Properties

Label 570.2.u.f.541.1
Level $570$
Weight $2$
Character 570.541
Analytic conductor $4.551$
Analytic rank $0$
Dimension $6$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [570,2,Mod(61,570)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(570, base_ring=CyclotomicField(18))
 
chi = DirichletCharacter(H, H._module([0, 0, 2]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("570.61");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 570 = 2 \cdot 3 \cdot 5 \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 570.u (of order \(9\), degree \(6\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(4.55147291521\)
Analytic rank: \(0\)
Dimension: \(6\)
Coefficient field: \(\Q(\zeta_{18})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - x^{3} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{9}]$

Embedding invariants

Embedding label 541.1
Root \(-0.766044 + 0.642788i\) of defining polynomial
Character \(\chi\) \(=\) 570.541
Dual form 570.2.u.f.511.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.173648 - 0.984808i) q^{2} +(0.766044 - 0.642788i) q^{3} +(-0.939693 + 0.342020i) q^{4} +(0.939693 + 0.342020i) q^{5} +(-0.766044 - 0.642788i) q^{6} +(0.326352 - 0.565258i) q^{7} +(0.500000 + 0.866025i) q^{8} +(0.173648 - 0.984808i) q^{9} +O(q^{10})\) \(q+(-0.173648 - 0.984808i) q^{2} +(0.766044 - 0.642788i) q^{3} +(-0.939693 + 0.342020i) q^{4} +(0.939693 + 0.342020i) q^{5} +(-0.766044 - 0.642788i) q^{6} +(0.326352 - 0.565258i) q^{7} +(0.500000 + 0.866025i) q^{8} +(0.173648 - 0.984808i) q^{9} +(0.173648 - 0.984808i) q^{10} +(-1.78699 - 3.09516i) q^{11} +(-0.500000 + 0.866025i) q^{12} +(-3.61334 - 3.03195i) q^{13} +(-0.613341 - 0.223238i) q^{14} +(0.939693 - 0.342020i) q^{15} +(0.766044 - 0.642788i) q^{16} +(0.0393628 + 0.223238i) q^{17} -1.00000 q^{18} +(4.07398 - 1.55007i) q^{19} -1.00000 q^{20} +(-0.113341 - 0.642788i) q^{21} +(-2.73783 + 2.29731i) q^{22} +(8.55690 - 3.11446i) q^{23} +(0.939693 + 0.342020i) q^{24} +(0.766044 + 0.642788i) q^{25} +(-2.35844 + 4.08494i) q^{26} +(-0.500000 - 0.866025i) q^{27} +(-0.113341 + 0.642788i) q^{28} +(1.58260 - 8.97535i) q^{29} +(-0.500000 - 0.866025i) q^{30} +(-2.40760 + 4.17009i) q^{31} +(-0.766044 - 0.642788i) q^{32} +(-3.35844 - 1.22237i) q^{33} +(0.213011 - 0.0775297i) q^{34} +(0.500000 - 0.419550i) q^{35} +(0.173648 + 0.984808i) q^{36} -1.36184 q^{37} +(-2.23396 - 3.74292i) q^{38} -4.71688 q^{39} +(0.173648 + 0.984808i) q^{40} +(5.06805 - 4.25260i) q^{41} +(-0.613341 + 0.223238i) q^{42} +(-11.5496 - 4.20372i) q^{43} +(2.73783 + 2.29731i) q^{44} +(0.500000 - 0.866025i) q^{45} +(-4.55303 - 7.88609i) q^{46} +(-2.04916 + 11.6214i) q^{47} +(0.173648 - 0.984808i) q^{48} +(3.28699 + 5.69323i) q^{49} +(0.500000 - 0.866025i) q^{50} +(0.173648 + 0.145708i) q^{51} +(4.43242 + 1.61327i) q^{52} +(-5.29813 + 1.92836i) q^{53} +(-0.766044 + 0.642788i) q^{54} +(-0.620615 - 3.51968i) q^{55} +0.652704 q^{56} +(2.12449 - 3.80612i) q^{57} -9.11381 q^{58} +(1.54189 + 8.74449i) q^{59} +(-0.766044 + 0.642788i) q^{60} +(0.333626 - 0.121430i) q^{61} +(4.52481 + 1.64690i) q^{62} +(-0.500000 - 0.419550i) q^{63} +(-0.500000 + 0.866025i) q^{64} +(-2.35844 - 4.08494i) q^{65} +(-0.620615 + 3.51968i) q^{66} +(-2.09879 + 11.9028i) q^{67} +(-0.113341 - 0.196312i) q^{68} +(4.55303 - 7.88609i) q^{69} +(-0.500000 - 0.419550i) q^{70} +(11.4226 + 4.15749i) q^{71} +(0.939693 - 0.342020i) q^{72} +(2.31908 - 1.94594i) q^{73} +(0.236482 + 1.34115i) q^{74} +1.00000 q^{75} +(-3.29813 + 2.84997i) q^{76} -2.33275 q^{77} +(0.819078 + 4.64522i) q^{78} +(-7.71554 + 6.47410i) q^{79} +(0.939693 - 0.342020i) q^{80} +(-0.939693 - 0.342020i) q^{81} +(-5.06805 - 4.25260i) q^{82} +(8.69981 - 15.0685i) q^{83} +(0.326352 + 0.565258i) q^{84} +(-0.0393628 + 0.223238i) q^{85} +(-2.13429 + 12.1041i) q^{86} +(-4.55690 - 7.89279i) q^{87} +(1.78699 - 3.09516i) q^{88} +(5.44356 + 4.56769i) q^{89} +(-0.939693 - 0.342020i) q^{90} +(-2.89306 + 1.05299i) q^{91} +(-6.97565 + 5.85327i) q^{92} +(0.836152 + 4.74205i) q^{93} +11.8007 q^{94} +(4.35844 - 0.0632028i) q^{95} -1.00000 q^{96} +(0.0949225 + 0.538332i) q^{97} +(5.03596 - 4.22567i) q^{98} +(-3.35844 + 1.22237i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q + 3 q^{7} + 3 q^{8}+O(q^{10}) \) Copy content Toggle raw display \( 6 q + 3 q^{7} + 3 q^{8} - 3 q^{11} - 3 q^{12} - 15 q^{13} + 3 q^{14} + 9 q^{17} - 6 q^{18} + 9 q^{19} - 6 q^{20} + 6 q^{21} + 3 q^{22} + 15 q^{23} - 6 q^{26} - 3 q^{27} + 6 q^{28} + 3 q^{29} - 3 q^{30} - 18 q^{31} - 12 q^{33} + 9 q^{34} + 3 q^{35} - 42 q^{37} - 18 q^{38} - 12 q^{39} - 12 q^{41} + 3 q^{42} - 15 q^{43} - 3 q^{44} + 3 q^{45} - 15 q^{46} - 24 q^{47} + 12 q^{49} + 3 q^{50} + 3 q^{52} - 18 q^{53} - 15 q^{55} + 6 q^{56} + 18 q^{58} + 3 q^{59} + 21 q^{61} - 3 q^{63} - 3 q^{64} - 6 q^{65} - 15 q^{66} + 30 q^{67} + 6 q^{68} + 15 q^{69} - 3 q^{70} + 42 q^{71} - 3 q^{73} - 9 q^{74} + 6 q^{75} - 6 q^{76} + 24 q^{77} - 12 q^{78} - 39 q^{79} + 12 q^{82} + 15 q^{83} + 3 q^{84} - 9 q^{85} - 3 q^{86} + 9 q^{87} + 3 q^{88} + 3 q^{89} + 15 q^{91} - 3 q^{92} + 9 q^{93} + 42 q^{94} + 18 q^{95} - 6 q^{96} - 18 q^{97} - 3 q^{98} - 12 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/570\mathbb{Z}\right)^\times\).

\(n\) \(191\) \(211\) \(457\)
\(\chi(n)\) \(1\) \(e\left(\frac{4}{9}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.173648 0.984808i −0.122788 0.696364i
\(3\) 0.766044 0.642788i 0.442276 0.371114i
\(4\) −0.939693 + 0.342020i −0.469846 + 0.171010i
\(5\) 0.939693 + 0.342020i 0.420243 + 0.152956i
\(6\) −0.766044 0.642788i −0.312736 0.262417i
\(7\) 0.326352 0.565258i 0.123349 0.213647i −0.797737 0.603005i \(-0.793970\pi\)
0.921087 + 0.389358i \(0.127303\pi\)
\(8\) 0.500000 + 0.866025i 0.176777 + 0.306186i
\(9\) 0.173648 0.984808i 0.0578827 0.328269i
\(10\) 0.173648 0.984808i 0.0549124 0.311424i
\(11\) −1.78699 3.09516i −0.538797 0.933225i −0.998969 0.0453946i \(-0.985545\pi\)
0.460172 0.887830i \(-0.347788\pi\)
\(12\) −0.500000 + 0.866025i −0.144338 + 0.250000i
\(13\) −3.61334 3.03195i −1.00216 0.840912i −0.0148781 0.999889i \(-0.504736\pi\)
−0.987282 + 0.158977i \(0.949180\pi\)
\(14\) −0.613341 0.223238i −0.163922 0.0596628i
\(15\) 0.939693 0.342020i 0.242628 0.0883092i
\(16\) 0.766044 0.642788i 0.191511 0.160697i
\(17\) 0.0393628 + 0.223238i 0.00954689 + 0.0541431i 0.989209 0.146511i \(-0.0468044\pi\)
−0.979662 + 0.200654i \(0.935693\pi\)
\(18\) −1.00000 −0.235702
\(19\) 4.07398 1.55007i 0.934635 0.355609i
\(20\) −1.00000 −0.223607
\(21\) −0.113341 0.642788i −0.0247330 0.140268i
\(22\) −2.73783 + 2.29731i −0.583706 + 0.489788i
\(23\) 8.55690 3.11446i 1.78424 0.649409i 0.784673 0.619910i \(-0.212831\pi\)
0.999565 0.0294995i \(-0.00939136\pi\)
