Properties

Label 570.2.u.h
Level $570$
Weight $2$
Character orbit 570.u
Analytic conductor $4.551$
Analytic rank $0$
Dimension $6$
CM no
Inner twists $2$

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) \(=\) \( 570 = 2 \cdot 3 \cdot 5 \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 570.u (of order \(9\), degree \(6\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(4.55147291521\)
Analytic rank: \(0\)
Dimension: \(6\)
Coefficient field: \(\Q(\zeta_{18})\)
Defining polynomial: \(x^{6} - x^{3} + 1\)
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{9}]$

$q$-expansion

Coefficients of the \(q\)-expansion are expressed in terms of a primitive root of unity \(\zeta_{18}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + ( \zeta_{18} - \zeta_{18}^{4} ) q^{2} -\zeta_{18} q^{3} -\zeta_{18}^{5} q^{4} -\zeta_{18}^{4} q^{5} + ( -\zeta_{18}^{2} + \zeta_{18}^{5} ) q^{6} + ( 3 - \zeta_{18}^{2} - 3 \zeta_{18}^{3} + \zeta_{18}^{4} + \zeta_{18}^{5} ) q^{7} -\zeta_{18}^{3} q^{8} + \zeta_{18}^{2} q^{9} +O(q^{10})\) \( q + ( \zeta_{18} - \zeta_{18}^{4} ) q^{2} -\zeta_{18} q^{3} -\zeta_{18}^{5} q^{4} -\zeta_{18}^{4} q^{5} + ( -\zeta_{18}^{2} + \zeta_{18}^{5} ) q^{6} + ( 3 - \zeta_{18}^{2} - 3 \zeta_{18}^{3} + \zeta_{18}^{4} + \zeta_{18}^{5} ) q^{7} -\zeta_{18}^{3} q^{8} + \zeta_{18}^{2} q^{9} -\zeta_{18}^{2} q^{10} + ( \zeta_{18} - \zeta_{18}^{2} - 3 \zeta_{18}^{3} - \zeta_{18}^{4} + \zeta_{18}^{5} ) q^{11} + ( -1 + \zeta_{18}^{3} ) q^{12} + ( 1 + \zeta_{18} + \zeta_{18}^{3} - 2 \zeta_{18}^{4} ) q^{13} + ( -1 + \zeta_{18}^{2} + \zeta_{18}^{3} - 3 \zeta_{18}^{4} ) q^{14} + \zeta_{18}^{5} q^{15} -\zeta_{18} q^{16} + ( -1 - 2 \zeta_{18} + \zeta_{18}^{2} - \zeta_{18}^{3} + 2 \zeta_{18}^{4} + \zeta_{18}^{5} ) q^{17} + q^{18} + ( -2 - 2 \zeta_{18}^{2} + \zeta_{18}^{3} - 2 \zeta_{18}^{4} + 4 \zeta_{18}^{5} ) q^{19} - q^{20} + ( 1 - 3 \zeta_{18} + 3 \zeta_{18}^{4} - \zeta_{18}^{5} ) q^{21} + ( -1 - 3 \zeta_{18} + \zeta_{18}^{3} - \zeta_{18}^{5} ) q^{22} + ( 2 + \zeta_{18} - 3 \zeta_{18}^{3} - 3 \zeta_{18}^{4} + \zeta_{18}^{5} ) q^{23} + \zeta_{18}^{4} q^{24} + ( -\zeta_{18}^{2} + \zeta_{18}^{5} ) q^{25} + ( 2 \zeta_{18} - \zeta_{18}^{2} - \zeta_{18}^{4} - \zeta_{18}^{5} ) q^{26} -\zeta_{18}^{3} q^{27} + ( 1 - 3 \zeta_{18}^{2} + \zeta_{18}^{4} ) q^{28} + ( -3 \zeta_{18} - \zeta_{18}^{2} - 3 \zeta_{18}^{3} ) q^{29} + \zeta_{18}^{3} q^{30} + ( 