296063 1.67906i −0.366788 0.930305i \(-0.619542\pi\)
0.662851 0.748752i \(-0.269346\pi\)
\(74\) −6.91147 + 2.51557i −0.803443 + 0.292429i
\(75\) 1.00000 0.115470
\(76\) −2.52094 + 3.55596i −0.289172 + 0.407896i
\(77\) −22.1138 −2.52010
\(78\) 1.11334 0.405223i 0.126061 0.0458825i
\(79\) −1.25490 + 7.11689i −0.141187 + 0.800713i 0.829162 + 0.559008i \(0.188818\pi\)
−0.970350 + 0.241705i \(0.922293\pi\)
\(80\) −0.766044 + 0.642788i −0.0856464 + 0.0718658i
\(81\) 0.766044 + 0.642788i 0.0851160 + 0.0714208i
\(82\) −0.928548 5.26606i −0.102541 0.581539i
\(83\) 4.26991 + 7.39571i 0.468684 + 0.811785i 0.999359 0.0357907i \(-0.0113950\pi\)
−0.530675 + 0.847575i \(0.678062\pi\)
\(84\) 2.43969 4.22567i 0.266192 0.461059i
\(85\) 1.32635 + 0.482753i 0.143863 + 0.0523619i
\(86\) 0.918748 + 0.334397i 0.0990712 + 0.0360590i
\(87\) −0.0209445 + 0.0362770i −0.00224549 + 0.00388930i
\(88\) −2.26604 3.92490i −0.241561 0.418396i
\(89\) 0.295607 + 1.67647i 0.0313343 + 0.177706i 0.996458 0.0840872i \(-0.0267974\pi\)
−0.965124 + 0.261793i \(0.915686\pi\)
\(90\) −0.766044 0.642788i −0.0807482 0.0677558i
\(91\) 4.42855 3.71599i 0.464238 0.389542i
\(92\) −0.620615 + 3.51968i −0.0647036 + 0.366952i
\(93\) 9.30453 3.38657i 0.964835 0.351171i
\(94\) −1.81521 −0.187224
\(95\) 3.93969 + 1.86516i 0.404204 + 0.191361i
\(96\) 1.00000 0.102062
\(97\) −6.57785 + 2.39414i −0.667879 + 0.243088i −0.653635 0.756810i \(-0.726757\pi\)
−0.0142448 + 0.999899i \(0.504534\pi\)
\(98\) 2.91875 16.5530i 0.294838 1.67211i
\(99\) 3.47178 2.91317i 0.348927 0.292785i
\(100\) 0.766044 + 0.642788i 0.0766044 + 0.0642788i
\(101\) −0.243756 1.38241i −0.0242546 0.137555i 0.970276 0.242002i \(-0.0778039\pi\)
−0.994530 + 0.104447i \(0.966693\pi\)
\(102\) −0.705737 1.22237i −0.0698784 0.121033i
\(103\) 5.55303 9.61814i 0.547157 0.947703i −0.451311 0.892367i \(-0.649044\pi\)
0.998468 0.0553364i \(-0.0176231\pi\)
\(104\) 1.11334 + 0.405223i 0.109172 + 0.0397354i
\(105\) −4.58512 1.66885i −0.447462 0.162863i
\(106\) −5.87211 + 10.1708i −0.570350 + 0.987875i
\(107\) 2.92262 + 5.06212i 0.282540 + 0.489374i 0.972010 0.234941i \(-0.0754896\pi\)
−0.689470 + 0.724315i \(0.742156\pi\)
\(108\) 0.173648 + 0.984808i 0.0167093 + 0.0947632i
\(109\) 2.21688 + 1.86018i 0.212339 + 0.178173i 0.742754 0.669565i \(-0.233519\pi\)
−0.530415 + 0.847738i \(0.677964\pi\)
\(110\) −3.47178 + 2.91317i −0.331021 + 0.277760i
\(111\) 1.27719 7.24330i 0.121225 0.687503i
\(112\) 4.58512 1.66885i 0.433253 0.157691i
\(113\) −12.3696 −1.16363 −0.581816 0.813320i \(-0.697658\pi\)
−0.581816 + 0.813320i \(0.697658\pi\)
\(114\) −1.81908 3.96118i −0.170372 0.370999i
\(115\) 3.57398 0.333275
\(116\) −0.0393628 + 0.0143269i −0.00365475 + 0.00133022i
\(117\) −0.205737 + 1.16679i −0.0190204 + 0.107870i
\(118\) −0.939693 + 0.788496i −0.0865057 + 0.0725869i
\(119\) −5.27584 4.42696i −0.483636 0.405819i
\(120\) −0.173648 0.984808i −0.0158518 0.0899002i
\(121\) −4.76991 8.26173i −0.433629 0.751067i
\(122\) 3.40033 5.88954i 0.307851 0.533214i
\(123\) 5.02481 + 1.82888i 0.453072 + 0.164905i
\(124\) 9.30453 + 3.38657i 0.835571 + 0.304123i
\(125\) 0.500000 0.866025i 0.0447214 0.0774597i
\(126\) 2.43969 + 4.22567i 0.217345 + 0.376453i
\(127\) 0.195470 + 1.10857i 0.0173452 + 0.0983693i 0.992251 0.124247i \(-0.0396515\pi\)
−0.974906 + 0.222616i \(0.928540\pi\)
\(128\) 0.766044 + 0.642788i 0.0677094 + 0.0568149i
\(129\) −0.748970 + 0.628461i −0.0659432 + 0.0553329i
\(130\) 0.205737 1.16679i 0.0180443 0.102335i
\(131\) 20.7246 7.54315i 1.81072 0.659048i 0.813752 0.581212i \(-0.197421\pi\)
0.996966 0.0778361i \(-0.0248011\pi\)
\(132\) 4.53209 0.394468
\(133\) −14.9513 15.1267i −1.29644 1.31165i
\(134\) −5.46110 −0.471768
\(135\) 0.939693 0.342020i 0.0808759 0.0294364i
\(136\) 0.245100 1.39003i 0.0210171 0.119194i
\(137\) 1.45471 1.22064i 0.124284 0.104287i −0.578527 0.815663i \(-0.696372\pi\)
0.702811 + 0.711376i \(0.251928\pi\)
\(138\) −2.73783 2.29731i −0.233059 0.195560i
\(139\) −4.00727 22.7264i −0.339893 1.92763i −0.372210 0.928149i \(-0.621400\pi\)
0.0323170 0.999478i \(-0.489711\pi\)
\(140\) −2.43969 4.22567i −0.206192 0.357134i
\(141\) 0.907604 1.57202i 0.0764340 0.132388i
\(142\) 9.36484 + 3.40852i 0.785880 + 0.286037i
\(143\) 5.04576 + 1.83651i 0.421948 + 0.153576i
\(144\) −0.500000 + 0.866025i −0.0416667 + 0.0721688i
\(145\) 0.0209445 + 0.0362770i 0.00173935 + 0.00301264i
\(146\) 2.52956 + 14.3459i 0.209348 + 1.18727i
\(147\) 12.8760 + 10.8042i 1.06199 + 0.891118i
\(148\) 5.63429 4.72773i 0.463135 0.388617i
\(149\) −3.02481 + 17.1546i −0.247802 + 1.40536i 0.566091 + 0.824343i \(0.308455\pi\)
−0.813893 + 0.581015i \(0.802656\pi\)
\(150\) −0.939693 + 0.342020i −0.0767256 + 0.0279258i
\(151\) −0.487511 −0.0396731 −0.0198366 0.999803i \(-0.506315\pi\)
−0.0198366 + 0.999803i \(0.506315\pi\)
\(152\) 1.15270 4.20372i 0.0934966 0.340967i
\(153\) 1.41147 0.114111
\(154\) 20.7802 7.56337i 1.67451 0.609474i
\(155\) 1.71941 9.75125i 0.138106 0.783239i
\(156\) −0.907604 + 0.761570i −0.0726665 + 0.0609744i
\(157\) −15.3858 12.9102i −1.22792 1.03035i −0.998371 0.0570490i \(-0.981831\pi\)