\(24\) 0.939693 + 0.342020i 0.191814 + 0.0698146i
\(25\) 0.766044 + 0.642788i 0.153209 + 0.128558i
\(26\) −2.35844 + 4.08494i −0.462528 + 0.801122i
\(27\) −0.500000 0.866025i −0.0962250 0.166667i
\(28\) −0.113341 + 0.642788i −0.0214194 + 0.121475i
\(29\) 1.58260 8.97535i 0.293881 1.66668i −0.377836 0.925872i \(-0.623332\pi\)
0.671717 0.740808i \(-0.265557\pi\)
\(30\) −0.500000 0.866025i −0.0912871 0.158114i
\(31\) −2.40760 + 4.17009i −0.432418 + 0.748971i −0.997081 0.0763512i \(-0.975673\pi\)
0.564663 + 0.825322i \(0.309006\pi\)
\(32\) −0.766044 0.642788i −0.135419 0.113630i
\(33\) −3.35844 1.22237i −0.584629 0.212788i
\(34\) 0.213011 0.0775297i 0.0365311 0.0132962i
\(35\) 0.500000 0.419550i 0.0845154 0.0709169i
\(36\) 0.173648 + 0.984808i 0.0289414 + 0.164135i
\(37\) −1.36184 −0.223886 −0.111943 0.993715i \(-0.535707\pi\)
−0.111943 + 0.993715i \(0.535707\pi\)
\(38\) −2.23396 3.74292i −0.362395 0.607182i
\(39\) −4.71688 −0.755306
\(40\) 0.173648 + 0.984808i 0.0274562 + 0.155712i
\(41\) 5.06805 4.25260i 0.791496 0.664144i −0.154619 0.987974i \(-0.549415\pi\)
0.946115 + 0.323830i \(0.104971\pi\)
\(42\) −0.613341 + 0.223238i −0.0946405 + 0.0344463i
\(43\) −11.5496 4.20372i −1.76130 0.641062i −0.761329 0.648366i \(-0.775453\pi\)
−0.999973 + 0.00730457i \(0.997675\pi\)
\(44\) 2.73783 + 2.29731i 0.412743 + 0.346332i
\(45\) 0.500000 0.866025i 0.0745356 0.129099i
\(46\) −4.55303 7.88609i −0.671308 1.16274i
\(47\) −2.04916 + 11.6214i −0.298901 + 1.69515i 0.352008 + 0.935997i \(0.385499\pi\)
−0.650909 + 0.759156i \(0.725612\pi\)
\(48\) 0.173648 0.984808i 0.0250640 0.142145i
\(49\) 3.28699 + 5.69323i 0.469570 + 0.813319i
\(50\) 0.500000 0.866025i 0.0707107 0.122474i
\(51\) 0.173648 + 0.145708i 0.0243156 + 0.0204032i
\(52\) 4.43242 + 1.61327i 0.614666 + 0.223720i
\(53\) −5.29813 + 1.92836i −0.727755 + 0.264881i −0.679214 0.733940i \(-0.737679\pi\)
−0.0485405 + 0.998821i \(0.515457\pi\)
\(54\) −0.766044 + 0.642788i −0.104245 + 0.0874723i
\(55\) −0.620615 3.51968i −0.0836837 0.474594i
\(56\) 0.652704 0.0872212
\(57\) 2.12449 3.80612i 0.281395 0.504133i
\(58\) −9.11381 −1.19670
\(59\) 1.54189 + 8.74449i 0.200737 + 1.13844i 0.904009 + 0.427514i \(0.140611\pi\)
−0.703272 + 0.710921i \(0.748278\pi\)
\(60\) −0.766044 + 0.642788i −0.0988959 + 0.0829835i
\(61\) 0.333626 0.121430i 0.0427164 0.0155475i −0.320574 0.947224i \(-0.603876\pi\)
0.363290 + 0.931676i \(0.381653\pi\)
\(62\) 4.52481 + 1.64690i 0.574652 + 0.209156i
\(63\) −0.500000 0.419550i −0.0629941 0.0528583i
\(64\) −0.500000 + 0.866025i −0.0625000 + 0.108253i
\(65\) −2.35844 4.08494i −0.292529 0.506674i
\(66\) −0.620615 + 3.51968i −0.0763924 + 0.433243i
\(67\) −2.09879 + 11.9028i −0.256408 + 1.45416i 0.536023 + 0.844203i \(0.319926\pi\)
−0.792432 + 0.609961i \(0.791185\pi\)
\(68\) −0.113341 0.196312i −0.0137446 0.0238063i
\(69\) 4.55303 7.88609i 0.548121 0.949373i
\(70\) −0.500000 0.419550i −0.0597614 0.0501458i
\(71\) 11.4226 + 4.15749i 1.35562 + 0.493404i 0.914696 0.404143i \(-0.132430\pi\)
0.440920 + 0.897547i \(0.354652\pi\)
\(72\) 0.939693 0.342020i 0.110744 0.0403075i
\(73\) 2.31908 1.94594i 0.271428 0.227755i −0.496906 0.867804i \(-0.665531\pi\)
0.768334 + 0.640050i \(0.221086\pi\)
\(74\) 0.236482 + 1.34115i 0.0274904 + 0.155906i
\(75\) 1.00000 0.115470
\(76\) −3.29813 + 2.84997i −0.378322 + 0.326914i
\(77\) −2.33275 −0.265841