6 + 5 \zeta_{18} - 3 \zeta_{18}^{2} - 6 \zeta_{18}^{3} - 2 \zeta_{18}^{4} - 2 \zeta_{18}^{5} ) q^{31} + ( -\zeta_{18}^{2} + \zeta_{18}^{5} ) q^{32} + ( 1 - \zeta_{18}^{2} + 3 \zeta_{18}^{4} + \zeta_{18}^{5} ) q^{33} + ( 1 - 2 \zeta_{18} + \zeta_{18}^{3} + \zeta_{18}^{4} + 2 \zeta_{18}^{5} ) q^{34} + ( -3 \zeta_{18} + \zeta_{18}^{2} + \zeta_{18}^{3} - \zeta_{18}^{5} ) q^{35} + ( \zeta_{18} - \zeta_{18}^{4} ) q^{36} + ( -1 - 2 \zeta_{18} - 2 \zeta_{18}^{2} + 5 \zeta_{18}^{4} - 3 \zeta_{18}^{5} ) q^{37} + ( -2 - \zeta_{18} - 2 \zeta_{18}^{2} + 4 \zeta_{18}^{3} + 2 \zeta_{18}^{4} ) q^{38} + ( -\zeta_{18} - \zeta_{18}^{2} - \zeta_{18}^{4} + 2 \zeta_{18}^{5} ) q^{39} + ( -\zeta_{18} + \zeta_{18}^{4} ) q^{40} + ( -1 + 5 \zeta_{18} - \zeta_{18}^{2} ) q^{41} + ( \zeta_{18} - \zeta_{18}^{3} - \zeta_{18}^{4} + 3 \zeta_{18}^{5} ) q^{42} + ( 2 - 2 \zeta_{18}^{2} + 3 \zeta_{18}^{3} - 3 \zeta_{18}^{4} + 5 \zeta_{18}^{5} ) q^{43} + ( -3 \zeta_{18}^{2} - \zeta_{18}^{3} + \zeta_{18}^{4} + 3 \zeta_{18}^{5} ) q^{44} + ( 1 - \zeta_{18}^{3} ) q^{45} + ( -\zeta_{18} - 2 \zeta_{18}^{2} + \zeta_{18}^{3} - 2 \zeta_{18}^{4} - \zeta_{18}^{5} ) q^{46} + ( -1 + 2 \zeta_{18} - 3 \zeta_{18}^{2} + 2 \zeta_{18}^{3} - \zeta_{18}^{4} ) q^{47} + \zeta_{18}^{2} q^{48} + ( 7 \zeta_{18} - \zeta_{18}^{2} - 4 \zeta_{18}^{3} - \zeta_{18}^{4} + 7 \zeta_{18}^{5} ) q^{49} + ( -1 + \zeta_{18}^{3} ) q^{50} + ( 1 + \zeta_{18} + 2 \zeta_{18}^{2} - 2 \zeta_{18}^{3} + \zeta_{18}^{4} - 2 \zeta_{18}^{5} ) q^{51} + ( -1 + \zeta_{18}^{2} - \zeta_{18}^{3} - 2 \zeta_{18}^{5} ) q^{52} + ( -1 - 5 \zeta_{18} + 6 \zeta_{18}^{3} + 6 \zeta_{18}^{4} - 2 \zeta_{18}^{5} ) q^{53} -\zeta_{18} q^{54} + ( -3 \zeta_{18} - \zeta_{18}^{2} + \zeta_{18}^{3} + 3 \zeta_{18}^{4} ) q^{55} + ( -3 + \zeta_{18} + \zeta_{18}^{2} - \zeta_{18}^{4} ) q^{56} + ( 4 + 2 \zeta_{18} - 2 \zeta_{18}^{3} - \zeta_{18}^{4} + 2 \zeta_{18}^{5} ) q^{57} + ( -1 - 3 \zeta_{18} - 3 \zeta_{18}^{2} + 3 \zeta_{18}^{5} ) q^{58} + ( 2 + \zeta_{18} + \zeta_{18}^{2} - \zeta_{18}^{3} - \zeta_{18}^{4} - 2 \zeta_{18}^{5} ) q^{59} + \zeta_{18} q^{60} + ( 3 + 2 \zeta_{18} - 5 \zeta_{18}^{3} - 5 \zeta_{18}^{4} + 2 \zeta_{18}^{5} ) q^{61} + ( -3 + 3 \zeta_{18}^{2} - 2 \zeta_{18}^{3} - 6 \zeta_{18}^{4} - 5 \zeta_{18}^{5} ) q^{62} + ( -1 - \zeta_{18} + 3 \zeta_{18}^{2} + \zeta_{18}^{3} - 3 \zeta_{18}^{5} ) q^{63} + ( -1 + \zeta_{18}^{3} ) q^{64} + ( \zeta_{18} - 