−0.229548 0.973297i \(-0.573725\pi\)
\(158\) −1.25490 7.11689i −0.0998345 0.566190i
\(159\) −5.87211 10.1708i −0.465689 0.806597i
\(160\) 0.500000 0.866025i 0.0395285 0.0684653i
\(161\) −16.3871 5.96443i −1.29149 0.470063i
\(162\) −0.939693 0.342020i −0.0738292 0.0268716i
\(163\) 4.35844 7.54904i 0.341379 0.591287i −0.643310 0.765606i \(-0.722439\pi\)
0.984689 + 0.174320i \(0.0557726\pi\)
\(164\) 2.67365 + 4.63089i 0.208777 + 0.361612i
\(165\) −0.786989 4.46324i −0.0612670 0.347462i
\(166\) −6.54189 5.48930i −0.507749 0.426052i
\(167\) −4.61721 + 3.87430i −0.357291 + 0.299802i −0.803710 0.595022i \(-0.797143\pi\)
0.446419 + 0.894824i \(0.352699\pi\)
\(168\) −0.847296 + 4.80526i −0.0653703 + 0.370734i
\(169\) 10.8969 3.96616i 0.838225 0.305089i
\(170\) −1.41147 −0.108255
\(171\) 4.34002 + 0.405223i 0.331890 + 0.0309882i
\(172\) −0.977711 −0.0745498
\(173\) 20.5744 7.48849i 1.56425 0.569339i 0.592542 0.805540i \(-0.298125\pi\)
0.971704 + 0.236201i \(0.0759023\pi\)
\(174\) 0.00727396 0.0412527i 0.000551437 0.00312736i
\(175\) −3.73783 + 3.13641i −0.282553 + 0.237090i
\(176\) 3.47178 + 2.91317i 0.261695 + 0.219588i
\(177\) −0.213011 1.20805i −0.0160109 0.0908023i
\(178\) −0.851167 1.47426i −0.0637976 0.110501i
\(179\) −3.67499 + 6.36527i −0.274682 + 0.475763i −0.970055 0.242886i \(-0.921906\pi\)
0.695373 + 0.718649i \(0.255239\pi\)
\(180\) 0.939693 + 0.342020i 0.0700406 + 0.0254927i
\(181\) −20.0792 7.30823i −1.49247 0.543216i −0.538375 0.842705i \(-0.680962\pi\)
−0.954100 + 0.299489i \(0.903184\pi\)
\(182\) −2.89053 + 5.00654i −0.214260 + 0.371110i
\(183\) 3.40033 + 5.88954i 0.251360 + 0.435368i
\(184\) −0.620615 3.51968i −0.0457523 0.259474i
\(185\) −5.63429 4.72773i −0.414241 0.347589i
\(186\) −7.58512 + 6.36467i −0.556168 + 0.466680i
\(187\) 1.11081 6.29974i 0.0812308 0.460683i
\(188\) 1.70574 0.620838i 0.124404 0.0452792i
\(189\) −4.87939 −0.354923
\(190\) −4.34002 0.405223i −0.314858 0.0293980i
\(191\) −9.73917 −0.704702 −0.352351 0.935868i \(-0.614618\pi\)
−0.352351 + 0.935868i \(0.614618\pi\)
\(192\) −0.939693 + 0.342020i −0.0678165 + 0.0246832i
\(193\) −2.61721 + 14.8429i −0.188391 + 1.06842i 0.733130 + 0.680089i \(0.238059\pi\)
−0.921521 + 0.388329i \(0.873052\pi\)
\(194\) 5.36231 4.49951i 0.384992 0.323046i
\(195\) 0.907604 + 0.761570i 0.0649949 + 0.0545372i
\(196\) 2.91875 + 16.5530i 0.208482 + 1.18236i
\(197\) −9.87598 17.1057i −0.703635 1.21873i −0.967182 0.254084i \(-0.918226\pi\)
0.263547 0.964646i \(-0.415107\pi\)
\(198\) −2.26604 + 3.92490i −0.161041 + 0.278931i
\(199\) 9.16297 + 3.33505i 0.649546 + 0.236415i 0.645716 0.763577i \(-0.276559\pi\)
0.00382939 + 0.999993i \(0.498781\pi\)
\(200\) −0.939693 0.342020i −0.0664463 0.0241845i
\(201\) 2.73055 4.72945i 0.192598 0.333590i
\(202\) 0.701867 + 1.21567i 0.0493832 + 0.0855342i
\(203\) −0.0354925 0.201288i −0.00249108 0.0141276i
\(204\) 1.08125 + 0.907278i 0.0757028 + 0.0635222i
\(205\) 4.09627 3.43718i 0.286096 0.240063i
\(206\) −1.92855 + 10.9373i −0.134368 + 0.762041i
\(207\) 3.35844 1.22237i 0.233428 0.0849608i
\(208\) −1.18479 −0.0821506
\(209\) 5.22416 19.0516i 0.361362 1.31783i
\(210\) 4.87939 0.336710
\(211\) −21.3935 + 7.78661i −1.47279 + 0.536052i −0.948857 0.315707i \(-0.897758\pi\)
−0.523934 + 0.851759i \(0.675536\pi\)
\(212\) 2.03936 11.5658i 0.140064 0.794343i
\(213\) −7.63429 + 6.40593i −0.523093 + 0.438927i
\(214\) −4.47771 3.75725i −0.306090 0.256840i
\(215\) 0.169778 + 0.962858i 0.0115787 + 0.0656663i
\(216\) −0.500000 0.866025i −0.0340207 0.0589256i
\(217\) −24.1570 + 41.8412i −1.63989 + 2.84037i
\(218\) −2.71941 0.989783i −0.184182 0.0670366i
\(219\) −13.6887 4.98227i −0.924994 0.336670i
\(220\) 2.26604 3.92490i 0.152777 0.264617i
\(221\) 0.836152 + 1.44826i 0.0562457 + 0.0974204i
\(222\) 1.27719 + 7.24330i 0.0857193 + 0.486138i
\(223\) 13.1650 + 11.0468i 0.881596 + 0.739747i 0.966507 0.256642i \(-0.0826161\pi\)
−0.0849109 + 0.996389i \(0.527061\pi\)
\(224\) −3.73783 + 3.13641i −0.249744 + 0.209560i
\(225\) 0.173648 0.984808i 0.0115765 0.0656539i
\(226\) 11.6236 4.23065i 0.773191 0.281418i
\(227\) 23.3455 1.54950 0.774749 0.632269i \(-0.217876\pi\)
0.774749 + 0.632269i \(0.217876\pi\)
\(228\) 3.06418 + 3.10013i 0.202930 + 0.205311i
\(229\) 6.41921 0.424194 0.212097 0.977249i \(-0.431971\pi\)
0.212097 + 0.977249i \(0.431971\pi\)
\(230\) −3.35844 + 1.22237i −0.221449 + 0.0806009i
\(231\) −3.84002 + 21.7778i −0.252655 + 1.43288i
\(232\) 0.0320889 0.0269258i 0.00210674 0.00176776i
\(233\) 17.4311 + 14.6264i 1.14195 + 0.958208i 0.999501 0.0315946i \(-0.0100585\pi\)
0.142447 + 0.989802i \(0.454503\pi\)
\(234\) −0.205737 1.16679i −0.0134495 0.0762756i
\(235\) −0.907604 1.57202i −0.0592055 0.102547i
\(236\) 0.613341 1.06234i 0.0399251 0.0691523i
\(237\) 6.79086 + 2.47167i 0.441114 + 0.160552i
\(238\) 6.47178 + 2.35554i 0.419503 + 0.152687i
\(239\) 0.964041 1.66977i 0.0623586 0.108008i −0.833161 0.553031i \(-0.813471\pi\)
0.895519 + 0.445023i \(0.146804\pi\)
\(240\) 0.500000 + 0.866025i 0.0322749 + 0.0559017i
