Properties

Label 570.2.u.f.61.1
Level $570$
Weight $2$
Character 570.61
Analytic conductor $4.551$
Analytic rank $0$
Dimension $6$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [570,2,Mod(61,570)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(570, base_ring=CyclotomicField(18))
 
chi = DirichletCharacter(H, H._module([0, 0, 2]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("570.61");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 570 = 2 \cdot 3 \cdot 5 \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 570.u (of order \(9\), degree \(6\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(4.55147291521\)
Analytic rank: \(0\)
Dimension: \(6\)
Coefficient field: \(\Q(\zeta_{18})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - x^{3} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{9}]$

Embedding invariants

Embedding label 61.1
Root \(-0.173648 - 0.984808i\) of defining polynomial
Character \(\chi\) \(=\) 570.61
Dual form 570.2.u.f.271.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.939693 + 0.342020i) q^{2} +(0.173648 + 0.984808i) q^{3} +(0.766044 + 0.642788i) q^{4} +(-0.766044 + 0.642788i) q^{5} +(-0.173648 + 0.984808i) q^{6} +(1.43969 - 2.49362i) q^{7} +(0.500000 + 0.866025i) q^{8} +(-0.939693 + 0.342020i) q^{9} +O(q^{10})\) \(q+(0.939693 + 0.342020i) q^{2} +(0.173648 + 0.984808i) q^{3} +(0.766044 + 0.642788i) q^{4} +(-0.766044 + 0.642788i) q^{5} +(-0.173648 + 0.984808i) q^{6} +(1.43969 - 2.49362i) q^{7} +(0.500000 + 0.866025i) q^{8} +(-0.939693 + 0.342020i) q^{9} +(-0.939693 + 0.342020i) q^{10} +(2.14543 + 3.71599i) q^{11} +(-0.500000 + 0.866025i) q^{12} +(-0.794263 + 4.50449i) q^{13} +(2.20574 - 1.85083i) q^{14} +(-0.766044 - 0.642788i) q^{15} +(0.173648 + 0.984808i) q^{16} +(5.08512 + 1.85083i) q^{17} -1.00000 q^{18} +(-3.79086 - 2.15160i) q^{19} -1.00000 q^{20} +(2.70574 + 0.984808i) q^{21} +(0.745100 + 4.22567i) q^{22} +(-0.0432332 - 0.0362770i) q^{23} +(-0.766044 + 0.642788i) q^{24} +(0.173648 - 0.984808i) q^{25} +(-2.28699 + 3.96118i) q^{26} +(-0.500000 - 0.866025i) q^{27} +(2.70574 - 0.984808i) q^{28} +(7.59879 - 2.76573i) q^{29} +(-0.500000 - 0.866025i) q^{30} +(-1.88666 + 3.26779i) q^{31} +(-0.173648 + 0.984808i) q^{32} +(-3.28699 + 2.75811i) q^{33} +(4.14543 + 3.47843i) q^{34} +(0.500000 + 2.83564i) q^{35} +(-0.939693 - 0.342020i) q^{36} -11.5963 q^{37} +(-2.82635 - 3.31839i) q^{38} -4.57398 q^{39} +(-0.939693 - 0.342020i) q^{40} +(-1.37686 - 7.80856i) q^{41} +(2.20574 + 1.85083i) q^{42} +(3.28106 - 2.75314i) q^{43} +(-0.745100 + 4.22567i) q^{44} +(0.500000 - 0.866025i) q^{45} +(-0.0282185 - 0.0488759i) q^{46} +(-1.59967 + 0.582232i) q^{47} +(-0.939693 + 0.342020i) q^{48} +(-0.645430 - 1.11792i) q^{49} +(0.500000 - 0.866025i) q^{50} +(-0.939693 + 5.32926i) q^{51} +(-3.50387 + 2.94010i) q^{52} +(-3.52094 - 2.95442i) q^{53} +(-0.173648 - 0.984808i) q^{54} +(-4.03209 - 1.46756i) q^{55} +2.87939 q^{56} +(1.46064 - 4.10689i) q^{57} +8.08647 q^{58} +(-5.13816 - 1.87014i) q^{59} +(-0.173648 - 0.984808i) q^{60} +(7.67752 + 6.44220i) q^{61} +(-2.89053 + 2.42544i) q^{62} +(-0.500000 + 2.83564i) q^{63} +(-0.500000 + 0.866025i) q^{64} +(-2.28699 - 3.96118i) q^{65} +(-4.03209 + 1.46756i) q^{66} +(13.1814 - 4.79763i) q^{67} +(2.70574 + 4.68647i) q^{68} +(0.0282185 - 0.0488759i) q^{69} +(-0.500000 + 2.83564i) q^{70} +(8.98158 - 7.53644i) q^{71} +(-0.766044 - 0.642788i) q^{72} +(-2.79813 - 15.8690i) q^{73} +(-10.8969 - 3.96616i) q^{74} +1.00000 q^{75} +(-1.52094 - 4.08494i) q^{76} +12.3550 q^{77} +(-4.29813 - 1.56439i) q^{78} +(0.0778483 + 0.441500i) q^{79} +(-0.766044 - 0.642788i) q^{80} +(0.766044 - 0.642788i) q^{81} +(1.37686 - 7.80856i) q^{82} +(7.82160 - 13.5474i) q^{83} +(1.43969 + 2.49362i) q^{84} +(-5.08512 + 1.85083i) q^{85} +(4.02481 - 1.46491i) q^{86} +(4.04323 + 7.00309i) q^{87} +(-2.14543 + 3.71599i) q^{88} +(-0.337496 + 1.91404i) q^{89} +(0.766044 - 0.642788i) q^{90} +(10.0890 + 8.46567i) q^{91} +(-0.00980018 - 0.0555796i) q^{92} +(-3.54576 - 1.29055i) q^{93} -1.70233 q^{94} +(4.28699 - 0.788496i) q^{95} -1.00000 q^{96} +(-11.1099 - 4.04369i) q^{97} +(-0.224155 - 1.27125i) q^{98} +(-3.28699 - 2.75811i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q + 3 q^{7} + 3 q^{8}+O(q^{10}) \) Copy content Toggle raw display \( 6 q + 3 q^{7} + 3 q^{8} - 3 q^{11} - 3 q^{12} - 15 q^{13} + 3 q^{14} + 9 q^{17} - 6 q^{18} + 9 q^{19} - 6 q^{20} + 6 q^{21} + 3 q^{22} + 15 q^{23} - 6 q^{26} - 3 q^{27} + 6 q^{28} + 3 q^{29} - 3 q^{30} - 18 q^{31} - 12 q^{33} + 9 q^{34} + 3 q^{35} - 42 q^{37} - 18 q^{38} - 12 q^{39} - 12 q^{41} + 3 q^{42} - 15 q^{43} - 3 q^{44} + 3 q^{45} - 15 q^{46} - 24 q^{47} + 12 q^{49} + 3 q^{50} + 3 q^{52} - 18 q^{53} - 15 q^{55} + 6 q^{56} + 18 q^{58} + 3 q^{59} + 21 q^{61} - 3 q^{63} - 3 q^{64} - 6 q^{65} - 15 q^{66} + 30 q^{67} + 6 q^{68} + 15 q^{69} - 3 q^{70} + 42 q^{71} - 3 q^{73} - 9 q^{74} + 6 q^{75} - 6 q^{76} + 24 q^{77} - 12 q^{78} - 39 q^{79} + 12 q^{82} + 15 q^{83} + 3 q^{84} - 9 q^{85} - 3 q^{86} + 9 q^{87} + 3 q^{88} + 3 q^{89} + 15 q^{91} - 3 q^{92} + 9 q^{93} + 42 q^{94} + 18 q^{95} - 6 q^{96} - 18 q^{97} - 3 q^{98} - 12 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/570\mathbb{Z}\right)^\times\).