\(78\) 0.819078 + 4.64522i 0.0927423 + 0.525968i
\(79\) −7.71554 + 6.47410i −0.868066 + 0.728394i −0.963690 0.267024i \(-0.913960\pi\)
0.0956242 + 0.995418i \(0.469515\pi\)
\(80\) 0.939693 0.342020i 0.105061 0.0382390i
\(81\) −0.939693 0.342020i −0.104410 0.0380022i
\(82\) −5.06805 4.25260i −0.559672 0.469621i
\(83\) 8.69981 15.0685i 0.954928 1.65398i 0.220395 0.975411i \(-0.429265\pi\)
0.734533 0.678573i \(-0.237401\pi\)
\(84\) 0.326352 + 0.565258i 0.0356079 + 0.0616747i
\(85\) −0.0393628 + 0.223238i −0.00426950 + 0.0242135i
\(86\) −2.13429 + 12.1041i −0.230146 + 1.30522i
\(87\) −4.55690 7.89279i −0.488551 0.846196i
\(88\) 1.78699 3.09516i 0.190494 0.329945i
\(89\) 5.44356 + 4.56769i 0.577017 + 0.484174i 0.883966 0.467552i \(-0.154864\pi\)
−0.306949 + 0.951726i \(0.599308\pi\)
\(90\) −0.939693 0.342020i −0.0990523 0.0360521i
\(91\) −2.89306 + 1.05299i −0.303275 + 0.110383i
\(92\) −6.97565 + 5.85327i −0.727262 + 0.610245i
\(93\) 0.836152 + 4.74205i 0.0867049 + 0.491728i
\(94\) 11.8007 1.21715
\(95\) 4.35844 0.0632028i 0.447167 0.00648447i
\(96\) −1.00000 −0.102062
\(97\) 0.0949225 + 0.538332i 0.00963792 + 0.0546593i 0.989247 0.146252i \(-0.0467209\pi\)
−0.979610 + 0.200911i \(0.935610\pi\)
\(98\) 5.03596 4.22567i 0.508709 0.426857i
\(99\) −3.35844 + 1.22237i −0.337536 + 0.122853i
\(100\) −0.939693 0.342020i −0.0939693 0.0342020i
\(101\) 10.7083 + 8.98530i 1.06551 + 0.894071i 0.994638 0.103415i \(-0.0329768\pi\)
0.0708737 + 0.997485i \(0.477421\pi\)
\(102\) 0.113341 0.196312i 0.0112224 0.0194378i
\(103\) −5.63563 9.76120i −0.555295 0.961799i −0.997881 0.0650729i \(-0.979272\pi\)
0.442585 0.896726i \(-0.354061\pi\)
\(104\) 0.819078 4.64522i 0.0803172 0.455501i
\(105\) 0.113341 0.642788i 0.0110609 0.0627296i
\(106\) 2.81908 + 4.88279i 0.273813 + 0.474258i
\(107\) 1.79813 3.11446i 0.173832 0.301086i −0.765924 0.642931i \(-0.777718\pi\)
0.939756 + 0.341845i \(0.111052\pi\)
\(108\) 0.766044 + 0.642788i 0.0737127 + 0.0618523i
\(109\) −4.99020 1.81628i −0.477974 0.173968i 0.0917869 0.995779i \(-0.470742\pi\)
−0.569761 + 0.821810i \(0.692964\pi\)
\(110\) −3.35844 + 1.22237i −0.320215 + 0.116549i
\(111\) −1.04323 + 0.875377i −0.0990193 + 0.0830871i
\(112\) −0.113341 0.642788i −0.0107097 0.0607377i
\(113\) −8.82295 −0.829993 −0.414997 0.909823i \(-0.636217\pi\)
−0.414997 + 0.909823i \(0.636217\pi\)
\(114\) −4.11721 1.43128i −0.385612 0.134052i
\(115\) 9.10607 0.849145
\(116\) 1.58260 + 8.97535i 0.146940 + 0.833340i
\(117\) −3.61334 + 3.03195i −0.334053 + 0.280304i
\(118\) 8.34389 3.03693i 0.768118 0.279572i
\(119\) 0.139033 + 0.0506039i 0.0127451 + 0.00463885i
\(120\) 0.766044 + 0.642788i 0.0699300 + 0.0586782i
\(121\) −0.886659 + 1.53574i −0.0806054 + 0.139613i
\(122\) −0.177519 0.307471i −0.0160718 0.0278371i
\(123\) 1.14883 6.51536i 0.103587 0.587470i
\(124\) 0.836152 4.74205i 0.0750887 0.425849i
\(125\) 0.500000 + 0.866025i 0.0447214 + 0.0774597i
\(126\) −0.326352 + 0.565258i −0.0290737 + 0.0503572i
\(127\) 12.9966 + 10.9054i 1.15326 + 0.967701i 0.999791 0.0204520i \(-0.00651052\pi\)
0.153471 + 0.988153i \(0.450955\pi\)
\(128\) 0.939693 + 0.342020i 0.0830579 + 0.0302306i
\(129\) −11.5496 + 4.20372i −1.01689 + 0.370117i
\(130\) −3.61334 + 3.03195i −0.316911 + 0.265920i
\(131\) 2.12061 + 12.0266i 0.185279 + 1.05077i 0.925596 + 0.378512i \(0.123564\pi\)