\(241\) −1.10085 6.24324i −0.0709121 0.402163i −0.999517 0.0310915i \(-0.990102\pi\)
0.928604 0.371071i \(-0.121009\pi\)
\(242\) 7.30793 + 6.13208i 0.469772 + 0.394185i
\(243\) 0.766044 0.642788i 0.0491418 0.0412348i
\(244\) −1.18092 + 6.69734i −0.0756008 + 0.428753i
\(245\) 15.7947 5.74881i 1.00909 0.367278i
\(246\) −5.34730 −0.340931
\(247\) 2.15523 + 4.69318i 0.137134 + 0.298620i
\(248\) −9.90167 −0.628757
\(249\) 8.02481 2.92079i 0.508552 0.185098i
\(250\) −0.173648 + 0.984808i −0.0109825 + 0.0622847i
\(251\) −1.57011 + 1.31748i −0.0991043 + 0.0831584i −0.690994 0.722861i \(-0.742827\pi\)
0.591889 + 0.806019i \(0.298382\pi\)
\(252\) −3.73783 3.13641i −0.235461 0.197575i
\(253\) −2.81268 15.9515i −0.176832 1.00286i
\(254\) −0.562834 0.974856i −0.0353153 0.0611679i
\(255\) 0.705737 1.22237i 0.0441950 0.0765479i
\(256\) −0.939693 0.342020i −0.0587308 0.0213763i
\(257\) 28.6707 + 10.4353i 1.78843 + 0.650935i 0.999327 + 0.0366737i \(0.0116762\pi\)
0.789103 + 0.614261i \(0.210546\pi\)
\(258\) 0.488856 0.846723i 0.0304348 0.0527147i
\(259\) 17.9440 + 31.0800i 1.11499 + 1.93122i
\(260\) 0.205737 + 1.16679i 0.0127593 + 0.0723614i
\(261\) 0.0320889 + 0.0269258i 0.00198625 + 0.00166666i
\(262\) −16.8949 + 14.1765i −1.04377 + 0.875826i
\(263\) −5.03849 + 28.5747i −0.310686 + 1.76199i 0.284764 + 0.958598i \(0.408085\pi\)
−0.595450 + 0.803392i \(0.703026\pi\)
\(264\) −4.25877 + 1.55007i −0.262109 + 0.0953999i
\(265\) −11.7442 −0.721442
\(266\) 19.2233 + 9.10083i 1.17865 + 0.558008i
\(267\) 1.70233 0.104181
\(268\) 5.13176 1.86781i 0.313472 0.114095i
\(269\) 2.10694 11.9491i 0.128463 0.728548i −0.850728 0.525606i \(-0.823839\pi\)
0.979191 0.202942i \(-0.0650503\pi\)
\(270\) −0.766044 + 0.642788i −0.0466200 + 0.0391188i
\(271\) 4.58718 + 3.84910i 0.278651 + 0.233816i 0.771392 0.636360i \(-0.219561\pi\)
−0.492741 + 0.870176i \(0.664005\pi\)
\(272\) 0.245100 + 1.39003i 0.0148614 + 0.0842830i
\(273\) −2.89053 5.00654i −0.174943 0.303010i
\(274\) −0.949493 + 1.64457i −0.0573610 + 0.0993521i
\(275\) −4.25877 1.55007i −0.256814 0.0934725i
\(276\) 3.35844 + 1.22237i 0.202154 + 0.0735782i
\(277\) −14.7986 + 25.6319i −0.889162 + 1.54007i −0.0482936 + 0.998833i \(0.515378\pi\)
−0.840868 + 0.541240i \(0.817955\pi\)
\(278\) 11.5385 + 19.9852i 0.692032 + 1.19864i
\(279\) −1.71941 9.75125i −0.102938 0.583792i
\(280\) 3.73783 + 3.13641i 0.223378 + 0.187436i
\(281\) −4.50000 + 3.77595i −0.268447 + 0.225254i −0.767067 0.641567i \(-0.778285\pi\)
0.498620 + 0.866821i \(0.333840\pi\)
\(282\) −0.315207 + 1.78763i −0.0187703 + 0.106452i
\(283\) −16.9941 + 6.18534i −1.01019 + 0.367680i −0.793507 0.608561i \(-0.791747\pi\)
−0.216686 + 0.976241i \(0.569525\pi\)
\(284\) −9.96585 −0.591365
\(285\) 2.52094 3.55596i 0.149328 0.210637i
\(286\) −5.36959 −0.317510
\(287\) −24.5180 + 8.92383i −1.44725 + 0.526757i
\(288\) 0.173648 0.984808i 0.0102323 0.0580304i
\(289\) −11.4966 + 9.64679i −0.676270 + 0.567458i
\(290\) −0.0320889 0.0269258i −0.00188432 0.00158114i
\(291\) 1.21554 + 6.89365i 0.0712561 + 0.404113i
\(292\) −7.28359 12.6155i −0.426240 0.738269i
\(293\) 7.50253 12.9948i 0.438302 0.759162i −0.559256 0.828995i \(-0.688913\pi\)
0.997559 + 0.0698329i \(0.0222466\pi\)
\(294\) −15.7947 5.74881i −0.921167 0.335277i
\(295\) −1.15270 0.419550i −0.0671130 0.0244271i
\(296\) −3.67752 + 6.36965i −0.213751 + 0.370228i
\(297\) −2.26604 3.92490i −0.131489 0.227746i
\(298\) −3.02481 17.1546i −0.175223 0.993738i
\(299\) 3.24376 + 2.72183i 0.187591 + 0.157408i
\(300\) 0.766044 0.642788i 0.0442276 0.0371114i
\(301\) 0.828411 4.69815i 0.0477488 0.270797i
\(302\) 0.458111 0.166739i 0.0263613 0.00959474i
\(303\) −1.40373 −0.0806424
\(304\) 0.354570 + 4.34445i 0.0203360 + 0.249172i
\(305\) 6.80066 0.389405
\(306\) −1.32635 + 0.482753i −0.0758225 + 0.0275971i
\(307\) 2.30706 13.0840i 0.131671 0.746741i −0.845450 0.534055i \(-0.820668\pi\)
0.977120 0.212687i \(-0.0682213\pi\)
\(308\) −16.9402 + 14.2145i −0.965255 + 0.809945i
\(309\) −8.50774 7.13884i −0.483988 0.406115i
\(310\) 1.71941 + 9.75125i 0.0976558 + 0.553834i
\(311\) −6.10741 10.5783i −0.346320 0.599843i 0.639273 0.768980i \(-0.279235\pi\)
−0.985593 + 0.169137i \(0.945902\pi\)
\(312\) 0.592396 1.02606i 0.0335378 0.0580892i
\(313\) −15.4731 5.63176i −0.874593 0.318326i −0.134567 0.990904i \(-0.542964\pi\)
−0.740026 + 0.672579i \(0.765187\pi\)
\(314\) 18.8735 + 6.86938i 1.06509 + 0.387661i
\(315\) −2.43969 + 4.22567i −0.137461 + 0.238090i
\(316\) 3.61334 + 6.25849i 0.203266 + 0.352068i
\(317\) −5.41622 30.7169i −0.304205 1.72523i −0.627222 0.778841i \(-0.715808\pi\)
0.323016 0.946393i \(-0.395303\pi\)
\(318\) 8.99660 + 7.54904i 0.504504 + 0.423329i
\(319\) 0.145430 0.122030i 0.00814250 0.00683237i
\(320\) −0.173648 + 0.984808i −0.00970723 + 0.0550524i
\(321\) 5.49273 1.99919i 0.306574 0.111584i
\(322\) 17.4388 0.971827
\(323\) 5.06031 3.49946i 0.281563 0.194715i
\(324\) 1.00000 0.0555556
\(325\) 1.11334 0.405223i 0.0617570 0.0224777i
\(326\) −1.51367 + 8.58445i −0.0838345 + 0.475449i
\(327\) 2.21688 1.86018i 0.122594 0.102868i
\(328\) −4.09627 3.43718i −0.226178 0.189786i