2 \zeta_{18}^{2} - 2 \zeta_{18}^{4} + \zeta_{18}^{5} ) q^{65} + ( -1 + \zeta_{18} + 3 \zeta_{18}^{2} + \zeta_{18}^{3} - \zeta_{18}^{4} ) q^{66} + ( 7 - 2 \zeta_{18} + 7 \zeta_{18}^{2} - 2 \zeta_{18}^{3} + 7 \zeta_{18}^{4} ) q^{67} + ( 2 \zeta_{18} - \zeta_{18}^{2} + 2 \zeta_{18}^{3} - \zeta_{18}^{4} + 2 \zeta_{18}^{5} ) q^{68} + ( 1 - 2 \zeta_{18} - \zeta_{18}^{2} - \zeta_{18}^{3} + 3 \zeta_{18}^{4} + 3 \zeta_{18}^{5} ) q^{69} + ( 1 + \zeta_{18} - 3 \zeta_{18}^{2} - \zeta_{18}^{3} + 3 \zeta_{18}^{5} ) q^{70} + ( -5 + 5 \zeta_{18}^{2} - 2 \zeta_{18}^{3} - 3 \zeta_{18}^{4} - 7 \zeta_{18}^{5} ) q^{71} -\zeta_{18}^{5} q^{72} + ( -1 + 2 \zeta_{18} + 8 \zeta_{18}^{2} + 9 \zeta_{18}^{3} - 9 \zeta_{18}^{5} ) q^{73} + ( -2 - \zeta_{18} + 3 \zeta_{18}^{2} - 3 \zeta_{18}^{3} + \zeta_{18}^{4} + 2 \zeta_{18}^{5} ) q^{74} + q^{75} + ( -2 + 2 \zeta_{18} + \zeta_{18}^{2} + 2 \zeta_{18}^{4} + \zeta_{18}^{5} ) q^{76} + ( -10 + 4 \zeta_{18} + 4 \zeta_{18}^{2} - 7 \zeta_{18}^{4} + 3 \zeta_{18}^{5} ) q^{77} + ( -1 - 2 \zeta_{18}^{2} + 2 \zeta_{18}^{3} + \zeta_{18}^{5} ) q^{78} + ( -1 + 5 \zeta_{18} - 2 \zeta_{18}^{2} - \zeta_{18}^{3} + \zeta_{18}^{5} ) q^{79} + \zeta_{18}^{5} q^{80} + \zeta_{18}^{4} q^{81} + ( -1 - \zeta_{18} + 5 \zeta_{18}^{2} + \zeta_{18}^{4} - 5 \zeta_{18}^{5} ) q^{82} + ( -1 + 5 \zeta_{18} - 6 \zeta_{18}^{2} + \zeta_{18}^{3} + \zeta_{18}^{4} + \zeta_{18}^{5} ) q^{83} + ( -\zeta_{18} + 3 \zeta_{18}^{3} - \zeta_{18}^{5} ) q^{84} + ( 2 - \zeta_{18} + 2 \zeta_{18}^{2} - \zeta_{18}^{3} + 2 \zeta_{18}^{4} ) q^{85} + ( -2 + 5 \zeta_{18} - 3 \zeta_{18}^{2} + 5 \zeta_{18}^{3} - 2 \zeta_{18}^{4} ) q^{86} + ( 3 \zeta_{18}^{2} + \zeta_{18}^{3} + 3 \zeta_{18}^{4} ) q^{87} + ( -3 - \zeta_{18} + \zeta_{18}^{2} + 3 \zeta_{18}^{3} ) q^{88} + ( 3 + 3 \zeta_{18} + 7 \zeta_{18}^{2} - 5 \zeta_{18}^{3} + 2 \zeta_{18}^{4} - 7 \zeta_{18}^{5} ) q^{89} -\zeta_{18}^{4} q^{90} + ( 5 - 4 \zeta_{18} - \zeta_{18}^{3} - \zeta_{18}^{4} ) q^{91} + ( -2 + \zeta_{18} - 3 \zeta_{18}^{2} - \zeta_{18}^{3} + \zeta_{18}^{5} ) q^{92} + ( -2 - 6 \zeta_{18} - 5 \zeta_{18}^{2} + 5 \zeta_{18}^{3} + 6 \zeta_{18}^{4} + 2 \zeta_{18}^{5} ) q^{93} + ( -3 + \zeta_{18} + \zeta_{18}^{2} + \zeta_{18}^{4} - 2 \zeta_{18}^{5} ) q^{94} + ( 2 + \zeta_{18} - 2 \zeta_{18}^{2} + 2 \zeta_{18}^{3} + \zeta_{18}^{4} + 2 \zeta_{18}^{5} ) q^{95} + q^{96} + ( 7 \zeta_{18} - 7 \zeta_{18}^{4} ) q^{97} + ( -1 - 4 \zeta_{18} + 6 \zeta_{18}^{2} + 7 \zeta_{18}^{3} - 7 \zeta_{18}^{5} ) q^{98} + ( 1 - \zeta_{18} - 3 \zeta_{18}^{5} ) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6q + 9q^{7} - 3q^{8} + O(q^{10}) \) \( 6q + 9q^{7} - 3q^{8} - 9q^{11} - 3q^{12} + 9q^{13} - 3q^{14} - 9q^{17} + 6q^{18} - 9q^{19} - 6q^{20} + 6q^{21} - 3q^{22} + 3q^{23} - 3q^{27} + 6q^{28} - 9q^{29} + 3q^{30} + 18q^{31} + 6q^{33} + 9q^{34} + 3q^{35} - 6q^{37} - 6q^{41} - 3q^{42} + 21q^{43} - 3q^{44} + 3q^{45} + 3q^{46} - 12q^{49} - 3q^{50} - 9q^{52} + 12q^{53} + 3q^{55} - 18q^{56} + 18q^{57} - 6q^{58} + 9q^{59} + 3q^{61} - 24q^{62} - 3q^{63} - 3q^{64} - 3q^{66} + 36q^{67} + 6q^{68} + 3q^{69} + 3q^{70} - 36q^{71} + 21q^{73} - 21q^{74} + 6q^{75} - 12q^{76} - 60q^{77} - 9q^{79} - 6q^{82} - 3q^{83} + 9q^{84} + 9q^{85} + 3q^{86} + 3q^{87} - 9q^{88} + 3q^{89} + 27q^{91} - 15q^{92} + 3q^{93} - 18q^{94} + 18q^{95} + 6q^{96} + 15q^{98} + 6q^{99} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/570\mathbb{Z}\right)^\times\).

\(n\) \(191\) \(211\) \(457\)
\(\chi(n)\) \(1\) \(-\zeta_{18}^{5}\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
61.1
−0.173648 0.984808i
−0.173648 + 0.984808i
0.939693 0.342020i
0.939693 + 0.342020i
−0.766044 0.642788i
−0.766044 + 0.642788i
−0.939693 0.342020i 0.173648 + 0.984808i 0.766044 + 0.642788i −0.766044 + 0.642788i 0.173648 0.984808i 2.43969 4.22567i −0.500000 0.866025i −0.939693 + 0.342020i 0.939693 0.342020i
271.1 −0.939693 + 0.342020i 0.173648 0.984808i 0.766044 0.642788i −0.766044 0.642788i 0.173648 + 0.984808i 2.43969 + 4.22567i −0.500000 + 0.866025i −0.939693 0.342020i 0.939693 + 0.342020i
301.1 0.766044 + 0.642788i −0.939693 + 0.342020i 0.173648 + 0.984808i −0.173648 + 0.984808i −0.939693 0.342020i 0.733956 + 1.27125i −0.500000 + 0.866025i 0.766044 0.642788i −0.766044 + 0.642788i
481.1 0.766044 0.642788i −0.939693 0.342020i 0.173648 0.984808i −0.173648 0.984808i −0.939693 + 0.342020i 0.733956 1.27125i −0.500000 0.866025i 0.766044 + 0.642788i −0.766044 0.642788i
511.1 0.173648 0.984808i 0.766044 + 0.642788i −0.939693 0.342020i 0.939693 0.342020i 0.766044 0.642788i 1.32635 + 2.29731i −0.500000 + 0.866025i 0.173648 + 0.984808i −0.173648 0.984808i
541.1 0.173648 + 0.984808i 0.766044 0.642788i −0.939693 + 0.342020i 0.939693 + 0.342020i 0.766044 + 0.642788i 1.32635 2.29731i −0.500000 0.866025i 0.173648 0.984808i −0.173648 + 0.984808i