−0.740317 + 0.672257i \(0.765325\pi\)
\(132\) 3.57398 0.311075
\(133\) 0.453363 2.80872i 0.0393116 0.243546i
\(134\) 12.0865 1.04411
\(135\) −0.173648 0.984808i −0.0149453 0.0847588i
\(136\) −0.173648 + 0.145708i −0.0148902 + 0.0124944i
\(137\) 18.5424 6.74887i 1.58418 0.576595i 0.608073 0.793881i \(-0.291943\pi\)
0.976108 + 0.217287i \(0.0697207\pi\)
\(138\) −8.55690 3.11446i −0.728412 0.265120i
\(139\) 9.86097 + 8.27433i 0.836396 + 0.701820i 0.956750 0.290911i \(-0.0939584\pi\)
−0.120354 + 0.992731i \(0.538403\pi\)
\(140\) −0.326352 + 0.565258i −0.0275818 + 0.0477730i
\(141\) 5.90033 + 10.2197i 0.496897 + 0.860652i
\(142\) 2.11081 11.9710i 0.177136 1.00459i
\(143\) −2.92737 + 16.6019i −0.244799 + 1.38832i
\(144\) −0.500000 0.866025i −0.0416667 0.0721688i
\(145\) 4.55690 7.89279i 0.378430 0.655460i
\(146\) −2.31908 1.94594i −0.191928 0.161047i
\(147\) 6.17752 + 2.24843i 0.509513 + 0.185448i
\(148\) 1.27972 0.465778i 0.105192 0.0382867i
\(149\) 11.6099 9.74189i 0.951123 0.798087i −0.0283632 0.999598i \(-0.509030\pi\)
0.979486 + 0.201511i \(0.0645851\pi\)
\(150\) −0.173648 0.984808i −0.0141783 0.0804092i
\(151\) 2.05644 0.167350 0.0836752 0.996493i \(-0.473334\pi\)
0.0836752 + 0.996493i \(0.473334\pi\)
\(152\) 3.37939 + 2.75314i 0.274104 + 0.223309i
\(153\) 0.226682 0.0183261
\(154\) 0.405078 + 2.29731i 0.0326421 + 0.185122i
\(155\) −3.68866 + 3.09516i −0.296281 + 0.248609i
\(156\) 4.43242 1.61327i 0.354878 0.129165i
\(157\) −10.1775 3.70431i −0.812254 0.295636i −0.0976997 0.995216i \(-0.531148\pi\)
−0.714555 + 0.699580i \(0.753371\pi\)
\(158\) 7.71554 + 6.47410i 0.613815 + 0.515052i
\(159\) −2.81908 + 4.88279i −0.223567 + 0.387230i
\(160\) −0.500000 0.866025i −0.0395285 0.0684653i
\(161\) 1.03209 5.85327i 0.0813400 0.461302i
\(162\) −0.173648 + 0.984808i −0.0136431 + 0.0773738i
\(163\) 1.36231 + 2.35959i 0.106704 + 0.184818i 0.914433 0.404737i \(-0.132637\pi\)
−0.807729 + 0.589554i \(0.799303\pi\)
\(164\) −3.30793 + 5.72951i −0.258306 + 0.447399i
\(165\) −2.73783 2.29731i −0.213139 0.178845i
\(166\) −16.3503 5.95102i −1.26903 0.461889i
\(167\) −15.1951 + 5.53055i −1.17583 + 0.427967i −0.854727 0.519078i \(-0.826275\pi\)
−0.321102 + 0.947045i \(0.604053\pi\)
\(168\) 0.500000 0.419550i 0.0385758 0.0323690i
\(169\) 1.60607 + 9.10846i 0.123544 + 0.700651i
\(170\) 0.226682 0.0173857
\(171\) −0.819078 4.28125i −0.0626364 0.327395i
\(172\) 12.2909 0.937169
\(173\) 0.388003 + 2.20048i 0.0294994 + 0.167299i 0.995998 0.0893711i \(-0.0284857\pi\)
−0.966499 + 0.256670i \(0.917375\pi\)
\(174\) −6.98158 + 5.85824i −0.529272 + 0.444112i
\(175\) 0.613341 0.223238i 0.0463642 0.0168752i
\(176\) −3.35844 1.22237i −0.253152 0.0921398i
\(177\) 6.80200 + 5.70756i 0.511270 + 0.429006i
\(178\) 3.55303 6.15403i 0.266311 0.461264i
\(179\) −8.12836 14.0787i −0.607542 1.05229i −0.991644 0.129003i \(-0.958822\pi\)
0.384102 0.923290i \(-0.374511\pi\)
\(180\) −0.173648 + 0.984808i −0.0129430 + 0.0734032i
\(181\) 0.634285 3.59721i 0.0471461 0.267379i −0.952118 0.305730i \(-0.901100\pi\)
0.999264 + 0.0383514i \(0.0122106\pi\)
\(182\) 1.53936 + 2.66625i 0.114105 + 0.197636i
\(183\) 0.177519 0.307471i 0.0131226 0.0227289i
\(184\) 6.97565 + 5.85327i 0.514252 + 0.431509i
\(185\) −1.27972 0.465778i −0.0940865 0.0342447i
\(186\) 4.52481 1.64690i 0.331776 0.120756i
\(187\) 0.620615 0.520758i 0.0453838 0.0380816i