\(329\) 1.53802 + 8.72254i 0.0847937 + 0.480889i
\(330\) 2.26604 + 3.92490i 0.124742 + 0.216059i
\(331\) 15.7750 27.3230i 0.867071 1.50181i 0.00209423 0.999998i \(-0.499333\pi\)
0.864976 0.501813i \(-0.167333\pi\)
\(332\) 8.02481 + 2.92079i 0.440419 + 0.160299i
\(333\) −6.91147 2.51557i −0.378746 0.137852i
\(334\) 3.01367 5.21983i 0.164901 0.285616i
\(335\) −2.73055 4.72945i −0.149186 0.258398i
\(336\) −0.847296 4.80526i −0.0462238 0.262148i
\(337\) 8.90941 + 7.47589i 0.485327 + 0.407237i 0.852348 0.522975i \(-0.175178\pi\)
−0.367021 + 0.930213i \(0.619622\pi\)
\(338\) −8.88326 + 7.45394i −0.483185 + 0.405441i
\(339\) −2.14796 + 12.1817i −0.116661 + 0.661617i
\(340\) 1.32635 0.482753i 0.0719315 0.0261809i
\(341\) −44.8753 −2.43013
\(342\) −4.21688 + 1.10359i −0.228023 + 0.0596753i
\(343\) −47.8590 −2.58414
\(344\) 0.918748 0.334397i 0.0495356 0.0180295i
\(345\) 0.620615 3.51968i 0.0334128 0.189493i
\(346\) −16.7724 + 14.0737i −0.901692 + 0.756609i
\(347\) 18.5096 + 15.5314i 0.993645 + 0.833767i 0.986091 0.166204i \(-0.0531512\pi\)
0.00755349 + 0.999971i \(0.497596\pi\)
\(348\) 0.00727396 + 0.0412527i 0.000389925 + 0.00221138i
\(349\) 2.36706 + 4.09987i 0.126706 + 0.219461i 0.922398 0.386240i \(-0.126226\pi\)
−0.795693 + 0.605701i \(0.792893\pi\)
\(350\) 2.43969 4.22567i 0.130407 0.225872i
\(351\) 1.11334 + 0.405223i 0.0594257 + 0.0216292i
\(352\) −4.25877 1.55007i −0.226993 0.0826188i
\(353\) −2.80066 + 4.85088i −0.149064 + 0.258187i −0.930882 0.365321i \(-0.880959\pi\)
0.781818 + 0.623507i \(0.214293\pi\)
\(354\) 0.613341 + 1.06234i 0.0325987 + 0.0564626i
\(355\) 1.73055 + 9.81445i 0.0918482 + 0.520897i
\(356\) 1.30406 + 1.09424i 0.0691152 + 0.0579945i
\(357\) −5.27584 + 4.42696i −0.279227 + 0.234300i
\(358\) 1.27631 7.23832i 0.0674552 0.382557i
\(359\) −4.41400 + 1.60656i −0.232962 + 0.0847912i −0.455863 0.890050i \(-0.650669\pi\)
0.222901 + 0.974841i \(0.428447\pi\)
\(360\) −1.00000 −0.0527046
\(361\) 16.5642 9.30742i 0.871799 0.489864i
\(362\) 21.3678 1.12307
\(363\) −8.96451 + 3.26281i −0.470515 + 0.171253i
\(364\) 1.00387 5.69323i 0.0526171 0.298406i
\(365\) −11.1591 + 9.36360i −0.584094 + 0.490113i
\(366\) −5.20961 4.37138i −0.272311 0.228496i
\(367\) −4.57579 25.9506i −0.238854 1.35461i −0.834343 0.551246i \(-0.814153\pi\)
0.595489 0.803364i \(-0.296959\pi\)
\(368\) 1.78699 + 3.09516i 0.0931532 + 0.161346i
\(369\) 2.67365 4.63089i 0.139185 0.241075i
\(370\) 6.91147 + 2.51557i 0.359310 + 0.130778i
\(371\) 53.8487 + 19.5993i 2.79569 + 1.01755i
\(372\) 4.95084 8.57510i 0.256689 0.444598i
\(373\) −4.27837 7.41036i −0.221526 0.383694i 0.733746 0.679424i \(-0.237770\pi\)
−0.955271 + 0.295730i \(0.904437\pi\)
\(374\) 1.11081 + 6.29974i 0.0574389 + 0.325752i
\(375\) −0.766044 0.642788i −0.0395584 0.0331934i
\(376\) −1.39053 + 1.16679i −0.0717111 + 0.0601727i
\(377\) −0.00861813 + 0.0488759i −0.000443856 + 0.00251724i
\(378\) 4.58512 1.66885i 0.235833 0.0858363i
\(379\) 16.1489 0.829513 0.414756 0.909932i \(-0.363867\pi\)
0.414756 + 0.909932i \(0.363867\pi\)
\(380\) 4.21688 1.10359i 0.216321 0.0566130i
\(381\) 1.12567 0.0576697
\(382\) 9.15183 3.33099i 0.468248 0.170428i
\(383\) −0.515730 + 2.92485i −0.0263526 + 0.149453i −0.995145 0.0984211i \(-0.968621\pi\)
0.968792 + 0.247874i \(0.0797319\pi\)
\(384\) 0.766044 0.642788i 0.0390920 0.0328021i
\(385\) 16.9402 + 14.2145i 0.863350 + 0.724437i
\(386\) −2.61721 14.8429i −0.133213 0.755486i
\(387\) 0.488856 + 0.846723i 0.0248499 + 0.0430413i
\(388\) −3.50000 + 6.06218i −0.177686 + 0.307760i
\(389\) 15.4966 + 5.64030i 0.785709 + 0.285975i 0.703551 0.710645i \(-0.251597\pi\)
0.0821577 + 0.996619i \(0.473819\pi\)
\(390\) −1.11334 0.405223i −0.0563762 0.0205193i
\(391\) 2.52229 4.36873i 0.127558 0.220936i
\(392\) −8.40420 14.5565i −0.424476 0.735214i
\(393\) −3.82976 21.7196i −0.193186 1.09561i
\(394\) 15.1309 + 12.6963i 0.762283 + 0.639631i
\(395\) 5.53596 4.64522i 0.278544 0.233726i
\(396\) 0.786989 4.46324i 0.0395477 0.224286i
\(397\) 15.8919 5.78417i 0.797590 0.290299i 0.0891027 0.996022i \(-0.471600\pi\)
0.708488 + 0.705723i \(0.249378\pi\)
\(398\) −9.75103 −0.488775
\(399\) −17.4932 + 12.0974i −0.875755 + 0.605629i
\(400\) 1.00000 0.0500000
\(401\) 26.9577 9.81180i 1.34620 0.489978i 0.434443 0.900700i \(-0.356945\pi\)
0.911761 + 0.410722i \(0.134723\pi\)
\(402\) −0.948311 + 5.37814i −0.0472974 + 0.268237i
\(403\) 8.98680 7.54082i 0.447664 0.375635i
\(404\) −1.07532 0.902302i −0.0534993 0.0448912i
\(405\) −0.173648 0.984808i −0.00862865 0.0489355i
\(406\) 0.102196 + 0.177009i 0.00507192 + 0.00878483i
\(407\) −16.6668 + 28.8678i −0.826145 + 1.43092i
\(408\) −1.32635 0.482753i −0.0656642 0.0238998i
\(409\) 25.0881 + 9.13133i 1.24053 + 0.451515i 0.877190 0.480143i \(-0.159415\pi\)
0.363337 + 0.931658i \(0.381637\pi\)
\(410\) −2.67365 + 4.63089i −0.132042 + 0.228704i
\(411\) −0.949493 1.64457i −0.0468350 0.0811206i
\(412\) −1.92855 10.9373i −0.0950128 0.538844i
\(413\) 4.58512 + 3.84737i 0.225619 + 0.189317i
\(414\) −2.73783 + 2.29731i −0.134557 + 0.112907i
\(415\) 1.48293 8.41009i 0.0727940 0.412835i