\(n\) \(191\) \(211\) \(457\)
\(\chi(n)\) \(1\) \(e\left(\frac{1}{9}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.939693 + 0.342020i 0.664463 + 0.241845i
\(3\) 0.173648 + 0.984808i 0.100256 + 0.568579i
\(4\) 0.766044 + 0.642788i 0.383022 + 0.321394i
\(5\) −0.766044 + 0.642788i −0.342585 + 0.287463i
\(6\) −0.173648 + 0.984808i −0.0708916 + 0.402046i
\(7\) 1.43969 2.49362i 0.544153 0.942500i −0.454507 0.890743i \(-0.650185\pi\)
0.998660 0.0517569i \(-0.0164821\pi\)
\(8\) 0.500000 + 0.866025i 0.176777 + 0.306186i
\(9\) −0.939693 + 0.342020i −0.313231 + 0.114007i
\(10\) −0.939693 + 0.342020i −0.297157 + 0.108156i
\(11\) 2.14543 + 3.71599i 0.646871 + 1.12041i 0.983866 + 0.178907i \(0.0572563\pi\)
−0.336995 + 0.941507i \(0.609410\pi\)
\(12\) −0.500000 + 0.866025i −0.144338 + 0.250000i
\(13\) −0.794263 + 4.50449i −0.220289 + 1.24932i 0.651200 + 0.758906i \(0.274266\pi\)
−0.871489 + 0.490415i \(0.836845\pi\)
\(14\) 2.20574 1.85083i 0.589508 0.494656i
\(15\) −0.766044 0.642788i −0.197792 0.165967i
\(16\) 0.173648 + 0.984808i 0.0434120 + 0.246202i
\(17\) 5.08512 + 1.85083i 1.23332 + 0.448893i 0.874734 0.484603i \(-0.161036\pi\)
0.358589 + 0.933496i \(0.383258\pi\)
\(18\) −1.00000 −0.235702
\(19\) −3.79086 2.15160i −0.869683 0.493611i
\(20\) −1.00000 −0.223607
\(21\) 2.70574 + 0.984808i 0.590440 + 0.214903i
\(22\) 0.745100 + 4.22567i 0.158856 + 0.900916i
\(23\) −0.0432332 0.0362770i −0.00901475 0.00756428i 0.638269 0.769813i \(-0.279651\pi\)
−0.647284 + 0.762249i \(0.724095\pi\)
\(24\) −0.766044 + 0.642788i −0.156368 + 0.131208i
\(25\) 0.173648 0.984808i 0.0347296 0.196962i
\(26\) −2.28699 + 3.96118i −0.448515 + 0.776852i
\(27\) −0.500000 0.866025i −0.0962250 0.166667i
\(28\) 2.70574 0.984808i 0.511336 0.186111i
\(29\) 7.59879 2.76573i 1.41106 0.513584i 0.479619 0.877477i \(-0.340775\pi\)
0.931441 + 0.363893i \(0.118552\pi\)
\(30\) −0.500000 0.866025i −0.0912871 0.158114i
\(31\) −1.88666 + 3.26779i −0.338854 + 0.586912i −0.984217 0.176963i \(-0.943373\pi\)
0.645363 + 0.763876i \(0.276706\pi\)
\(32\) −0.173648 + 0.984808i −0.0306970 + 0.174091i
\(33\) −3.28699 + 2.75811i −0.572191 + 0.480126i
\(34\) 4.14543 + 3.47843i 0.710935 + 0.596546i
\(35\) 0.500000 + 2.83564i 0.0845154 + 0.479311i
\(36\) −0.939693 0.342020i −0.156615 0.0570034i
\(37\) −11.5963 −1.90641 −0.953207 0.302318i \(-0.902240\pi\)
−0.953207 + 0.302318i \(0.902240\pi\)
\(38\) −2.82635 3.31839i −0.458495 0.538315i
\(39\) −4.57398 −0.732423
\(40\) −0.939693 0.342020i −0.148578 0.0540781i
\(41\) −1.37686 7.80856i −0.215029 1.21949i −0.880856 0.473385i \(-0.843032\pi\)
0.665826 0.746107i \(-0.268079\pi\)
\(42\) 2.20574 + 1.85083i 0.340353 + 0.285590i
\(43\) 3.28106 2.75314i 0.500357 0.419849i −0.357364 0.933965i \(-0.616324\pi\)
0.857721 + 0.514116i \(0.171880\pi\)
\(44\) −0.745100 + 4.22567i −0.112328 + 0.637044i
\(45\) 0.500000 0.866025i 0.0745356 0.129099i
\(46\) −0.0282185 0.0488759i −0.00416059 0.00720635i
\(47\) −1.59967 + 0.582232i −0.233336 + 0.0849273i −0.456042 0.889958i \(-0.650733\pi\)
0.222706 + 0.974886i \(0.428511\pi\)
\(48\) −0.939693 + 0.342020i −0.135633 + 0.0493664i
\(49\) −0.645430 1.11792i −0.0922042 0.159702i
\(50\) 0.500000 0.866025i 0.0707107 0.122474i
\(51\) −0.939693 + 5.32926i −0.131583 + 0.746246i
\(52\) −3.50387 + 2.94010i −0.485899 + 0.407718i
\(53\) −3.52094 2.95442i −0.483639 0.405821i 0.368101 0.929786i \(-0.380008\pi\)
−0.851740 + 0.523964i \(0.824452\pi\)
\(54\) −0.173648 0.984808i −0.0236305 0.134015i
\(55\) −4.03209 1.46756i −0.543687 0.197886i
\(56\) 2.87939 0.384774
\(57\) 1.46064 4.10689i 0.193466 0.543971i
\(58\) 8.08647 1.06181
\(59\) −5.13816 1.87014i −0.668931 0.243471i −0.0148434 0.999890i \(-0.504725\pi\)
−0.654087 + 0.756419i \(0.726947\pi\)
\(60\) −0.173648 0.984808i −0.0224179 0.127138i
\(61\) 7.67752 + 6.44220i 0.983006 + 0.824840i 0.984540 0.175159i \(-0.0560440\pi\)
−0.00153459 + 0.999999i \(0.500488\pi\)
\(62\) −2.89053 + 2.42544i −0.367098 + 0.308031i
\(63\) −0.500000 + 2.83564i −0.0629941 + 0.357257i
\(64\) −0.500000 + 0.866025i −0.0625000 + 0.108253i
\(65\) −2.28699 3.96118i −0.283666 0.491324i
\(66\) −4.03209 + 1.46756i −0.496316 + 0.180644i
\(67\) 13.1814 4.79763i 1.61036 0.586124i 0.628851 0.777526i \(-0.283525\pi\)
0.981512 + 0.191402i \(0.0613033\pi\)
\(68\) 2.70574 + 4.68647i 0.328119 + 0.568318i
\(69\) 0.0282185 0.0488759i 0.00339711 0.00588396i
\(70\) −0.500000 + 2.83564i −0.0597614 + 0.338924i
\(71\) 8.98158 7.53644i 1.06592 0.894411i 0.0712413 0.997459i \(-0.477304\pi\)
0.994676 + 0.103048i \(0.0328595\pi\)
\(72\) −0.766044 0.642788i −0.0902792 0.0757532i
\(73\) −2.79813 15.8690i −0.327497 1.85733i −0.491515 0.870869i \(-0.663557\pi\)
0.164018 0.986457i \(-0.447554\pi\)
\(74\) −10.8969 3.96616i −1.26674 0.461056i
\(75\) 1.00000 0.115470
\(76\) −1.52094 4.08494i −0.174464 0.468575i
\(77\) 12.3550 1.40799
\(78\) −4.29813 1.56439i −0.486668 0.177133i
\(79\) 0.0778483 + 0.441500i 0.00875862 + 0.0496726i 0.988874 0.148757i \(-0.0475271\pi\)
−0.980115 + 0.198429i \(0.936416\pi\)
\(80\) −0.766044 0.642788i −0.0856464 0.0718658i
\(81\) 0.766044 0.642788i 0.0851160 0.0714208i
\(82\) 1.37686 7.80856i 0.152049 0.862311i
\(83\) 7.82160 13.5474i 0.858533 1.48702i −0.0147960 0.999891i \(-0.504710\pi\)
0.873329 0.487132i \(-0.161957\pi\)
\(84\) 1.43969 + 2.49362i 0.157083 + 0.272076i
\(85\) −5.08512 + 1.85083i −0.551559 + 0.200751i
\(86\) 4.02481 1.46491i 0.434007 0.157966i
\(87\) 4.04323 + 7.00309i 0.433480 + 0.750810i
\(88\) −2.14543 + 3.71599i −0.228704 + 0.396126i
\(89\) −0.337496 + 1.91404i −0.0357745 + 0.202887i −0.997456 0.0712807i \(-0.977291\pi\)
0.961682 + 0.274168i \(0.0884025\pi\)
\(90\) 0.766044 0.642788i 0.0807482 0.0677558i
\(91\) 10.0890 + 8.46567i 1.05761 + 0.887443i
\(92\) −0.00980018 0.0555796i −0.00102174 0.00579457i
\(93\) −3.54576 1.29055i −0.367678 0.133824i
\(94\) −1.70233 −0.175582
\(95\) 4.28699 0.788496i 0.439836 0.0808980i
\(96\) −1.00000 −0.102062
\(97\) −11.1099 4.04369i −1.12804 0.410574i −0.290462 0.956887i \(-0.593809\pi\)
−0.837581 + 0.546312i \(0.816031\pi\)
\(98\) −0.224155 1.27125i −0.0226431 0.128415i
\(99\) −3.28699 2.75811i −0.330355 0.277201i
\(100\) 0.766044 0.642788i 0.0766044 0.0642788i
\(101\) −3.31567 + 18.8041i −0.329922 + 1.87108i 0.142628 + 0.989776i \(0.454445\pi\)
−0.472550 + 0.881304i \(0.656666\pi\)
\(102\) −2.70574 + 4.68647i −0.267908 + 0.464030i
\(103\) −7.12701 12.3443i −0.702245 1.21632i −0.967677 0.252195i \(-0.918848\pi\)