\(188\) −2.04916 11.6214i −0.149451 0.847576i
\(189\) −0.652704 −0.0474772
\(190\) −0.819078 4.28125i −0.0594222 0.310595i
\(191\) −9.58172 −0.693309 −0.346654 0.937993i \(-0.612682\pi\)
−0.346654 + 0.937993i \(0.612682\pi\)
\(192\) 0.173648 + 0.984808i 0.0125320 + 0.0710724i
\(193\) 10.2515 8.60203i 0.737919 0.619187i −0.194359 0.980930i \(-0.562263\pi\)
0.932278 + 0.361743i \(0.117818\pi\)
\(194\) 0.513671 0.186961i 0.0368794 0.0134230i
\(195\) −4.43242 1.61327i −0.317412 0.115529i
\(196\) −5.03596 4.22567i −0.359711 0.301834i
\(197\) −10.5471 + 18.2681i −0.751450 + 1.30155i 0.195670 + 0.980670i \(0.437312\pi\)
−0.947120 + 0.320880i \(0.896021\pi\)
\(198\) 1.78699 + 3.09516i 0.126996 + 0.219963i
\(199\) −4.19547 + 23.7937i −0.297409 + 1.68669i 0.359838 + 0.933015i \(0.382832\pi\)
−0.657247 + 0.753675i \(0.728279\pi\)
\(200\) −0.173648 + 0.984808i −0.0122788 + 0.0696364i
\(201\) 6.04323 + 10.4672i 0.426257 + 0.738298i
\(202\) 6.98932 12.1059i 0.491767 0.851765i
\(203\) −4.55690 3.82370i −0.319832 0.268371i
\(204\) −0.213011 0.0775297i −0.0149138 0.00542816i
\(205\) 6.21688 2.26276i 0.434206 0.158038i
\(206\) −8.63429 + 7.24503i −0.601579 + 0.504785i
\(207\) −1.58125 8.96773i −0.109905 0.623300i
\(208\) −4.71688 −0.327057
\(209\) −12.0778 9.83965i −0.835442 0.680623i
\(210\) −0.652704 −0.0450408
\(211\) 3.58125 + 20.3103i 0.246544 + 1.39822i 0.816880 + 0.576807i \(0.195702\pi\)
−0.570337 + 0.821411i \(0.693187\pi\)
\(212\) 4.31908 3.62414i 0.296635 0.248907i
\(213\) 11.4226 4.15749i 0.782665 0.284867i
\(214\) −3.37939 1.23000i −0.231010 0.0840808i
\(215\) −9.41534 7.90041i −0.642121 0.538804i
\(216\) 0.500000 0.866025i 0.0340207 0.0589256i
\(217\) 1.57145 + 2.72183i 0.106677 + 0.184770i
\(218\) −0.922152 + 5.22978i −0.0624560 + 0.354206i
\(219\) 0.525692 2.98135i 0.0355230 0.201461i
\(220\) 1.78699 + 3.09516i 0.120479 + 0.208675i
\(221\) 0.534615 0.925981i 0.0359621 0.0622882i
\(222\) 1.04323 + 0.875377i 0.0700172 + 0.0587514i
\(223\) −7.05051 2.56617i −0.472137 0.171844i 0.0949832 0.995479i \(-0.469720\pi\)
−0.567120 + 0.823635i \(0.691942\pi\)
\(224\) −0.613341 + 0.223238i −0.0409806 + 0.0149157i
\(225\) 0.766044 0.642788i 0.0510696 0.0428525i
\(226\) 1.53209 + 8.68891i 0.101913 + 0.577978i
\(227\) −12.8307 −0.851603 −0.425801 0.904817i \(-0.640008\pi\)
−0.425801 + 0.904817i \(0.640008\pi\)
\(228\) −0.694593 + 4.30320i −0.0460005 + 0.284986i
\(229\) 8.07192 0.533407 0.266704 0.963779i \(-0.414065\pi\)
0.266704 + 0.963779i \(0.414065\pi\)
\(230\) −1.58125 8.96773i −0.104265 0.591314i
\(231\) −1.78699 + 1.49946i −0.117575 + 0.0986573i
\(232\) 8.56418 3.11711i 0.562266 0.204648i
\(233\) 3.68004 + 1.33943i 0.241088 + 0.0877488i 0.459738 0.888054i \(-0.347943\pi\)
−0.218650 + 0.975803i \(0.570165\pi\)
\(234\) 3.61334 + 3.03195i 0.236211 + 0.198205i
\(235\) −5.90033 + 10.2197i −0.384895 + 0.666658i
\(236\) −4.43969 7.68977i −0.288999 0.500562i
\(237\) −1.74897 + 9.91890i −0.113608 + 0.644302i
\(238\) 0.0256923 0.145708i 0.00166538 0.00944485i
\(239\) 1.38279 + 2.39506i 0.0894452 + 0.154924i 0.907277 0.420534i \(-0.138157\pi\)
−0.817832 + 0.575458i \(0.804824\pi\)
\(240\) 0.500000 0.866025i 0.0322749 0.0559017i
\(241\) 0.461981 + 0.387648i 0.0297588 + 0.0249706i 0.657546 0.753415i \(-0.271595\pi\)
−0.627787 + 0.778385i \(0.716039\pi\)
\(242\) 1.66637 + 0.606511i 0.107119 + 0.0389880i