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 541.1
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
19.e even 9 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 570.2.u.h 6
19.e even 9 1 inner 570.2.u.h 6
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
570.2.u.h 6 1.a even 1 1 trivial
570.2.u.h 6 19.e even 9 1 inner

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(570, [\chi])\):

\( T_{7}^{6} - 9 T_{7}^{5} + 57 T_{7}^{4} - 178 T_{7}^{3} + 405 T_{7}^{2} - 456 T_{7} + 361 \)
\( T_{11}^{6} + 9 T_{11}^{5} + 57 T_{11}^{4} + 182 T_{11}^{3} + 423 T_{11}^{2} + 408 T_{11} + 289 \)

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( 1 + T^{3} + T^{6} \)
$3$ \( 1 + T^{3} + T^{6} \)
$5$ \( 1 - T^{3} + T^{6} \)
$7$ \( 361 - 456 T + 405 T^{2} - 178 T^{3} + 57 T^{4} - 9 T^{5} + T^{6} \)
$11$ \( 289 + 408 T + 423 T^{2} + 182 T^{3} + 57 T^{4} + 9 T^{5} + T^{6} \)
$13$ \( 81 - 81 T + 81 T^{2} - 72 T^{3} + 36 T^{4} - 9 T^{5} + T^{6} \)
$17$ \( 361 + 684 T + 522 T^{2} + 208 T^{3} + 54 T^{4} + 9 T^{5} + T^{6} \)
$19$ \( 6859 + 3249 T - 179 T^{3} + 9 T^{5} + T^{6} \)
$23$ \( 3249 - 513 T - 18 T^{2} - 24 T^{3} + 9 T^{4} - 3 T^{5} + T^{6} \)
$29$ \( 1 + 45 T + 576 T^{2} + 80 T^{3} + 45 T^{4} + 9 T^{5} + T^{6} \)
$31$ \( 83521 + 14739 T + 7803 T^{2} - 1496 T^{3} + 273 T^{4} - 18 T^{5} + T^{6} \)
$37$ \( ( -163 - 54 T + 3 T^{2} + T^{3} )^{2} \)
$41$ \( 11881 - 3597 T - 48 T^{2} - 46 T^{3} + 30 T^{4} + 6 T^{5} + T^{6} \)
$43$ \( 1369 + 1776 T + 1011 T^{2} - 161 T^{3} + 132 T^{4} - 21 T^{5} + T^{6} \)
$47$ \( 81 + 81 T - 90 T^{3} + 36 T^{4} + T^{6} \)
$53$ \( 25281 + 24327 T + 6084 T^{2} - 213 T^{3} + 99 T^{4} - 12 T^{5} + T^{6} \)
$59$ \( 1 + 27 T^{2} - 53 T^{3} + 36 T^{4} - 9 T^{5} + T^{6} \)
$61$ \( 72361 - 10491 T + 411 T^{2} - 100 T^{3} + 12 T^{4} - 3 T^{5} + T^{6} \)
$67$ \( 908209 - 437427 T + 86670 T^{2} - 9512 T^{3} + 738 T^{4} - 36 T^{5} + T^{6} \)
$71$ \( 641601 + 252315 T + 51354 T^{2} + 6876 T^{3} + 630 T^{4} + 36 T^{5} + T^{6} \)
$73$ \( 1819801 + 129504 T - 1668 T^{2} - 2422 T^{3} + 264 T^{4} - 21 T^{5} + T^{6} \)
$79$ \( 5041 - 4473 T + 522 T^{2} + 280 T^{3} + 81 T^{4} + 9 T^{5} + T^{6} \)
$83$ \( 5329 + 6570 T + 8319 T^{2} - 124 T^{3} + 99 T^{4} + 3 T^{5} + T^{6} \)
$89$ \( 47961 - 11826 T + 16641 T^{2} - 645 T^{3} - 108 T^{4} - 3 T^{5} + T^{6} \)
$97$ \( 117649 + 343 T^{3} + T^{6} \)
show more
show less