0.265431 0.964130i \(-0.414486\pi\)
\(104\) −4.29813 + 1.56439i −0.421467 + 0.153401i
\(105\) −2.70574 + 0.984808i −0.264053 + 0.0961074i
\(106\) −2.29813 3.98048i −0.223214 0.386619i
\(107\) 0.0209445 0.0362770i 0.00202478 0.00350703i −0.865011 0.501752i \(-0.832689\pi\)
0.867036 + 0.498245i \(0.166022\pi\)
\(108\) 0.173648 0.984808i 0.0167093 0.0947632i
\(109\) −10.4855 + 8.79834i −1.00432 + 0.842728i −0.987578 0.157132i \(-0.949775\pi\)
−0.0167465 + 0.999860i \(0.505331\pi\)
\(110\) −3.28699 2.75811i −0.313402 0.262976i
\(111\) −2.01367 11.4201i −0.191129 1.08395i
\(112\) 2.70574 + 0.984808i 0.255668 + 0.0930556i
\(113\) 0.369585 0.0347676 0.0173838 0.999849i \(-0.494466\pi\)
0.0173838 + 0.999849i \(0.494466\pi\)
\(114\) 2.77719 3.35965i 0.260108 0.314660i
\(115\) 0.0564370 0.00526278
\(116\) 7.59879 + 2.76573i 0.705530 + 0.256792i
\(117\) −0.794263 4.50449i −0.0734296 0.416440i
\(118\) −4.18866 3.51471i −0.385598 0.323555i
\(119\) 11.9363 10.0157i 1.09420 0.918141i
\(120\) 0.173648 0.984808i 0.0158518 0.0899002i
\(121\) −3.70574 + 6.41852i −0.336885 + 0.583502i
\(122\) 5.01114 + 8.67956i 0.453688 + 0.785810i
\(123\) 7.45084 2.71188i 0.671819 0.244522i
\(124\) −3.54576 + 1.29055i −0.318419 + 0.115895i
\(125\) 0.500000 + 0.866025i 0.0447214 + 0.0774597i
\(126\) −1.43969 + 2.49362i −0.128258 + 0.222149i
\(127\) 2.69072 15.2598i 0.238763 1.35409i −0.595779 0.803148i \(-0.703157\pi\)
0.834542 0.550944i \(-0.185732\pi\)
\(128\) −0.766044 + 0.642788i −0.0677094 + 0.0568149i
\(129\) 3.28106 + 2.75314i 0.288881 + 0.242400i
\(130\) −0.794263 4.50449i −0.0696615 0.395070i
\(131\) 5.53209 + 2.01352i 0.483341 + 0.175922i 0.572186 0.820124i \(-0.306095\pi\)
−0.0888453 + 0.996045i \(0.528318\pi\)
\(132\) −4.29086 −0.373471
\(133\) −10.8229 + 6.35532i −0.938469 + 0.551076i
\(134\) 14.0273 1.21178
\(135\) 0.939693 + 0.342020i 0.0808759 + 0.0294364i
\(136\) 0.939693 + 5.32926i 0.0805780 + 0.456980i
\(137\) −2.51889 2.11360i −0.215203 0.180577i 0.528813 0.848738i \(-0.322637\pi\)
−0.744016 + 0.668161i \(0.767082\pi\)
\(138\) 0.0432332 0.0362770i 0.00368026 0.00308810i
\(139\) −1.93629 + 10.9812i −0.164234 + 0.931417i 0.785617 + 0.618713i \(0.212346\pi\)
−0.949851 + 0.312703i \(0.898765\pi\)
\(140\) −1.43969 + 2.49362i −0.121676 + 0.210749i
\(141\) −0.851167 1.47426i −0.0716812 0.124155i
\(142\) 11.0175 4.01006i 0.924571 0.336517i
\(143\) −18.4427 + 6.71259i −1.54225 + 0.561335i
\(144\) −0.500000 0.866025i −0.0416667 0.0721688i
\(145\) −4.04323 + 7.00309i −0.335772 + 0.581575i
\(146\) 2.79813 15.8690i 0.231575 1.31333i
\(147\) 0.988856 0.829748i 0.0815594 0.0684365i
\(148\) −8.88326 7.45394i −0.730199 0.612710i
\(149\) −1.51501 8.59208i −0.124115 0.703890i −0.981830 0.189764i \(-0.939228\pi\)
0.857715 0.514126i \(-0.171884\pi\)
\(150\) 0.939693 + 0.342020i 0.0767256 + 0.0279258i
\(151\) 7.83750 0.637806 0.318903 0.947787i \(-0.396686\pi\)
0.318903 + 0.947787i \(0.396686\pi\)
\(152\) −0.0320889 4.35878i −0.00260275 0.353544i
\(153\) −5.41147 −0.437492
\(154\) 11.6099 + 4.22567i 0.935555 + 0.340514i
\(155\) −0.655230 3.71599i −0.0526293 0.298476i
\(156\) −3.50387 2.94010i −0.280534 0.235396i
\(157\) −4.98886 + 4.18615i −0.398154 + 0.334091i −0.819780 0.572679i \(-0.805904\pi\)
0.421626 + 0.906770i \(0.361460\pi\)
\(158\) −0.0778483 + 0.441500i −0.00619328 + 0.0351238i
\(159\) 2.29813 3.98048i 0.182254 0.315673i
\(160\) −0.500000 0.866025i −0.0395285 0.0684653i
\(161\) −0.152704 + 0.0555796i −0.0120347 + 0.00438028i
\(162\) 0.939693 0.342020i 0.0738292 0.0268716i
\(163\) −2.78446 4.82283i −0.218096 0.377753i 0.736130 0.676840i \(-0.236651\pi\)
−0.954226 + 0.299087i \(0.903318\pi\)
\(164\) 3.96451 6.86673i 0.309576 0.536201i
\(165\) 0.745100 4.22567i 0.0580059 0.328968i
\(166\) 11.9834 10.0553i 0.930092 0.780440i
\(167\) 3.63950 + 3.05390i 0.281633 + 0.236318i 0.772651 0.634832i \(-0.218930\pi\)
−0.491018 + 0.871150i \(0.663375\pi\)
\(168\) 0.500000 + 2.83564i 0.0385758 + 0.218774i
\(169\) −7.44356 2.70924i −0.572582 0.208403i
\(170\) −5.41147 −0.415041
\(171\) 4.29813 + 0.725293i 0.328686 + 0.0554645i
\(172\) 4.28312 0.326585
\(173\) 10.8576 + 3.95183i 0.825485 + 0.300452i 0.720005 0.693969i \(-0.244140\pi\)
0.105481 + 0.994421i \(0.466362\pi\)
\(174\) 1.40420 + 7.96361i 0.106452 + 0.603720i
\(175\) −2.20574 1.85083i −0.166738 0.139910i
\(176\) −3.28699 + 2.75811i −0.247766 + 0.207900i
\(177\) 0.949493 5.38484i 0.0713682 0.404749i
\(178\) −0.971782 + 1.68317i −0.0728381 + 0.126159i
\(179\) −3.38919 5.87024i −0.253320 0.438762i 0.711118 0.703073i \(-0.248189\pi\)
−0.964438 + 0.264310i \(0.914856\pi\)
\(180\) 0.939693 0.342020i 0.0700406 0.0254927i
\(181\) −5.52481 + 2.01087i −0.410656 + 0.149467i −0.539084 0.842252i \(-0.681229\pi\)
0.128427 + 0.991719i \(0.459007\pi\)
\(182\) 6.58512 + 11.4058i 0.488122 + 0.845452i
\(183\) −5.01114 + 8.67956i −0.370434 + 0.641611i
\(184\) 0.00980018 0.0555796i 0.000722479 0.00409738i
\(185\) 8.88326 7.45394i 0.653110 0.548024i
\(186\) −2.89053 2.42544i −0.211944 0.177842i
\(187\) 4.03209 + 22.8671i 0.294856 + 1.67221i
\(188\) −1.59967 0.582232i −0.116668 0.0424637i
\(189\) −2.87939 −0.209444
\(190\) 4.29813 + 0.725293i 0.311819 + 0.0526183i
\(191\) 6.43376 0.465531 0.232765 0.972533i \(-0.425223\pi\)
0.232765 + 0.972533i \(0.425223\pi\)
\(192\) −0.939693 0.342020i −0.0678165 0.0246832i
\(193\) −2.80200 15.8910i −0.201693 1.14386i −0.902560 0.430564i \(-0.858315\pi\)
0.700867 0.713292i \(-0.252796\pi\)
\(194\) −9.05690 7.59964i −0.650248 0.545623i
\(195\) 3.50387 2.94010i 0.250917 0.210545i
\(196\) 0.224155 1.27125i 0.0160111 0.0908035i
\(197\) −7.44222 + 12.8903i −0.530236 + 0.918396i 0.469142 + 0.883123i \(0.344563\pi\)
−0.999378 + 0.0352730i \(0.988770\pi\)
\(198\) −2.14543 3.71599i −0.152469 0.264084i
\(199\) −21.7738 + 7.92501i −1.54350 + 0.561789i −0.966882 0.255223i \(-0.917851\pi\)
−0.576621 + 0.817012i \(0.695629\pi\)
\(200\) 0.939693 0.342020i 0.0664463 0.0241845i
\(201\) 7.01367 + 12.1480i 0.494706 + 0.856856i
\(202\) −9.54710 + 16.5361i −0.671732 + 1.16347i
\(203\) 4.04323 22.9303i 0.283779 1.60939i
\(204\) −4.14543 + 3.47843i −0.290238 + 0.243539i
\(205\) 6.07398 + 5.09667i 0.424225 + 0.355967i
\(206\) −2.47519 14.0375i −0.172454 0.978037i
\(207\) 0.0530334 + 0.0193026i 0.00368608 + 0.00134162i
\(208\) −4.57398 −0.317148
\(209\) −0.137689 18.7029i −0.00952414 1.29371i
\(210\) −2.87939 −0.198696
\(211\) 1.94697 + 0.708638i 0.134035 + 0.0487846i 0.408167 0.912907i \(-0.366168\pi\)