\(243\) −0.939693 + 0.342020i −0.0602813 + 0.0219406i
\(244\) −0.271974 + 0.228213i −0.0174114 + 0.0146099i
\(245\) 1.14156 + 6.47410i 0.0729315 + 0.413615i
\(246\) −6.61587 −0.421812
\(247\) −19.4204 6.75119i −1.23569 0.429568i
\(248\) −4.81521 −0.305766
\(249\) −3.02141 17.1353i −0.191474 1.08590i
\(250\) 0.766044 0.642788i 0.0484489 0.0406535i
\(251\) 7.84864 2.85667i 0.495402 0.180312i −0.0822229 0.996614i \(-0.526202\pi\)
0.577625 + 0.816302i \(0.303980\pi\)
\(252\) 0.613341 + 0.223238i 0.0386368 + 0.0140627i
\(253\) −24.9308 20.9194i −1.56739 1.31519i
\(254\) 8.48293 14.6929i 0.532266 0.921912i
\(255\) 0.113341 + 0.196312i 0.00709768 + 0.0122935i
\(256\) 0.173648 0.984808i 0.0108530 0.0615505i
\(257\) 2.53895 14.3991i 0.158375 0.898192i −0.797259 0.603637i \(-0.793718\pi\)
0.955635 0.294555i \(-0.0951714\pi\)
\(258\) 6.14543 + 10.6442i 0.382598 + 0.662679i
\(259\) −0.444440 + 0.769793i −0.0276162 + 0.0478326i
\(260\) 3.61334 + 3.03195i 0.224090 + 0.188034i
\(261\) −8.56418 3.11711i −0.530109 0.192944i
\(262\) 11.4757 4.17680i 0.708968 0.258043i
\(263\) 0.332282 0.278817i 0.0204894 0.0171926i −0.632485 0.774572i \(-0.717965\pi\)
0.652975 + 0.757380i \(0.273521\pi\)
\(264\) −0.620615 3.51968i −0.0381962 0.216621i
\(265\) −5.63816 −0.346349
\(266\) −2.84477 + 0.0412527i −0.174424 + 0.00252936i
\(267\) 7.10607 0.434884
\(268\) −2.09879 11.9028i −0.128204 0.727082i
\(269\) −3.05509 + 2.56353i −0.186272 + 0.156301i −0.731155 0.682211i \(-0.761019\pi\)
0.544883 + 0.838512i \(0.316574\pi\)
\(270\) −0.939693 + 0.342020i −0.0571879 + 0.0208147i
\(271\) 6.33022 + 2.30401i 0.384534 + 0.139959i 0.527051 0.849833i \(-0.323298\pi\)
−0.142518 + 0.989792i \(0.545520\pi\)
\(272\) 0.173648 + 0.145708i 0.0105290 + 0.00883485i
\(273\) −1.53936 + 2.66625i −0.0931665 + 0.161369i
\(274\) −9.86618 17.0887i −0.596038 1.03237i
\(275\) 0.620615 3.51968i 0.0374245 0.212245i
\(276\) −1.58125 + 8.96773i −0.0951802 + 0.539794i
\(277\) −5.08853 8.81359i −0.305740 0.529557i 0.671686 0.740836i \(-0.265570\pi\)
−0.977426 + 0.211279i \(0.932237\pi\)
\(278\) 6.43629 11.1480i 0.386023 0.668611i
\(279\) 3.68866 + 3.09516i 0.220834 + 0.185302i
\(280\) 0.613341 + 0.223238i 0.0366541 + 0.0133410i
\(281\) −3.63341 + 1.32245i −0.216751 + 0.0788909i −0.448113 0.893977i \(-0.647904\pi\)
0.231362 + 0.972868i \(0.425682\pi\)
\(282\) 9.03983 7.58532i 0.538314 0.451699i
\(283\) 3.27672 + 18.5832i 0.194781 + 1.10466i 0.912730 + 0.408562i \(0.133970\pi\)
−0.717950 + 0.696095i \(0.754919\pi\)
\(284\) −12.1557 −0.721308
\(285\) 3.29813 2.84997i 0.195365 0.168818i
\(286\) 16.8580 0.996836
\(287\) −0.749848 4.25260i −0.0442621 0.251023i
\(288\) −0.766044 + 0.642788i −0.0451396 + 0.0378766i
\(289\) 15.9265 5.79677i 0.936852 0.340986i
\(290\) −8.56418 3.11711i −0.502906 0.183043i
\(291\) 0.418748 + 0.351371i 0.0245474 + 0.0205978i
\(292\) −1.51367 + 2.62175i −0.0885809 + 0.153427i
\(293\) 3.06031 + 5.30061i 0.178785 + 0.309665i 0.941465 0.337112i \(-0.109450\pi\)
−0.762680 + 0.646776i \(0.776117\pi\)
\(294\) 1.14156 6.47410i 0.0665771 0.377577i
\(295\) −1.54189 + 8.74449i −0.0897723 + 0.509124i
\(296\) −0.680922 1.17939i −0.0395778 0.0685508i
\(297\) −1.78699 + 3.09516i −0.103692 + 0.179599i
\(298\) −11.6099 9.74189i −0.672546 0.564333i
\(299\) −40.3619 14.6905i −2.33419 0.849575i
\(300\) −0.939693 + 0.342020i −0.0542532 + 0.0197465i