\(416\) 1.11334 0.405223i 0.0545860 0.0198677i
\(417\) −23.0770 −1.13008
\(418\) 1.60694 + 19.6895i 0.0785982 + 0.963043i
\(419\) 6.34224 0.309839 0.154919 0.987927i \(-0.450488\pi\)
0.154919 + 0.987927i \(0.450488\pi\)
\(420\) −4.58512 + 1.66885i −0.223731 + 0.0814314i
\(421\) −1.89053 + 10.7217i −0.0921388 + 0.522545i 0.903448 + 0.428698i \(0.141028\pi\)
−0.995587 + 0.0938470i \(0.970084\pi\)
\(422\) 17.4402 14.6340i 0.848974 0.712374i
\(423\) −1.39053 1.16679i −0.0676099 0.0567314i
\(424\) 2.03936 + 11.5658i 0.0990402 + 0.561685i
\(425\) −0.705737 1.22237i −0.0342333 0.0592938i
\(426\) 4.98293 8.63068i 0.241424 0.418158i
\(427\) −31.1819 11.3493i −1.50900 0.549230i
\(428\) 5.49273 + 1.99919i 0.265501 + 0.0966344i
\(429\) 2.68479 4.65020i 0.129623 0.224514i
\(430\) −0.488856 0.846723i −0.0235747 0.0408326i
\(431\) −0.815207 4.62327i −0.0392672 0.222695i 0.958859 0.283882i \(-0.0916225\pi\)
−0.998126 + 0.0611871i \(0.980511\pi\)
\(432\) 0.766044 + 0.642788i 0.0368563 + 0.0309261i
\(433\) −14.5364 + 12.1975i −0.698576 + 0.586175i −0.921368 0.388691i \(-0.872927\pi\)
0.222792 + 0.974866i \(0.428483\pi\)
\(434\) 8.38965 47.5801i 0.402716 2.28392i
\(435\) 0.0393628 0.0143269i 0.00188730 0.000686922i
\(436\) 2.89393 0.138594
\(437\) 9.00980 12.7089i 0.430997 0.607950i
\(438\) 14.5672 0.696046
\(439\) 22.6830 8.25595i 1.08260 0.394035i 0.261727 0.965142i \(-0.415708\pi\)
0.820876 + 0.571107i \(0.193486\pi\)
\(440\) −0.786989 + 4.46324i −0.0375182 + 0.212776i
\(441\) 12.8760 10.8042i 0.613142 0.514487i
\(442\) −1.28106 1.07494i −0.0609338 0.0511295i
\(443\) 0.839145 + 4.75903i 0.0398690 + 0.226108i 0.998232 0.0594460i \(-0.0189334\pi\)
−0.958363 + 0.285554i \(0.907822\pi\)
\(444\) −3.67752 6.36965i −0.174527 0.302290i
\(445\) 0.851167 1.47426i 0.0403492 0.0698868i
\(446\) −16.1493 5.87786i −0.764692 0.278325i
\(447\) 16.3687 + 5.95772i 0.774213 + 0.281791i
\(448\) 2.43969 4.22567i 0.115265 0.199644i
\(449\) −1.18866 2.05882i −0.0560965 0.0971619i 0.836613 0.547794i \(-0.184532\pi\)
−0.892710 + 0.450632i \(0.851199\pi\)
\(450\) 0.173648 + 0.984808i 0.00818585 + 0.0464243i
\(451\) −18.5646 15.5776i −0.874175 0.733520i
\(452\) −9.47565 + 7.95102i −0.445697 + 0.373984i
\(453\) −0.0846555 + 0.480105i −0.00397746 + 0.0225573i
\(454\) −21.9376 + 7.98465i −1.02958 + 0.374738i
\(455\) −5.78106 −0.271020
\(456\) −3.93969 1.86516i −0.184493 0.0873441i
\(457\) 14.2422 0.666220 0.333110 0.942888i \(-0.391902\pi\)
0.333110 + 0.942888i \(0.391902\pi\)
\(458\) −6.03209 + 2.19550i −0.281861 + 0.102589i
\(459\) 0.245100 1.39003i 0.0114403 0.0648811i
\(460\) 2.73783 2.29731i 0.127652 0.107113i
\(461\) 25.1498 + 21.1032i 1.17134 + 0.982872i 0.999997 0.00233908i \(-0.000744553\pi\)
0.171344 + 0.985211i \(0.445189\pi\)
\(462\) −3.84002 21.7778i −0.178654 1.01320i
\(463\) −18.1400 31.4193i −0.843036 1.46018i −0.887316 0.461162i \(-0.847433\pi\)
0.0442804 0.999019i \(-0.485900\pi\)
\(464\) −0.0209445 + 0.0362770i −0.000972326 + 0.00168412i
\(465\) −9.30453 3.38657i −0.431487 0.157049i
\(466\) −21.3824 7.78255i −0.990520 0.360520i
\(467\) −7.69372 + 13.3259i −0.356023 + 0.616649i −0.987292 0.158914i \(-0.949201\pi\)
0.631270 + 0.775563i \(0.282534\pi\)
\(468\) 0.592396 + 1.02606i 0.0273835 + 0.0474297i
\(469\) 4.62717 + 26.2420i 0.213663 + 1.21174i
\(470\) 1.39053 + 1.16679i 0.0641403 + 0.0538201i
\(471\) −15.3858 + 12.9102i −0.708939 + 0.594871i
\(472\) −0.213011 + 1.20805i −0.00980463 + 0.0556048i
\(473\) 4.16385 1.51552i 0.191454 0.0696835i
\(474\) −7.22668 −0.331932
\(475\) −1.81908 3.96118i −0.0834650 0.181751i
\(476\) −6.88713 −0.315671
\(477\) −11.0360 + 4.01676i −0.505302 + 0.183915i
\(478\) −0.334808 + 1.89879i −0.0153138 + 0.0868486i
\(479\) −13.8118 + 11.5895i −0.631077 + 0.529537i −0.901264 0.433271i \(-0.857359\pi\)
0.270186 + 0.962808i \(0.412915\pi\)
\(480\) −0.766044 0.642788i −0.0349650 0.0293391i
\(481\) −1.51320 8.58180i −0.0689962 0.391297i
\(482\) 3.16978 + 5.49022i 0.144379 + 0.250072i
\(483\) −8.71941 + 15.1025i −0.396747 + 0.687186i
\(484\) −8.96451 3.26281i −0.407478 0.148310i
\(485\) 6.57785 + 2.39414i 0.298685 + 0.108712i
\(486\) −0.500000 + 0.866025i −0.0226805 + 0.0392837i
\(487\) 6.68139 + 11.5725i 0.302763 + 0.524400i 0.976761 0.214333i \(-0.0687577\pi\)
−0.673998 + 0.738733i \(0.735424\pi\)
\(488\) −1.18092 6.69734i −0.0534578 0.303174i
\(489\) −6.67752 5.60310i −0.301968 0.253381i
\(490\) −12.8760 + 10.8042i −0.581678 + 0.488085i
\(491\) 5.19800 29.4793i 0.234582 1.33038i −0.608909 0.793240i \(-0.708393\pi\)
0.843492 0.537142i \(-0.180496\pi\)
\(492\) 5.02481 1.82888i 0.226536 0.0824524i
\(493\) 0.0591253 0.00266287
\(494\) −3.63041 3.67301i −0.163340 0.165257i
\(495\) −4.53209 −0.203702
\(496\) 9.30453 3.38657i 0.417786 0.152062i
\(497\) 8.44403 47.8885i 0.378767 2.14809i
\(498\) −6.54189 + 5.48930i −0.293149 + 0.245981i
\(499\) −6.36097 5.33749i −0.284756 0.238939i 0.489210 0.872166i \(-0.337285\pi\)
−0.773966 + 0.633228i \(0.781730\pi\)
\(500\) −0.173648 0.984808i −0.00776578 0.0440419i
\(501\) 3.01367 + 5.21983i 0.134641 + 0.233205i