−0.274132 + 0.961692i \(0.588390\pi\)
\(212\) −0.798133 4.52644i −0.0548160 0.310877i
\(213\) 8.98158 + 7.53644i 0.615408 + 0.516388i
\(214\) 0.0320889 0.0269258i 0.00219355 0.00184061i
\(215\) −0.743756 + 4.21805i −0.0507237 + 0.287669i
\(216\) 0.500000 0.866025i 0.0340207 0.0589256i
\(217\) 5.43242 + 9.40923i 0.368777 + 0.638740i
\(218\) −12.8623 + 4.68150i −0.871146 + 0.317071i
\(219\) 15.1420 5.51125i 1.02320 0.372416i
\(220\) −2.14543 3.71599i −0.144645 0.250532i
\(221\) −12.3760 + 21.4358i −0.832499 + 1.44193i
\(222\) 2.01367 11.4201i 0.135149 0.766466i
\(223\) −14.2515 + 11.9584i −0.954351 + 0.800795i −0.980025 0.198875i \(-0.936271\pi\)
0.0256741 + 0.999670i \(0.491827\pi\)
\(224\) 2.20574 + 1.85083i 0.147377 + 0.123664i
\(225\) 0.173648 + 0.984808i 0.0115765 + 0.0656539i
\(226\) 0.347296 + 0.126406i 0.0231018 + 0.00840837i
\(227\) 4.51249 0.299504 0.149752 0.988724i \(-0.452152\pi\)
0.149752 + 0.988724i \(0.452152\pi\)
\(228\) 3.75877 2.20718i 0.248931 0.146174i
\(229\) −2.44831 −0.161789 −0.0808945 0.996723i \(-0.525778\pi\)
−0.0808945 + 0.996723i \(0.525778\pi\)
\(230\) 0.0530334 + 0.0193026i 0.00349692 + 0.00127277i
\(231\) 2.14543 + 12.1673i 0.141159 + 0.800552i
\(232\) 6.19459 + 5.19788i 0.406695 + 0.341258i
\(233\) −13.2344 + 11.1050i −0.867016 + 0.727513i −0.963468 0.267825i \(-0.913695\pi\)
0.0964517 + 0.995338i \(0.469251\pi\)
\(234\) 0.794263 4.50449i 0.0519226 0.294468i
\(235\) 0.851167 1.47426i 0.0555240 0.0961704i
\(236\) −2.73396 4.73535i −0.177965 0.308245i
\(237\) −0.421274 + 0.153331i −0.0273647 + 0.00995994i
\(238\) 14.6420 5.32926i 0.949102 0.345445i
\(239\) 8.27719 + 14.3365i 0.535407 + 0.927352i 0.999144 + 0.0413788i \(0.0131750\pi\)
−0.463737 + 0.885973i \(0.653492\pi\)
\(240\) 0.500000 0.866025i 0.0322749 0.0559017i
\(241\) 3.06670 17.3921i 0.197544 1.12033i −0.711206 0.702984i \(-0.751851\pi\)
0.908749 0.417342i \(-0.137038\pi\)
\(242\) −5.67752 + 4.76400i −0.364965 + 0.306242i
\(243\) 0.766044 + 0.642788i 0.0491418 + 0.0412348i
\(244\) 1.74035 + 9.87003i 0.111415 + 0.631864i
\(245\) 1.21301 + 0.441500i 0.0774964 + 0.0282064i
\(246\) 7.92902 0.505536
\(247\) 12.7028 15.3669i 0.808260 0.977775i
\(248\) −3.77332 −0.239606
\(249\) 14.6998 + 5.35029i 0.931562 + 0.339061i
\(250\) 0.173648 + 0.984808i 0.0109825 + 0.0622847i
\(251\) 13.2724 + 11.1369i 0.837749 + 0.702955i 0.957056 0.289902i \(-0.0936229\pi\)
−0.119307 + 0.992857i \(0.538067\pi\)
\(252\) −2.20574 + 1.85083i −0.138948 + 0.116592i
\(253\) 0.0420512 0.238484i 0.00264374 0.0149934i
\(254\) 7.74763 13.4193i 0.486129 0.842001i
\(255\) −2.70574 4.68647i −0.169440 0.293478i
\(256\) −0.939693 + 0.342020i −0.0587308 + 0.0213763i
\(257\) −28.8282 + 10.4926i −1.79825 + 0.654510i −0.799718 + 0.600376i \(0.795018\pi\)
−0.998534 + 0.0541338i \(0.982760\pi\)
\(258\) 2.14156 + 3.70929i 0.133328 + 0.230930i
\(259\) −16.6951 + 28.9167i −1.03738 + 1.79680i
\(260\) 0.794263 4.50449i 0.0492581 0.279357i
\(261\) −6.19459 + 5.19788i −0.383436 + 0.321741i
\(262\) 4.50980 + 3.78417i 0.278616 + 0.233787i
\(263\) 0.0256923 + 0.145708i 0.00158425 + 0.00898475i 0.985590 0.169154i \(-0.0541035\pi\)
−0.984005 + 0.178139i \(0.942992\pi\)
\(264\) −4.03209 1.46756i −0.248158 0.0903221i
\(265\) 4.59627 0.282346
\(266\) −12.3439 + 2.27038i −0.756853 + 0.139206i
\(267\) −1.94356 −0.118944
\(268\) 13.1814 + 4.79763i 0.805181 + 0.293062i
\(269\) −1.18567 6.72427i −0.0722916 0.409986i −0.999382 0.0351484i \(-0.988810\pi\)
0.927091 0.374837i \(-0.122301\pi\)
\(270\) 0.766044 + 0.642788i 0.0466200 + 0.0391188i
\(271\) 3.36824 2.82629i 0.204606 0.171685i −0.534727 0.845025i \(-0.679585\pi\)
0.739333 + 0.673340i \(0.235141\pi\)
\(272\) −0.939693 + 5.32926i −0.0569772 + 0.323134i
\(273\) −6.58512 + 11.4058i −0.398550 + 0.690308i
\(274\) −1.64409 2.84764i −0.0993228 0.172032i
\(275\) 4.03209 1.46756i 0.243144 0.0884972i
\(276\) 0.0530334 0.0193026i 0.00319224 0.00116188i
\(277\) −9.68479 16.7746i −0.581903 1.00789i −0.995254 0.0973134i \(-0.968975\pi\)
0.413351 0.910572i \(-0.364358\pi\)
\(278\) −5.57532 + 9.65674i −0.334386 + 0.579173i
\(279\) 0.655230 3.71599i 0.0392276 0.222471i
\(280\) −2.20574 + 1.85083i −0.131818 + 0.110608i
\(281\) 24.5574 + 20.6061i 1.46497 + 1.22926i 0.920656 + 0.390374i \(0.127654\pi\)
0.544313 + 0.838882i \(0.316790\pi\)
\(282\) −0.295607 1.67647i −0.0176031 0.0998324i
\(283\) 19.2208 + 6.99578i 1.14256 + 0.415856i 0.842835 0.538171i \(-0.180885\pi\)
0.299720 + 0.954027i \(0.403107\pi\)
\(284\) 11.7246 0.695728
\(285\) 1.52094 + 4.08494i 0.0900930 + 0.241971i
\(286\) −19.6263 −1.16053
\(287\) −21.4538 7.80856i −1.26638 0.460924i
\(288\) −0.173648 0.984808i −0.0102323 0.0580304i
\(289\) 9.41013 + 7.89604i 0.553537 + 0.464473i
\(290\) −6.19459 + 5.19788i −0.363759 + 0.305230i
\(291\) 2.05303 11.6433i 0.120351 0.682544i
\(292\) 8.05690 13.9550i 0.471495 0.816653i
\(293\) 4.76604 + 8.25503i 0.278435 + 0.482264i 0.970996 0.239095i \(-0.0768509\pi\)
−0.692561 + 0.721360i \(0.743518\pi\)
\(294\) 1.21301 0.441500i 0.0707442 0.0257488i
\(295\) 5.13816 1.87014i 0.299155 0.108884i
\(296\) −5.79813 10.0427i −0.337010 0.583718i
\(297\) 2.14543 3.71599i 0.124490 0.215624i
\(298\) 1.51501 8.59208i 0.0877624 0.497726i
\(299\) 0.197748 0.165930i 0.0114361 0.00959599i
\(300\) 0.766044 + 0.642788i 0.0442276 + 0.0371114i
\(301\) −2.14156 12.1454i −0.123437 0.700048i
\(302\) 7.36484 + 2.68058i 0.423799 + 0.154250i
\(303\) −19.0942 −1.09693
\(304\) 1.46064 4.10689i 0.0837733 0.235546i
\(305\) −10.0223 −0.573875
\(306\) −5.08512 1.85083i −0.290697 0.105805i
\(307\) −3.74257 21.2252i −0.213600 1.21139i −0.883319 0.468771i \(-0.844697\pi\)
0.669720 0.742614i \(-0.266414\pi\)
\(308\) 9.46451 + 7.94166i 0.539290 + 0.452518i
\(309\) 10.9192 9.16231i 0.621172 0.521226i
\(310\) 0.655230 3.71599i 0.0372146 0.211054i
\(311\) −1.46926 + 2.54482i −0.0833138 + 0.144304i −0.904671 0.426110i \(-0.859884\pi\)
0.821358 + 0.570414i \(0.193217\pi\)
\(312\) −2.28699 3.96118i −0.129475 0.224258i
\(313\) −8.06165 + 2.93420i −0.455671 + 0.165851i −0.559651 0.828729i \(-0.689065\pi\)
0.103979 + 0.994579i \(0.466842\pi\)
\(314\) −6.11974 + 2.22740i −0.345357 + 0.125700i
\(315\) −1.43969 2.49362i −0.0811175 0.140500i
\(316\) −0.224155 + 0.388249i −0.0126097 + 0.0218407i
\(317\) −2.70439 + 15.3374i −0.151894 + 0.861433i 0.809677 + 0.586876i \(0.199642\pi\)
−0.961571 + 0.274557i \(0.911469\pi\)
\(318\) 3.52094 2.95442i 0.197445 0.165676i