\(502\) 1.02481 1.77503i 0.0457397 0.0792235i
\(503\) 29.5228 + 10.7454i 1.31635 + 0.479114i 0.902288 0.431133i \(-0.141886\pi\)
0.414066 + 0.910247i \(0.364108\pi\)
\(504\) 4.58512 + 1.66885i 0.204238 + 0.0743364i
\(505\) −0.701867 + 1.21567i −0.0312327 + 0.0540965i
\(506\) 8.09879 + 14.0275i 0.360035 + 0.623599i
\(507\) −2.01367 11.4201i −0.0894302 0.507184i
\(508\) 0.862311 + 0.723565i 0.0382589 + 0.0321030i
\(509\) −11.2790 + 9.46420i −0.499933 + 0.419493i −0.857570 0.514367i \(-0.828027\pi\)
0.357637 + 0.933861i \(0.383582\pi\)
\(510\) −0.245100 + 1.39003i −0.0108532 + 0.0615516i
\(511\) 66.7923 24.3104i 2.95472 1.07543i
\(512\) 1.00000 0.0441942
\(513\) 1.15270 4.20372i 0.0508931 0.185599i
\(514\) −30.5107 −1.34577
\(515\) −10.4363 + 3.79850i −0.459878 + 0.167382i
\(516\) −0.169778 + 0.962858i −0.00747405 + 0.0423874i
\(517\) −6.30200 + 5.28801i −0.277162 + 0.232566i
\(518\) −27.4918 23.0684i −1.20792 1.01357i
\(519\) −3.80200 21.5622i −0.166889 0.946477i
\(520\) −0.592396 1.02606i −0.0259783 0.0449957i
\(521\) 19.0175 32.9393i 0.833174 1.44310i −0.0623352 0.998055i \(-0.519855\pi\)
0.895509 0.445044i \(-0.146812\pi\)
\(522\) −0.0393628 0.0143269i −0.00172286 0.000627072i
\(523\) 34.8097 + 12.6697i 1.52212 + 0.554008i 0.961678 0.274183i \(-0.0884074\pi\)
0.560446 + 0.828191i \(0.310630\pi\)
\(524\) 11.0273 19.0999i 0.481732 0.834384i
\(525\) 2.43969 + 4.22567i 0.106477 + 0.184423i
\(526\) −5.03849 28.5747i −0.219688 1.24591i
\(527\) −10.7062 8.98357i −0.466370 0.391331i
\(528\) 3.47178 2.91317i 0.151090 0.126779i
\(529\) −1.77584 + 10.0713i −0.0772106 + 0.437883i
\(530\) 11.0360 4.01676i 0.479371 0.174477i
\(531\) −1.22668 −0.0532334
\(532\) −21.1766 1.97724i −0.918124 0.0857242i
\(533\) 6.33544 0.274418
\(534\) −1.59967 + 0.582232i −0.0692245 + 0.0251957i
\(535\) 1.01501 5.75643i 0.0438829 0.248872i
\(536\) −4.18345 + 3.51033i −0.180697 + 0.151623i
\(537\) 5.63041 + 4.72448i 0.242970 + 0.203876i
\(538\) 2.10694 + 11.9491i 0.0908368 + 0.515161i
\(539\) −38.0886 65.9714i −1.64059 2.84159i
\(540\) 0.500000 0.866025i 0.0215166 0.0372678i
\(541\) −4.13176 1.50384i −0.177638 0.0646550i 0.251670 0.967813i \(-0.419020\pi\)
−0.429308 + 0.903158i \(0.641243\pi\)
\(542\) −5.62701 2.04806i −0.241701 0.0879719i
\(543\) −10.6839 + 18.5051i −0.458491 + 0.794129i
\(544\) −0.705737 1.22237i −0.0302582 0.0524088i
\(545\) −0.502526 2.84997i −0.0215259 0.122079i
\(546\) 4.42855 + 3.71599i 0.189524 + 0.159030i
\(547\) 18.5326 15.5507i 0.792395 0.664898i −0.153942 0.988080i \(-0.549197\pi\)
0.946337 + 0.323182i \(0.104752\pi\)
\(548\) 0.329755 1.87014i 0.0140865 0.0798882i
\(549\) 6.39053 2.32596i 0.272741 0.0992697i
\(550\) 4.53209 0.193249
\(551\) 0.181799 + 0.0169744i 0.00774492 + 0.000723134i
\(552\) −3.57398 −0.152119
\(553\) −33.1352 + 12.0602i −1.40905 + 0.512853i
\(554\) 5.13950 29.1476i 0.218356 1.23836i
\(555\) −5.63429 + 4.72773i −0.239162 + 0.200681i
\(556\) −17.6780 14.8336i −0.749714 0.629084i
\(557\) 0.995252 + 5.64436i 0.0421702 + 0.239159i 0.998606 0.0527838i \(-0.0168094\pi\)
−0.956436 + 0.291943i \(0.905698\pi\)
\(558\) 4.95084 + 8.57510i 0.209586 + 0.363013i
\(559\) −0.579193 + 1.00319i −0.0244972 + 0.0424305i
\(560\) −4.58512 1.66885i −0.193757 0.0705217i
\(561\) −6.01114 2.18788i −0.253791 0.0923723i
\(562\) 2.93717 5.08732i 0.123897 0.214596i
\(563\) 14.4470 + 25.0229i 0.608867 + 1.05459i 0.991427 + 0.130658i \(0.0417090\pi\)
−0.382560 + 0.923930i \(0.624958\pi\)
\(564\) −0.315207 1.78763i −0.0132726 0.0752728i
\(565\) 9.47565 + 7.95102i 0.398644 + 0.334502i
\(566\) 13.8537 11.6246i 0.582314 0.488620i
\(567\) −0.847296 + 4.80526i −0.0355831 + 0.201802i
\(568\) 9.36484 3.40852i 0.392940 0.143018i
\(569\) −13.2540 −0.555638 −0.277819 0.960634i \(-0.589611\pi\)
−0.277819 + 0.960634i \(0.589611\pi\)
\(570\) −1.15270 + 4.20372i −0.0482814 + 0.176075i
\(571\) −2.62536 −0.109868 −0.0549340 0.998490i \(-0.517495\pi\)
−0.0549340 + 0.998490i \(0.517495\pi\)
\(572\) 5.04576 1.83651i 0.210974 0.0767882i
\(573\) −1.69119 + 9.59121i −0.0706504 + 0.400679i
\(574\) 19.9873 16.7713i 0.834252 0.700021i
\(575\) −2.73783 2.29731i −0.114175 0.0958044i
\(576\) 0.173648 + 0.984808i 0.00723534 + 0.0410337i
\(577\) 4.12314 + 7.14149i 0.171649 + 0.297304i 0.938996 0.343927i \(-0.111757\pi\)
−0.767348 + 0.641231i \(0.778424\pi\)
\(578\) 7.50387 12.9971i 0.312120 0.540607i
\(579\) 14.1630 + 5.15490i 0.588593 + 0.214230i
\(580\) 0.0393628 + 0.0143269i 0.00163445 + 0.000594892i
\(581\) −20.8346 + 36.0865i −0.864363 + 1.49712i
\(582\) −3.50000 6.06218i −0.145080 0.251285i
\(583\) 9.24257 + 52.4172i 0.382788 + 2.17090i
\(584\) 11.1591 + 9.36360i 0.461767 + 0.387468i
\(585\) 0.907604 0.761570i 0.0375248 0.0314870i
\(586\) −2.60560 + 14.7771i −0.107636 + 0.610436i
\(587\) −40.6737 + 14.8040i −1.67878 + 0.611027i −0.993142 0.116912i \(-0.962700\pi\)
−0.685641 + 0.727940i \(0.740478\pi\)
\(588\) 16.8084 0.693167
\(589\) −30.3405 30.6965i −1.25016 1.26483i
\(590\) 1.22668 0.0505017
\(591\) −18.5608 + 6.75557i −0.763488 + 0.277887i
\(592\) 1.27719 7.24330i 0.0524921 0.297698i