\(319\) 26.5801 + 22.3034i 1.48820 + 1.24875i
\(320\) −0.173648 0.984808i −0.00970723 0.0550524i
\(321\) 0.0393628 + 0.0143269i 0.00219702 + 0.000799650i
\(322\) −0.162504 −0.00905598
\(323\) −15.2947 17.9574i −0.851022 0.999176i
\(324\) 1.00000 0.0555556
\(325\) 4.29813 + 1.56439i 0.238418 + 0.0867769i
\(326\) −0.967034 5.48432i −0.0535590 0.303748i
\(327\) −10.4855 8.79834i −0.579847 0.486549i
\(328\) 6.07398 5.09667i 0.335379 0.281417i
\(329\) −0.851167 + 4.82721i −0.0469263 + 0.266133i
\(330\) 2.14543 3.71599i 0.118102 0.204559i
\(331\) −4.45677 7.71935i −0.244966 0.424294i 0.717156 0.696913i \(-0.245443\pi\)
−0.962122 + 0.272619i \(0.912110\pi\)
\(332\) 14.6998 5.35029i 0.806757 0.293635i
\(333\) 10.8969 3.96616i 0.597148 0.217344i
\(334\) 2.37551 + 4.11451i 0.129982 + 0.225136i
\(335\) −7.01367 + 12.1480i −0.383198 + 0.663718i
\(336\) −0.500000 + 2.83564i −0.0272772 + 0.154697i
\(337\) 2.08647 1.75075i 0.113657 0.0953696i −0.584188 0.811618i \(-0.698587\pi\)
0.697845 + 0.716249i \(0.254142\pi\)
\(338\) −6.06805 5.09170i −0.330058 0.276952i
\(339\) 0.0641778 + 0.363970i 0.00348566 + 0.0197681i
\(340\) −5.08512 1.85083i −0.275779 0.100376i
\(341\) −16.1908 −0.876780
\(342\) 3.79086 + 2.15160i 0.204986 + 0.116345i
\(343\) 16.4388 0.887613
\(344\) 4.02481 + 1.46491i 0.217003 + 0.0789828i
\(345\) 0.00980018 + 0.0555796i 0.000527624 + 0.00299230i
\(346\) 8.85117 + 7.42701i 0.475842 + 0.399279i
\(347\) 1.65657 1.39003i 0.0889296 0.0746208i −0.597239 0.802063i \(-0.703736\pi\)
0.686169 + 0.727443i \(0.259291\pi\)
\(348\) −1.40420 + 7.96361i −0.0752730 + 0.426895i
\(349\) 1.16503 2.01789i 0.0623626 0.108015i −0.833158 0.553034i \(-0.813470\pi\)
0.895521 + 0.445019i \(0.146803\pi\)
\(350\) −1.43969 2.49362i −0.0769548 0.133290i
\(351\) 4.29813 1.56439i 0.229417 0.0835011i
\(352\) −4.03209 + 1.46756i −0.214911 + 0.0782212i
\(353\) 3.08647 + 5.34592i 0.164276 + 0.284534i 0.936398 0.350940i \(-0.114138\pi\)
−0.772122 + 0.635474i \(0.780805\pi\)
\(354\) 2.73396 4.73535i 0.145308 0.251681i
\(355\) −2.03596 + 11.5465i −0.108057 + 0.612825i
\(356\) −1.48886 + 1.24930i −0.0789092 + 0.0662127i
\(357\) 11.9363 + 10.0157i 0.631735 + 0.530089i
\(358\) −1.17705 6.67539i −0.0622091 0.352805i
\(359\) 11.8204 + 4.30228i 0.623858 + 0.227066i 0.634556 0.772877i \(-0.281183\pi\)
−0.0106978 + 0.999943i \(0.503405\pi\)
\(360\) 1.00000 0.0527046
\(361\) 9.74123 + 16.3128i 0.512696 + 0.858570i
\(362\) −5.87939 −0.309014
\(363\) −6.96451 2.53487i −0.365542 0.133046i
\(364\) 2.28699 + 12.9702i 0.119871 + 0.679821i
\(365\) 12.3439 + 10.3578i 0.646109 + 0.542150i
\(366\) −7.67752 + 6.44220i −0.401310 + 0.336739i
\(367\) −3.39275 + 19.2412i −0.177100 + 1.00438i 0.758592 + 0.651566i \(0.225888\pi\)
−0.935692 + 0.352819i \(0.885223\pi\)
\(368\) 0.0282185 0.0488759i 0.00147099 0.00254783i
\(369\) 3.96451 + 6.86673i 0.206384 + 0.357468i
\(370\) 10.8969 3.96616i 0.566504 0.206191i
\(371\) −12.4363 + 4.52644i −0.645660 + 0.235001i
\(372\) −1.88666 3.26779i −0.0978187 0.169427i
\(373\) −0.598326 + 1.03633i −0.0309801 + 0.0536592i −0.881100 0.472930i \(-0.843196\pi\)
0.850120 + 0.526590i \(0.176530\pi\)
\(374\) −4.03209 + 22.8671i −0.208494 + 1.18243i
\(375\) −0.766044 + 0.642788i −0.0395584 + 0.0331934i
\(376\) −1.30406 1.09424i −0.0672519 0.0564311i
\(377\) 6.42278 + 36.4254i 0.330790 + 1.87600i
\(378\) −2.70574 0.984808i −0.139168 0.0506530i
\(379\) 11.9213 0.612355 0.306177 0.951974i \(-0.400950\pi\)
0.306177 + 0.951974i \(0.400950\pi\)
\(380\) 3.79086 + 2.15160i 0.194467 + 0.110375i
\(381\) 15.4953 0.793846
\(382\) 6.04576 + 2.20048i 0.309328 + 0.112586i
\(383\) −2.02317 11.4739i −0.103379 0.586291i −0.991855 0.127369i \(-0.959347\pi\)
0.888476 0.458922i \(-0.151764\pi\)
\(384\) −0.766044 0.642788i −0.0390920 0.0328021i
\(385\) −9.46451 + 7.94166i −0.482356 + 0.404745i
\(386\) 2.80200 15.8910i 0.142618 0.808828i
\(387\) −2.14156 + 3.70929i −0.108862 + 0.188554i
\(388\) −5.91147 10.2390i −0.300110 0.519805i
\(389\) 17.3195 6.30380i 0.878136 0.319615i 0.136679 0.990615i \(-0.456357\pi\)
0.741457 + 0.671000i \(0.234135\pi\)
\(390\) 4.29813 1.56439i 0.217644 0.0792161i
\(391\) −0.152704 0.264490i −0.00772256 0.0133759i
\(392\) 0.645430 1.11792i 0.0325991 0.0564633i
\(393\) −1.02229 + 5.79769i −0.0515676 + 0.292455i
\(394\) −11.4021 + 9.56753i −0.574432 + 0.482005i
\(395\) −0.343426 0.288169i −0.0172796 0.0144993i
\(396\) −0.745100 4.22567i −0.0374427 0.212348i
\(397\) −16.6557 6.06218i −0.835925 0.304252i −0.111637 0.993749i \(-0.535609\pi\)
−0.724288 + 0.689497i \(0.757832\pi\)
\(398\) −23.1712 −1.16147
\(399\) −8.13816 9.55493i −0.407417 0.478345i
\(400\) 1.00000 0.0500000
\(401\) −19.7087 7.17339i −0.984207 0.358222i −0.200733 0.979646i \(-0.564332\pi\)
−0.783474 + 0.621424i \(0.786554\pi\)
\(402\) 2.43582 + 13.8142i 0.121488 + 0.688991i
\(403\) −13.2212 11.0939i −0.658596 0.552628i
\(404\) −14.6270 + 12.2735i −0.727721 + 0.610630i
\(405\) −0.173648 + 0.984808i −0.00862865 + 0.0489355i
\(406\) 11.6420 20.1646i 0.577784 1.00075i
\(407\) −24.8790 43.0916i −1.23320 2.13597i
\(408\) −5.08512 + 1.85083i −0.251751 + 0.0916299i
\(409\) −21.4354 + 7.80185i −1.05991 + 0.385777i −0.812396 0.583107i \(-0.801837\pi\)
−0.247517 + 0.968883i \(0.579615\pi\)
\(410\) 3.96451 + 6.86673i 0.195793 + 0.339124i
\(411\) 1.64409 2.84764i 0.0810968 0.140464i
\(412\) 2.47519 14.0375i 0.121944 0.691577i
\(413\) −12.0608 + 10.1202i −0.593472 + 0.497982i
\(414\) 0.0432332 + 0.0362770i 0.00212480 + 0.00178292i
\(415\) 2.71641 + 15.4056i 0.133344 + 0.756229i
\(416\) −4.29813 1.56439i −0.210733 0.0767007i
\(417\) −11.1506 −0.546049
\(418\) 6.26739 17.6221i 0.306548 0.861924i
\(419\) 8.44150 0.412394 0.206197 0.978510i \(-0.433891\pi\)
0.206197 + 0.978510i \(0.433891\pi\)
\(420\) −2.70574 0.984808i −0.132026 0.0480537i
\(421\) 1.91013 + 10.8329i 0.0930940 + 0.527963i 0.995315 + 0.0966879i \(0.0308249\pi\)
−0.902221 + 0.431275i \(0.858064\pi\)
\(422\) 1.58718 + 1.33180i 0.0772628 + 0.0648312i
\(423\) 1.30406 1.09424i 0.0634057 0.0532037i
\(424\) 0.798133 4.52644i 0.0387608 0.219823i
\(425\) 2.70574 4.68647i 0.131248 0.227327i
\(426\) 5.86231 + 10.1538i 0.284030 + 0.491954i
\(427\) 27.1177 9.87003i 1.31232 0.477644i
\(428\) 0.0393628 0.0143269i 0.00190267 0.000692517i
\(429\) −9.81315 16.9969i −0.473783 0.820617i
\(430\) −2.14156 + 3.70929i −0.103275 + 0.178878i
\(431\) −5.58347 + 31.6655i −0.268946 + 1.52527i 0.488610 + 0.872502i \(0.337504\pi\)
−0.757557 + 0.652769i \(0.773607\pi\)
\(432\) 0.766044 0.642788i 0.0368563 0.0309261i
\(433\) 29.4800 + 24.7366i 1.41672 + 1.18877i 0.953071 + 0.302747i \(0.0979039\pi\)
0.463647 + 0.886020i \(0.346541\pi\)
\(434\) 1.88666 + 10.6998i 0.0905625 + 0.513606i
\(435\) −7.59879 2.76573i −0.364334 0.132607i
\(436\) −13.6878 −0.655526
\(437\) 0.0858375 + 0.230542i 0.00410617 + 0.0110283i
\(438\) 16.1138 0.769948
\(439\) 3.04664 + 1.10889i 0.145408 + 0.0529242i 0.413699 0.910414i \(-0.364237\pi\)
−0.268291 + 0.963338i \(0.586459\pi\)
\(440\) −0.745100 4.22567i −0.0355212 0.201451i
\(441\) 0.988856 + 0.829748i 0.0470884 + 0.0395118i
\(442\) −18.9611 + 15.9103i −0.901888 + 0.756774i
\(443\) −2.49454 + 14.1472i −0.118519 + 0.672155i 0.866428 + 0.499301i \(0.166410\pi\)
−0.984948 + 0.172854i \(0.944701\pi\)
\(444\) 5.79813 10.0427i 0.275167 0.476604i
\(445\) −0.971782 1.68317i −0.0460669 0.0797901i
\(446\) −17.4820 + 6.36295i −0.827799 + 0.301294i
\(447\) 8.19846 2.98400i 0.387774 0.141138i
\(448\) 1.43969 + 2.49362i 0.0680191 + 0.117813i
\(449\) −7.38800 + 12.7964i −0.348661 + 0.603899i −0.986012 0.166675i \(-0.946697\pi\)
0.637351 + 0.770574i \(0.280030\pi\)
\(450\) −0.173648 + 0.984808i −0.00818585 + 0.0464243i
\(451\) 26.0626 21.8691i 1.22724 1.02978i
\(452\) 0.283119 + 0.237565i 0.0133168 + 0.0111741i
\(453\) 1.36097 + 7.71843i 0.0639438 + 0.362643i
\(454\) 4.24035 + 1.54336i 0.199010 + 0.0724336i
\(455\) −13.1702 −0.617431
\(456\) 4.28699 0.788496i 0.200757 0.0369247i
\(457\) −1.82800 −0.0855103 −0.0427551 0.999086i \(-0.513614\pi\)
−0.0427551 + 0.999086i \(0.513614\pi\)
\(458\) −2.30066 0.837372i −0.107503 0.0391278i
\(459\) −0.939693 5.32926i −0.0438611 0.248749i
\(460\) 0.0432332 + 0.0362770i 0.00201576 + 0.00169142i
\(461\) −21.0514 + 17.6643i −0.980463 + 0.822706i −0.984159 0.177287i \(-0.943268\pi\)
0.00369589 + 0.999993i \(0.498824\pi\)
\(462\) −2.14543 + 12.1673i −0.0998144 + 0.566076i
\(463\) 19.6079 33.9618i 0.911255 1.57834i 0.0989622 0.995091i \(-0.468448\pi\)
0.812293 0.583249i \(-0.198219\pi\)
\(464\) 4.04323 + 7.00309i 0.187702 + 0.325110i
\(465\) 3.54576 1.29055i 0.164431 0.0598479i
\(466\) −16.2344 + 5.90885i −0.752045 + 0.273722i
\(467\) 12.8366 + 22.2337i 0.594008 + 1.02885i 0.993686 + 0.112196i \(0.0357885\pi\)
−0.399678 + 0.916656i \(0.630878\pi\)
\(468\) 2.28699 3.96118i 0.105716 0.183106i
\(469\) 7.01367 39.7765i 0.323861 1.83671i
\(470\) 1.30406 1.09424i 0.0601519 0.0504735i
\(471\) −4.98886 4.18615i −0.229874 0.192887i
\(472\) −0.949493 5.38484i −0.0437039 0.247857i
\(473\) 17.2699 + 6.28573i 0.794072 + 0.289018i
\(474\) −0.448311 −0.0205916
\(475\) −2.77719 + 3.35965i −0.127426 + 0.154151i
\(476\) 15.5817 0.714187
\(477\) 4.31908 + 1.57202i 0.197757 + 0.0719777i
\(478\) 2.87464 + 16.3029i 0.131483 + 0.745676i
\(479\) −18.9060 15.8640i −0.863838 0.724846i 0.0989536 0.995092i \(-0.468450\pi\)
−0.962791 + 0.270246i \(0.912895\pi\)
\(480\) 0.766044 0.642788i 0.0349650 0.0293391i
\(481\) 9.21048 52.2353i 0.419962 2.38172i
\(482\) 8.83022 15.2944i 0.402206 0.696641i
\(483\) −0.0812519 0.140732i −0.00369709 0.00640355i
\(484\) −6.96451 + 2.53487i −0.316569 + 0.115222i
\(485\) 11.1099 4.04369i 0.504476 0.183614i
\(486\) 0.500000 + 0.866025i 0.0226805 + 0.0392837i
\(487\) 5.51889 9.55899i 0.250085 0.433159i −0.713464 0.700692i \(-0.752875\pi\)
0.963549 + 0.267532i \(0.0862082\pi\)
\(488\) −1.74035 + 9.87003i −0.0787820 + 0.446795i
\(489\) 4.26604 3.57964i 0.192917 0.161877i
\(490\) 0.988856 + 0.829748i 0.0446719 + 0.0374842i
\(491\) −4.29726 24.3709i −0.193932 1.09985i −0.913931 0.405870i \(-0.866969\pi\)
0.719998 0.693976i \(-0.244142\pi\)
\(492\) 7.45084 + 2.71188i 0.335910 + 0.122261i
\(493\) 43.7597 1.97084
\(494\) 17.1925 10.0956i 0.773529 0.454222i
\(495\) 4.29086 0.192860
\(496\) −3.54576 1.29055i −0.159209 0.0579474i
\(497\) −5.86231 33.2468i −0.262961 1.49132i
\(498\) 11.9834 + 10.0553i 0.536989 + 0.450587i
\(499\) 15.5758 13.0696i 0.697268 0.585077i −0.223727 0.974652i \(-0.571822\pi\)
0.920995 + 0.389574i \(0.127378\pi\)
\(500\) −0.173648 + 0.984808i −0.00776578 + 0.0440419i
\(501\) −2.37551 + 4.11451i −0.106130 + 0.183823i
\(502\) 8.66297 + 15.0047i 0.386647 + 0.669693i
\(503\) 5.63563 2.05120i 0.251280 0.0914585i −0.213309 0.976985i \(-0.568424\pi\)
0.464589 + 0.885526i \(0.346202\pi\)
\(504\) −2.70574 + 0.984808i −0.120523 + 0.0438668i
\(505\) −9.54710 16.5361i −0.424841 0.735845i
\(506\) 0.121082 0.209719i 0.00538273 0.00932317i
\(507\) 1.37551 7.80093i 0.0610888 0.346452i
\(508\) 11.8701 9.96016i 0.526648 0.441910i
\(509\) −13.9290 11.6878i −0.617393 0.518054i 0.279590 0.960119i \(-0.409801\pi\)
−0.896983 + 0.442065i \(0.854246\pi\)
\(510\) −0.939693 5.32926i −0.0416103 0.235984i
\(511\) −43.5997 15.8690i −1.92874 0.702003i
\(512\) −1.00000 −0.0441942
\(513\) 0.0320889 + 4.35878i 0.00141676 + 0.192445i
\(514\) −30.6783 −1.35316
\(515\) 13.3944 + 4.87516i 0.590228 + 0.214825i
\(516\) 0.743756 + 4.21805i 0.0327420 + 0.185689i
\(517\) −5.59555 4.69523i −0.246092 0.206496i
\(518\) −25.5783 + 21.4628i −1.12385 + 0.943019i
\(519\) −2.00640 + 11.3788i −0.0880710 + 0.499476i
\(520\) 2.28699 3.96118i 0.100291 0.173709i
\(521\) −10.2365 17.7301i −0.448468 0.776770i 0.549818 0.835284i \(-0.314697\pi\)
−0.998287 + 0.0585143i \(0.981364\pi\)
\(522\) −7.59879 + 2.76573i −0.332590 + 0.121053i
\(523\) −22.0091 + 8.01065i −0.962390 + 0.350281i −0.774970 0.631998i \(-0.782235\pi\)
−0.187420 + 0.982280i \(0.560013\pi\)
\(524\) 2.94356 + 5.09840i 0.128590 + 0.222725i
\(525\) 1.43969 2.49362i 0.0628333 0.108831i
\(526\) −0.0256923 + 0.145708i −0.00112024 + 0.00635318i
\(527\) −15.6420 + 13.1252i −0.681377 + 0.571743i
\(528\) −3.28699 2.75811i −0.143048 0.120031i
\(529\) −3.99335 22.6474i −0.173624 0.984671i
\(530\) 4.31908 + 1.57202i 0.187609 + 0.0682840i
\(531\) 5.46791 0.237287
\(532\) −12.3760 2.08840i −0.536567 0.0905435i
\(533\) 36.2671 1.57090
\(534\) −1.82635 0.664738i −0.0790340 0.0287660i
\(535\) 0.00727396 + 0.0412527i 0.000314481 + 0.00178351i
\(536\) 10.7456 + 9.01660i 0.464138 + 0.389458i
\(537\) 5.19253 4.35705i 0.224074 0.188021i
\(538\) 1.18567 6.72427i 0.0511179 0.289904i
\(539\) 2.76945 4.79682i 0.119289 0.206614i
\(540\) 0.500000 + 0.866025i 0.0215166 + 0.0372678i
\(541\) −5.53374 + 2.01412i −0.237914 + 0.0865936i −0.458226 0.888836i \(-0.651515\pi\)
0.220312 + 0.975430i \(0.429293\pi\)
\(542\) 4.13176 1.50384i 0.177474 0.0645953i