\(593\) −20.0260 + 16.8038i −0.822369 + 0.690050i −0.953526 0.301312i \(-0.902575\pi\)
0.131156 + 0.991362i \(0.458131\pi\)
\(594\) 3.47178 + 2.91317i 0.142449 + 0.119529i
\(595\) 1.19594 + 6.78250i 0.0490286 + 0.278055i
\(596\) 8.70961 + 15.0855i 0.356759 + 0.617925i
\(597\) 4.87551 8.44464i 0.199542 0.345616i
\(598\) −3.97906 1.44826i −0.162716 0.0592237i
\(599\) 22.3567 + 8.13717i 0.913469 + 0.332476i 0.755637 0.654990i \(-0.227327\pi\)
0.157832 + 0.987466i \(0.449550\pi\)
\(600\) −0.500000 + 0.866025i −0.0204124 + 0.0353553i
\(601\) −10.8883 18.8591i −0.444143 0.769279i 0.553849 0.832617i \(-0.313159\pi\)
−0.997992 + 0.0633384i \(0.979825\pi\)
\(602\) 0.828411 + 4.69815i 0.0337635 + 0.191482i
\(603\) −4.18345 3.51033i −0.170363 0.142952i
\(604\) −0.373455 + 0.313366i −0.0151957 + 0.0127507i
\(605\) −1.65657 + 9.39490i −0.0673493 + 0.381957i
\(606\) 1.31908 0.480105i 0.0535839 0.0195029i
\(607\) 36.0360 1.46266 0.731328 0.682026i \(-0.238901\pi\)
0.731328 + 0.682026i \(0.238901\pi\)
\(608\) −1.81908 3.96118i −0.0737733 0.160647i
\(609\) −0.204393 −0.00828242
\(610\) −6.39053 + 2.32596i −0.258745 + 0.0941755i
\(611\) 0.373455 2.11797i 0.0151084 0.0856839i
\(612\) 1.08125 0.907278i 0.0437070 0.0366745i
\(613\) −1.10426 0.926581i −0.0446005 0.0374242i 0.620215 0.784432i \(-0.287045\pi\)
−0.664815 + 0.747008i \(0.731490\pi\)
\(614\) 2.30706 + 13.0840i 0.0931052 + 0.528026i
\(615\) −2.67365 4.63089i −0.107812 0.186736i
\(616\) 11.0569 19.1511i 0.445495 0.771621i
\(617\) −0.991849 0.361003i −0.0399303 0.0145334i 0.321978 0.946747i \(-0.395652\pi\)
−0.361908 + 0.932214i \(0.617875\pi\)
\(618\) 10.4363 + 3.79850i 0.419809 + 0.152798i
\(619\) 4.20233 7.27866i 0.168906 0.292554i −0.769129 0.639093i \(-0.779310\pi\)
0.938036 + 0.346539i \(0.112643\pi\)
\(620\) −4.95084 8.57510i −0.198830 0.344384i
\(621\) −0.620615 3.51968i −0.0249044 0.141240i
\(622\) 9.35710 + 7.85154i 0.375185 + 0.314818i
\(623\) −6.36303 + 5.33921i −0.254929 + 0.213911i
\(624\) −0.205737 + 1.16679i −0.00823607 + 0.0467091i
\(625\) −0.939693 + 0.342020i −0.0375877 + 0.0136808i
\(626\) 16.4662 0.658120
\(627\) −17.8550 8.45307i −0.713061 0.337583i
\(628\) −20.0847 −0.801467
\(629\) −9.75537 + 3.55066i −0.388972 + 0.141574i
\(630\) 0.847296 4.80526i 0.0337571 0.191446i
\(631\) −24.0908 + 20.2146i −0.959040 + 0.804730i −0.980797 0.195033i \(-0.937518\pi\)
0.0217569 + 0.999763i \(0.493074\pi\)
\(632\) −5.53596 4.64522i −0.220209 0.184777i
\(633\) 3.95336 + 22.4206i 0.157132 + 0.891140i
\(634\) 15.5954 + 27.0120i 0.619372 + 1.07278i
\(635\) 0.562834 0.974856i 0.0223354 0.0386860i
\(636\) −11.0360 4.01676i −0.437604 0.159275i
\(637\) 18.7135 + 6.81115i 0.741455 + 0.269868i
\(638\) −0.0949225 + 0.164411i −0.00375802 + 0.00650908i
\(639\) 4.98293 + 8.63068i 0.197122 + 0.341424i
\(640\) −0.173648 0.984808i −0.00686405 0.0389279i
\(641\) −2.43242 2.04104i −0.0960748 0.0806163i 0.593485 0.804845i \(-0.297752\pi\)
−0.689560 + 0.724229i \(0.742196\pi\)
\(642\) −4.47771 + 3.75725i −0.176721 + 0.148287i
\(643\) 5.85797 33.2222i 0.231016 1.31016i −0.619828 0.784738i \(-0.712798\pi\)
0.850844 0.525419i \(-0.176091\pi\)
\(644\) −16.3871 + 5.96443i −0.645743 + 0.235031i
\(645\) 0.977711 0.0384973
\(646\) −3.55825 + 5.01914i −0.139997 + 0.197476i
\(647\) −14.6628 −0.576454 −0.288227 0.957562i \(-0.593066\pi\)
−0.288227 + 0.957562i \(0.593066\pi\)
\(648\) −0.939693 + 0.342020i −0.0369146 + 0.0134358i
\(649\) −0.965385 + 5.47497i −0.0378947 + 0.214911i
\(650\) −0.907604 + 0.761570i −0.0355991 + 0.0298712i
\(651\) 37.0107 + 31.0557i 1.45057 + 1.21717i
\(652\) −1.51367 8.58445i −0.0592799 0.336193i
\(653\) −5.60813 9.71356i −0.219463 0.380121i 0.735181 0.677871i \(-0.237097\pi\)
−0.954644 + 0.297750i \(0.903764\pi\)
\(654\) −1.44697 + 2.50622i −0.0565809 + 0.0980009i
\(655\) −20.7246 7.54315i −0.809778 0.294735i
\(656\) 5.02481 + 1.82888i 0.196186 + 0.0714059i
\(657\) −7.28359 + 12.6155i −0.284160 + 0.492179i
\(658\) −4.42855 7.67047i −0.172643 0.299026i
\(659\) 2.55468 + 14.4883i 0.0995163 + 0.564385i 0.993270 + 0.115826i \(0.0369515\pi\)
−0.893753 + 0.448559i \(0.851937\pi\)
\(660\) −3.47178 2.91317i −0.135139 0.113395i
\(661\) −19.6480 + 16.4866i −0.764217 + 0.641254i −0.939221 0.343314i \(-0.888451\pi\)
0.175004 + 0.984568i \(0.444006\pi\)
\(662\) −5.47859 + 31.0706i −0.212931 + 1.20759i
\(663\) 1.57145 0.571962i 0.0610301 0.0222132i
\(664\) −8.53983 −0.331410
\(665\) 1.73009 + 21.1983i 0.0670898 + 0.822033i
\(666\) 7.35504 0.285002
\(667\) 0.140682 0.0512040i 0.00544723 0.00198263i
\(668\) −1.04664 + 5.93577i −0.0404956 + 0.229662i
\(669\) 13.1650 11.0468i 0.508989 0.427093i
\(670\) 4.18345 + 3.51033i 0.161621 + 0.135616i
\(671\) −5.35204 30.3530i −0.206613 1.17176i
\(672\) 2.43969 + 4.22567i 0.0941132 + 0.163009i
\(673\) 8.74557 15.1478i 0.337117 0.583903i −0.646772 0.762683i \(-0.723882\pi\)
0.983889 + 0.178780i \(0.0572149\pi\)
\(674\) −10.9290 3.97784i −0.420970 0.153221i
\(675\) −0.939693 0.342020i −0.0361688 0.0131644i
\(676\) 5.79813 10.0427i 0.223005 0.386256i