\(543\) −2.93969 5.09170i −0.126154 0.218506i
\(544\) −2.70574 + 4.68647i −0.116008 + 0.200931i
\(545\) 2.37686 13.4798i 0.101813 0.577413i
\(546\) −10.0890 + 8.46567i −0.431769 + 0.362297i
\(547\) 6.99273 + 5.86759i 0.298987 + 0.250880i 0.779923 0.625876i \(-0.215258\pi\)
−0.480935 + 0.876756i \(0.659703\pi\)
\(548\) −0.570985 3.23822i −0.0243913 0.138330i
\(549\) −9.41787 3.42782i −0.401945 0.146296i
\(550\) 4.29086 0.182963
\(551\) −34.7567 5.86506i −1.48069 0.249860i
\(552\) 0.0564370 0.00240212
\(553\) 1.21301 + 0.441500i 0.0515825 + 0.0187745i
\(554\) −3.36349 19.0753i −0.142901 0.810433i
\(555\) 8.88326 + 7.45394i 0.377073 + 0.316402i
\(556\) −8.54189 + 7.16750i −0.362257 + 0.303970i
\(557\) 7.01249 39.7698i 0.297129 1.68510i −0.361294 0.932452i \(-0.617665\pi\)
0.658423 0.752648i \(-0.271224\pi\)
\(558\) 1.88666 3.26779i 0.0798687 0.138337i
\(559\) 9.79544 + 16.9662i 0.414303 + 0.717594i
\(560\) −2.70574 + 0.984808i −0.114338 + 0.0416157i
\(561\) −21.8195 + 7.94166i −0.921222 + 0.335297i
\(562\) 16.0287 + 27.7625i 0.676129 + 1.17109i
\(563\) 8.94996 15.5018i 0.377196 0.653322i −0.613457 0.789728i \(-0.710222\pi\)
0.990653 + 0.136406i \(0.0435550\pi\)
\(564\) 0.295607 1.67647i 0.0124473 0.0705922i
\(565\) −0.283119 + 0.237565i −0.0119109 + 0.00999442i
\(566\) 15.6689 + 13.1478i 0.658613 + 0.552642i
\(567\) −0.500000 2.83564i −0.0209980 0.119086i
\(568\) 11.0175 + 4.01006i 0.462286 + 0.168258i
\(569\) −18.2344 −0.764427 −0.382213 0.924074i \(-0.624838\pi\)
−0.382213 + 0.924074i \(0.624838\pi\)
\(570\) 0.0320889 + 4.35878i 0.00134406 + 0.182569i
\(571\) 40.3259 1.68759 0.843794 0.536667i \(-0.180317\pi\)
0.843794 + 0.536667i \(0.180317\pi\)
\(572\) −18.4427 6.71259i −0.771127 0.280667i
\(573\) 1.11721 + 6.33602i 0.0466722 + 0.264691i
\(574\) −17.4893 14.6753i −0.729990 0.612535i
\(575\) −0.0432332 + 0.0362770i −0.00180295 + 0.00151286i
\(576\) 0.173648 0.984808i 0.00723534 0.0410337i
\(577\) −1.72621 + 2.98989i −0.0718633 + 0.124471i −0.899718 0.436472i \(-0.856228\pi\)
0.827855 + 0.560943i \(0.189561\pi\)
\(578\) 6.14203 + 10.6383i 0.255475 + 0.442495i
\(579\) 15.1630 5.51887i 0.630152 0.229356i
\(580\) −7.59879 + 2.76573i −0.315523 + 0.114841i
\(581\) −22.5214 39.0082i −0.934346 1.61833i
\(582\) 5.91147 10.2390i 0.245038 0.424419i
\(583\) 3.42468 19.4223i 0.141836 0.804390i
\(584\) 12.3439 10.3578i 0.510794 0.428607i
\(585\) 3.50387 + 2.94010i 0.144867 + 0.121558i
\(586\) 1.65523 + 9.38728i 0.0683769 + 0.387785i
\(587\) −39.4984 14.3762i −1.63027 0.593371i −0.644974 0.764205i \(-0.723132\pi\)
−0.985300 + 0.170834i \(0.945354\pi\)
\(588\) 1.29086 0.0532341
\(589\) 14.1830 8.32839i 0.584402 0.343165i
\(590\) 5.46791 0.225110
\(591\) −13.9868 5.09078i −0.575340 0.209407i
\(592\) −2.01367 11.4201i −0.0827614 0.469363i
\(593\) 24.5239 + 20.5780i 1.00708 + 0.845038i 0.987949 0.154779i \(-0.0494665\pi\)
0.0191283 + 0.999817i \(0.493911\pi\)
\(594\) 3.28699 2.75811i 0.134867 0.113167i
\(595\) −2.70574 + 15.3450i −0.110924 + 0.629084i
\(596\) 4.36231 7.55574i 0.178687 0.309495i
\(597\) −11.5856 20.0668i −0.474167 0.821281i
\(598\) 0.242574 0.0882896i 0.00991958 0.00361043i
\(599\) 1.01114 0.368026i 0.0413142 0.0150372i −0.321280 0.946984i \(-0.604113\pi\)
0.362595 + 0.931947i \(0.381891\pi\)
\(600\) 0.500000 + 0.866025i 0.0204124 + 0.0353553i
\(601\) −17.9971 + 31.1718i −0.734116 + 1.27153i 0.220995 + 0.975275i \(0.429070\pi\)
−0.955110 + 0.296250i \(0.904264\pi\)
\(602\) 2.14156 12.1454i 0.0872834 0.495009i
\(603\) −10.7456 + 9.01660i −0.437593 + 0.367184i
\(604\) 6.00387 + 5.03785i 0.244294 + 0.204987i
\(605\) −1.28699 7.29888i −0.0523235 0.296742i
\(606\) −17.9427 6.53060i −0.728872 0.265288i
\(607\) −14.9956 −0.608651 −0.304325 0.952568i \(-0.598431\pi\)
−0.304325 + 0.952568i \(0.598431\pi\)
\(608\) 2.77719 3.35965i 0.112630 0.136252i
\(609\) 23.2841 0.943517
\(610\) −9.41787 3.42782i −0.381318 0.138789i
\(611\) −1.35210 7.66814i −0.0547001 0.310220i
\(612\) −4.14543 3.47843i −0.167569 0.140607i
\(613\) −14.0255 + 11.7688i −0.566486 + 0.475338i −0.880478 0.474088i \(-0.842778\pi\)
0.313992 + 0.949426i \(0.398334\pi\)
\(614\) 3.74257 21.2252i 0.151038 0.856579i
\(615\) −3.96451 + 6.86673i −0.159864 + 0.276893i
\(616\) 6.17752 + 10.6998i 0.248899 + 0.431106i
\(617\) 33.7019 12.2665i 1.35679 0.493831i 0.441729 0.897149i \(-0.354365\pi\)
0.915060 + 0.403318i \(0.132143\pi\)
\(618\) 13.3944 4.87516i 0.538802 0.196108i
\(619\) 10.9979 + 19.0490i 0.442045 + 0.765644i 0.997841 0.0656747i \(-0.0209200\pi\)
−0.555797 + 0.831318i \(0.687587\pi\)
\(620\) 1.88666 3.26779i 0.0757701 0.131238i
\(621\) −0.00980018 + 0.0555796i −0.000393268 + 0.00223033i
\(622\) −2.25103 + 1.88884i −0.0902581 + 0.0757355i
\(623\) 4.28699 + 3.59721i 0.171755 + 0.144119i
\(624\) −0.794263 4.50449i −0.0317960 0.180324i
\(625\) −0.939693 0.342020i −0.0375877 0.0136808i
\(626\) −8.57903 −0.342887
\(627\) 18.3949 3.38332i 0.734620 0.135117i
\(628\) −6.51249 −0.259877
\(629\) −58.9684 21.4628i −2.35123 0.855776i
\(630\) −0.500000 2.83564i −0.0199205 0.112975i
\(631\) −8.30974 6.97270i −0.330806 0.277579i 0.462222 0.886764i \(-0.347052\pi\)
−0.793028 + 0.609185i \(0.791497\pi\)
\(632\) −0.343426 + 0.288169i −0.0136608 + 0.0114627i
\(633\) −0.359785 + 2.04044i −0.0143002 + 0.0811003i
\(634\) −7.78699 + 13.4875i −0.309261 + 0.535655i
\(635\) 7.74763 + 13.4193i 0.307455 + 0.532528i
\(636\) 4.31908 1.57202i 0.171263 0.0623345i
\(637\) 5.54829 2.01941i 0.219831 0.0800120i
\(638\) 17.3489 + 30.0493i 0.686851 + 1.18966i
\(639\) −5.86231 + 10.1538i −0.231909 + 0.401679i
\(640\) 0.173648 0.984808i 0.00686405 0.0389279i
\(641\) 9.11515 7.64852i 0.360027 0.302098i −0.444775 0.895643i \(-0.646716\pi\)
0.804801 + 0.593544i \(0.202272\pi\)
\(642\) 0.0320889 + 0.0269258i 0.00126645 + 0.00106268i
\(643\) 1.16069 + 6.58262i 0.0457733 + 0.259593i 0.999103 0.0423368i \(-0.0134803\pi\)
−0.953330 + 0.301930i \(0.902369\pi\)
\(644\) −0.152704 0.0555796i −0.00601737 0.00219014i
\(645\) −4.28312 −0.168648
\(646\) −8.23055 22.1055i −0.323827 0.869731i
\(647\) −32.4561 −1.27598 −0.637990 0.770045i \(-0.720234\pi\)
−0.637990 + 0.770045i \(0.720234\pi\)
\(648\) 0.939693 + 0.342020i 0.0369146 + 0.0134358i
\(649\) −4.07414 23.1056i −0.159924 0.906974i
\(650\) 3.50387 + 2.94010i 0.137433 + 0.115320i
\(651\) −8.32295 + 6.98378i −0.326202 + 0.273716i
\(652\) 0.967034 5.48432i 0.0378720 0.214783i
\(653\) −2.30272 + 3.98843i −0.0901124 + 0.156079i −0.907558 0.419926i \(-0.862056\pi\)