\(677\) −1.31227 2.27292i −0.0504347 0.0873554i 0.839706 0.543041i \(-0.182727\pi\)
−0.890141 + 0.455686i \(0.849394\pi\)
\(678\) −2.14796 12.1817i −0.0824917 0.467834i
\(679\) −26.1648 21.9549i −1.00411 0.842550i
\(680\) −1.08125 + 0.907278i −0.0414641 + 0.0347925i
\(681\) 4.05391 22.9909i 0.155346 0.881012i
\(682\) 42.1690 15.3482i 1.61473 0.587715i
\(683\) 42.2354 1.61609 0.808045 0.589120i \(-0.200526\pi\)
0.808045 + 0.589120i \(0.200526\pi\)
\(684\) 3.58512 2.47929i 0.137081 0.0947982i
\(685\) −1.89899 −0.0725565
\(686\) 44.9727 16.3687i 1.71707 0.624961i
\(687\) 1.11468 6.32169i 0.0425279 0.241188i
\(688\) −0.748970 + 0.628461i −0.0285542 + 0.0239598i
\(689\) −10.6591 8.94405i −0.406079 0.340741i
\(690\) 0.620615 + 3.51968i 0.0236264 + 0.133992i
\(691\) 23.9957 + 41.5618i 0.912840 + 1.58109i 0.810033 + 0.586384i \(0.199449\pi\)
0.102807 + 0.994701i \(0.467218\pi\)
\(692\) 10.9474 18.9615i 0.416159 0.720808i
\(693\) 20.7802 + 7.56337i 0.789374 + 0.287309i
\(694\) −22.7053 8.26406i −0.861882 0.313700i
\(695\) −11.5385 + 19.9852i −0.437680 + 0.758083i
\(696\) −0.0209445 0.0362770i −0.000793900 0.00137508i
\(697\) −1.31062 7.43291i −0.0496433 0.281541i
\(698\) −3.62654 3.04303i −0.137267 0.115180i
\(699\) 17.4311 14.6264i 0.659304 0.553222i
\(700\) −0.847296 + 4.80526i −0.0320248 + 0.181622i
\(701\) −36.4334 + 13.2607i −1.37607 + 0.500848i −0.920984 0.389600i \(-0.872613\pi\)
−0.455085 + 0.890448i \(0.650391\pi\)
\(702\) −1.18479 −0.0447171
\(703\) −31.0153 + 8.11695i −1.16976 + 0.306136i
\(704\) 4.53209 0.170810
\(705\) −1.70574 + 0.620838i −0.0642418 + 0.0233821i
\(706\) 0.972659 5.51622i 0.0366065 0.207606i
\(707\) 5.24691 4.40268i 0.197330 0.165580i
\(708\) −0.939693 0.788496i −0.0353158 0.0296335i
\(709\) 8.31109 + 47.1345i 0.312129 + 1.77017i 0.587883 + 0.808946i \(0.299962\pi\)
−0.275754 + 0.961228i \(0.588927\pi\)
\(710\) −4.98293 8.63068i −0.187006 0.323904i
\(711\) 3.61334 6.25849i 0.135511 0.234712i
\(712\) −1.59967 0.582232i −0.0599502 0.0218201i
\(713\) −33.2542 12.1035i −1.24538 0.453281i
\(714\) 3.44356 5.96443i 0.128872 0.223213i
\(715\) −2.68479 4.65020i −0.100406 0.173908i
\(716\) 1.27631 + 7.23832i 0.0476980 + 0.270509i
\(717\) −1.47700 1.23935i −0.0551594 0.0462843i
\(718\) 3.59833 3.01935i 0.134288 0.112681i
\(719\) 3.15317 17.8825i 0.117593 0.666905i −0.867840 0.496844i \(-0.834492\pi\)
0.985433 0.170062i \(-0.0543967\pi\)
\(720\) 0.939693 0.342020i 0.0350203 0.0127463i
\(721\) 54.1908 2.01817
\(722\) −12.3819 + 14.4114i −0.460807 + 0.536337i
\(723\) −6.33956 −0.235771
\(724\) −20.0792 + 7.30823i −0.746237 + 0.271608i
\(725\) 0.00727396 0.0412527i 0.000270148 0.00153209i
\(726\) 7.30793 6.13208i 0.271223 0.227583i
\(727\) 17.7672 + 14.9085i 0.658950 + 0.552925i 0.909772 0.415109i \(-0.136256\pi\)
−0.250822 + 0.968033i \(0.580701\pi\)
\(728\) 1.00387 + 5.69323i 0.0372059 + 0.211005i
\(729\) −0.500000 0.866025i −0.0185185 0.0320750i
\(730\) 7.28359 12.6155i 0.269578 0.466922i
\(731\) 1.29679 + 0.471993i 0.0479635 + 0.0174573i
\(732\) 6.39053 + 2.32596i 0.236201 + 0.0859700i
\(733\) −13.5025 + 23.3871i −0.498727 + 0.863821i −0.999999 0.00146910i \(-0.999532\pi\)
0.501272 + 0.865290i \(0.332866\pi\)
\(734\) 13.1755 + 22.8206i 0.486315 + 0.842322i
\(735\) −2.91875 16.5530i −0.107660 0.610568i
\(736\) −2.73783 2.29731i −0.100918 0.0846799i
\(737\) −18.9598 + 15.9091i −0.698392 + 0.586020i
\(738\) −0.928548 + 5.26606i −0.0341803 + 0.193846i
\(739\) 12.8383 4.67275i 0.472263 0.171890i −0.0949140 0.995485i \(-0.530258\pi\)
0.567177 + 0.823596i \(0.308035\pi\)
\(740\) −7.35504 −0.270377
\(741\) 4.99613 1.30753i 0.183537 0.0480331i
\(742\) −57.3046 −2.10372
\(743\) −5.26769 + 1.91728i −0.193253 + 0.0703383i −0.436834 0.899542i \(-0.643900\pi\)
0.243581 + 0.969881i \(0.421678\pi\)
\(744\) −1.71941 + 9.75125i −0.0630365 + 0.357498i
\(745\) 13.3439 11.1969i 0.488882 0.410221i
\(746\) 6.55484 + 5.50017i 0.239990 + 0.201375i
\(747\) −1.48293 8.41009i −0.0542574 0.307709i
\(748\) −3.19846 5.53990i −0.116947 0.202559i
\(749\) −14.2606 + 24.7001i −0.521070 + 0.902520i
\(750\) 0.939693 + 0.342020i 0.0343127 + 0.0124888i
\(751\) −28.4136 10.3417i −1.03683 0.377374i −0.233150 0.972441i \(-0.574903\pi\)
−0.803676 + 0.595067i \(0.797126\pi\)
\(752\) 0.907604 1.57202i 0.0330969 0.0573255i
\(753\) 1.02481 + 1.77503i 0.0373463 + 0.0646857i
\(754\) −0.00861813 0.0488759i −0.000313854 0.00177995i
\(755\) 0.373455 + 0.313366i 0.0135914 + 0.0114046i
\(756\) −3.73783 + 3.13641i −0.135943 + 0.114070i
\(757\) −0.331566 + 1.88041i −0.0120510 + 0.0683445i −0.990240 0.139371i \(-0.955492\pi\)
0.978189 + 0.207716i \(0.0666029\pi\)
\(758\) −15.1750 + 5.52325i −0.551181 + 0.200613i
\(759\) −16.1976 −0.587935
\(760\) −3.58512 + 2.47929i −0.130046 + 0.0899334i
\(761\) 43.7124 1.58457 0.792287 0.610148i \(-0.208890\pi\)
0.792287 + 0.610148i \(0.208890\pi\)
\(762\) −1.05778 + 0.385001i −0.0383194 + 0.0139471i
\(763\) −2.45202 + 13.9061i −0.0887690 + 0.503434i
\(764\) −7.46064 + 6.26022i −0.269916 + 0.226487i
\(765\) −1.08125 0.907278i −0.0390927 0.0328027i
\(766\) −0.515730