0.817446 + 0.576005i \(0.195389\pi\)
\(654\) −6.84389 11.8540i −0.267617 0.463527i
\(655\) −5.53209 + 2.01352i −0.216157 + 0.0786746i
\(656\) 7.45084 2.71188i 0.290906 0.105881i
\(657\) 8.05690 + 13.9550i 0.314330 + 0.544435i
\(658\) −2.45084 + 4.24497i −0.0955436 + 0.165486i
\(659\) −1.79086 + 10.1565i −0.0697620 + 0.395640i 0.929854 + 0.367929i \(0.119933\pi\)
−0.999616 + 0.0277111i \(0.991178\pi\)
\(660\) 3.28699 2.75811i 0.127946 0.107359i
\(661\) −16.7044 14.0166i −0.649726 0.545184i 0.257262 0.966342i \(-0.417180\pi\)
−0.906988 + 0.421157i \(0.861624\pi\)
\(662\) −1.54782 8.77812i −0.0601577 0.341171i
\(663\) −23.2592 8.46567i −0.903314 0.328779i
\(664\) 15.6432 0.607074
\(665\) 4.20574 11.8253i 0.163091 0.458566i
\(666\) 11.5963 0.449346
\(667\) −0.428853 0.156090i −0.0166053 0.00604382i
\(668\) 0.825008 + 4.67885i 0.0319205 + 0.181030i
\(669\) −14.2515 11.9584i −0.550995 0.462339i
\(670\) −10.7456 + 9.01660i −0.415137 + 0.348342i
\(671\) −7.46761 + 42.3509i −0.288284 + 1.63494i
\(672\) −1.43969 + 2.49362i −0.0555373 + 0.0961935i
\(673\) −22.7310 39.3713i −0.876216 1.51765i −0.855461 0.517867i \(-0.826726\pi\)
−0.0207551 0.999785i \(-0.506607\pi\)
\(674\) 2.55943 0.931556i 0.0985856 0.0358822i
\(675\) −0.939693 + 0.342020i −0.0361688 + 0.0131644i
\(676\) −3.96064 6.86002i −0.152332 0.263847i
\(677\) 17.9846 31.1502i 0.691203 1.19720i −0.280241 0.959930i \(-0.590414\pi\)
0.971444 0.237270i \(-0.0762524\pi\)
\(678\) −0.0641778 + 0.363970i −0.00246473 + 0.0139782i
\(679\) −26.0783 + 21.8823i −1.00079 + 0.839766i
\(680\) −4.14543 3.47843i −0.158970 0.133392i
\(681\) 0.783585 + 4.44393i 0.0300271 + 0.170292i
\(682\) −15.2144 5.53757i −0.582588 0.212045i
\(683\) 24.6186 0.942003 0.471001 0.882132i \(-0.343893\pi\)
0.471001 + 0.882132i \(0.343893\pi\)
\(684\) 2.82635 + 3.31839i 0.108068 + 0.126882i
\(685\) 3.28817 0.125635
\(686\) 15.4474 + 5.62241i 0.589786 + 0.214664i
\(687\) −0.425145 2.41112i −0.0162203 0.0919898i
\(688\) 3.28106 + 2.75314i 0.125089 + 0.104962i
\(689\) 16.1047 13.5135i 0.613541 0.514822i
\(690\) −0.00980018 + 0.0555796i −0.000373086 + 0.00211588i
\(691\) 6.13862 10.6324i 0.233524 0.404476i −0.725319 0.688413i \(-0.758308\pi\)
0.958843 + 0.283938i \(0.0916409\pi\)
\(692\) 5.77719 + 10.0064i 0.219616 + 0.380386i
\(693\) −11.6099 + 4.22567i −0.441025 + 0.160520i
\(694\) 2.03209 0.739620i 0.0771370 0.0280756i
\(695\) −5.57532 9.65674i −0.211484 0.366301i
\(696\) −4.04323 + 7.00309i −0.153258 + 0.265451i
\(697\) 7.45084 42.2558i 0.282221 1.60055i
\(698\) 1.78493 1.49773i 0.0675606 0.0566901i
\(699\) −13.2344 11.1050i −0.500572 0.420030i
\(700\) −0.500000 2.83564i −0.0188982 0.107177i
\(701\) 24.7361 + 9.00319i 0.934269 + 0.340046i 0.763900 0.645335i \(-0.223282\pi\)
0.170368 + 0.985380i \(0.445504\pi\)
\(702\) 4.57398 0.172634
\(703\) 43.9598 + 24.9505i 1.65798 + 0.941027i
\(704\) −4.29086 −0.161718
\(705\) 1.59967 + 0.582232i 0.0602471 + 0.0219281i
\(706\) 1.07192 + 6.07915i 0.0403422 + 0.228792i
\(707\) 42.1168 + 35.3402i 1.58397 + 1.32910i
\(708\) 4.18866 3.51471i 0.157420 0.132091i
\(709\) −8.15002 + 46.2210i −0.306080 + 1.73587i 0.312296 + 0.949985i \(0.398902\pi\)
−0.618376 + 0.785882i \(0.712209\pi\)
\(710\) −5.86231 + 10.1538i −0.220009 + 0.381066i
\(711\) −0.224155 0.388249i −0.00840648 0.0145605i
\(712\) −1.82635 + 0.664738i −0.0684454 + 0.0249121i
\(713\) 0.200112 0.0728348i 0.00749425 0.00272768i
\(714\) 7.79086 + 13.4942i 0.291566 + 0.505006i
\(715\) 9.81315 16.9969i 0.366991 0.635647i
\(716\) 1.17705 6.67539i 0.0439885 0.249471i
\(717\) −12.6814 + 10.6409i −0.473595 + 0.397394i
\(718\) 9.63610 + 8.08564i 0.359616 + 0.301754i
\(719\) −6.39676 36.2779i −0.238559 1.35294i −0.834987 0.550269i \(-0.814525\pi\)
0.596428 0.802666i \(-0.296586\pi\)
\(720\) 0.939693 + 0.342020i 0.0350203 + 0.0127463i
\(721\) −41.0428 −1.52851
\(722\) 3.57444 + 18.6607i 0.133027 + 0.694481i
\(723\) 17.6604 0.656799
\(724\) −5.52481 2.01087i −0.205328 0.0747333i
\(725\) −1.40420 7.96361i −0.0521507 0.295761i
\(726\) −5.67752 4.76400i −0.210712 0.176809i
\(727\) −20.2114 + 16.9594i −0.749600 + 0.628989i −0.935397 0.353599i \(-0.884958\pi\)
0.185797 + 0.982588i \(0.440513\pi\)
\(728\) −2.28699 + 12.9702i −0.0847615 + 0.480706i
\(729\) −0.500000 + 0.866025i −0.0185185 + 0.0320750i
\(730\) 8.05690 + 13.9550i 0.298199 + 0.516496i
\(731\) 21.7802 7.92734i 0.805569 0.293203i
\(732\) −9.41787 + 3.42782i −0.348095 + 0.126696i
\(733\) −10.2785 17.8029i −0.379646 0.657567i 0.611364 0.791349i \(-0.290621\pi\)
−0.991011 + 0.133783i \(0.957288\pi\)
\(734\) −9.76904 + 16.9205i −0.360582 + 0.624546i
\(735\) −0.224155 + 1.27125i −0.00826810 + 0.0468907i
\(736\) 0.0432332 0.0362770i 0.00159360 0.00133719i
\(737\) 46.1077 + 38.6890i 1.69840 + 1.42513i
\(738\) 1.37686 + 7.80856i 0.0506829 + 0.287437i
\(739\) −5.86736 2.13555i −0.215834 0.0785573i 0.231840 0.972754i \(-0.425525\pi\)
−0.447674 + 0.894197i \(0.647748\pi\)
\(740\) 11.5963 0.426287
\(741\) 17.3393 + 9.84137i 0.636975 + 0.361532i
\(742\) −13.2344 −0.485851
\(743\) 10.6004 + 3.85825i 0.388892 + 0.141545i 0.529064 0.848582i \(-0.322543\pi\)
−0.140171 + 0.990127i \(0.544765\pi\)
\(744\) −0.655230 3.71599i −0.0240219 0.136235i
\(745\) 6.68345 + 5.60808i 0.244863 + 0.205464i
\(746\) −0.916689 + 0.769193i −0.0335624 + 0.0281622i
\(747\) −2.71641 + 15.4056i −0.0993884 + 0.563660i
\(748\) −11.6099 + 20.1090i −0.424501 + 0.735258i
\(749\) −0.0603074 0.104455i −0.00220358 0.00381672i
\(750\) −0.939693 + 0.342020i −0.0343127 + 0.0124888i
\(751\) 31.0244 11.2920i 1.13210 0.412049i 0.293044 0.956099i \(-0.405332\pi\)
0.839053 + 0.544050i \(0.183110\pi\)
\(752\) −0.851167 1.47426i −0.0310389 0.0537609i
\(753\) −8.66297 + 15.0047i −0.315696 + 0.546802i
\(754\) −6.42278 + 36.4254i −0.233904 + 1.32653i
\(755\) −6.00387 + 5.03785i −0.218503 + 0.183346i
\(756\) −2.20574 1.85083i −0.0802219 0.0673142i
\(757\) 1.93464 + 10.9719i 0.0703157 + 0.398780i 0.999570 + 0.0293383i \(0.00934000\pi\)
−0.929254 + 0.369442i \(0.879549\pi\)
\(758\) 11.2023 + 4.07732i 0.406887 + 0.148095i
\(759\) 0.242163 0.00878997
\(760\) 2.82635 + 3.31839i 0.102523 + 0.120371i
\(761\) 29.9691 1.08638 0.543190 0.839610i \(-0.317216\pi\)
0.543190 + 0.839610i \(0.317216\pi\)
\(762\) 14.5608 + 5.29969i 0.527481 + 0.191987i
\(763\) 6.84389 + 38.8136i 0.247766 + 1.40515i
\(764\) 4.92855 + 4.13554i 0.178309 + 0.149619i
\(765\) 4.14543 3.47843i 0.149878 0.125763i
\(766\) 2.02317 &min