\(301\) −6.14543 + 5.15663i −0.354217 + 0.297223i
\(302\) −0.357097 2.02520i −0.0205486 0.116537i
\(303\) 13.9786 0.803052
\(304\) 2.12449 3.80612i 0.121848 0.218296i
\(305\) 0.355037 0.0203294
\(306\) −0.0393628 0.223238i −0.00225022 0.0127617i
\(307\) 3.95858 3.32164i 0.225928 0.189576i −0.522796 0.852458i \(-0.675111\pi\)
0.748724 + 0.662882i \(0.230667\pi\)
\(308\) 2.19207 0.797847i 0.124905 0.0454615i
\(309\) −10.5915 3.85500i −0.602530 0.219303i
\(310\) 3.68866 + 3.09516i 0.209502 + 0.175793i
\(311\) 7.27379 12.5986i 0.412459 0.714399i −0.582699 0.812688i \(-0.698004\pi\)
0.995158 + 0.0982886i \(0.0313368\pi\)
\(312\) −2.35844 4.08494i −0.133520 0.231264i
\(313\) 2.97952 16.8977i 0.168413 0.955115i −0.777063 0.629423i \(-0.783291\pi\)
0.945476 0.325692i \(-0.105597\pi\)
\(314\) −1.88073 + 10.6661i −0.106136 + 0.601925i
\(315\) −0.326352 0.565258i −0.0183878 0.0318487i
\(316\) 5.03596 8.72254i 0.283295 0.490681i
\(317\) −12.0398 10.1026i −0.676224 0.567419i 0.238676 0.971099i \(-0.423287\pi\)
−0.914900 + 0.403680i \(0.867731\pi\)
\(318\) 5.29813 + 1.92836i 0.297105 + 0.108137i
\(319\) −30.6082 + 11.1405i −1.71373 + 0.623746i
\(320\) −0.766044 + 0.642788i −0.0428232 + 0.0359329i
\(321\) −0.624485 3.54163i −0.0348554 0.197675i
\(322\) −5.94356 −0.331222
\(323\) 0.506397 + 0.848451i 0.0281767 + 0.0472091i
\(324\) 1.00000 0.0555556
\(325\) −0.819078 4.64522i −0.0454343 0.257671i
\(326\) 2.08718 1.75135i 0.115598 0.0969985i
\(327\) −4.99020 + 1.81628i −0.275959 + 0.100441i
\(328\) 6.21688 + 2.26276i 0.343270 + 0.124940i
\(329\) 5.90033 + 4.95096i 0.325296 + 0.272956i
\(330\) −1.78699 + 3.09516i −0.0983705 + 0.170383i
\(331\) −13.0569 22.6152i −0.717672 1.24304i −0.961920 0.273332i \(-0.911874\pi\)
0.244247 0.969713i \(-0.421459\pi\)
\(332\) −3.02141 + 17.1353i −0.165821 + 0.940420i
\(333\) −0.236482 + 1.34115i −0.0129591 + 0.0734948i
\(334\) 8.08512 + 14.0038i 0.442398 + 0.766256i
\(335\) −6.04323 + 10.4672i −0.330177 + 0.571884i
\(336\) −0.500000 0.419550i −0.0272772 0.0228883i
\(337\) −15.1138 5.50098i −0.823302 0.299657i −0.104195 0.994557i \(-0.533227\pi\)
−0.719107 + 0.694900i \(0.755449\pi\)
\(338\) 8.69119 3.16333i 0.472738 0.172063i
\(339\) −6.75877 + 5.67128i −0.367086 + 0.308022i
\(340\) −0.0393628 0.223238i −0.00213475 0.0121068i
\(341\) 17.2094 0.931944
\(342\) −4.07398 + 1.55007i −0.220295 + 0.0838180i
\(343\) 8.85978 0.478383
\(344\) −2.13429 12.1041i −0.115073 0.652611i
\(345\) 6.97565 5.85327i 0.375556 0.315129i
\(346\) 2.09967 0.764217i 0.112879 0.0410846i
\(347\) −7.46451 2.71686i −0.400716 0.145849i 0.133798 0.991009i \(-0.457283\pi\)
−0.534513 + 0.845160i \(0.679505\pi\)
\(348\) 6.98158 + 5.85824i 0.374252 + 0.314035i
\(349\) 11.1643 19.3372i 0.597612 1.03509i −0.395560 0.918440i \(-0.629450\pi\)
0.993173 0.116655i \(-0.0372170\pi\)
\(350\) −0.326352 0.565258i −0.0174442 0.0302143i
\(351\) −0.819078 + 4.64522i −0.0437191 + 0.247944i
\(352\) −0.620615 + 3.51968i −0.0330789 + 0.187600i
\(353\) −14.1138 24.4458i −0.751202 1.30112i −0.947240 0.320524i \(-0.896141\pi\)
0.196038 0.980596i \(-0.437192\pi\)
\(354\) 4.43969 7.68977i 0.235967 0.408707i
\(355\) 9.31180 + 7.81353i 0.494219 + 0.414699i
\(356\) −6.67752 2.43042i −0.353908 0.128812i
\(357\) 0.139033 0.0506039i 0.00735841 0.00267824i
\(358\) −12.4534 + 10.4496i −0.658181 + 0.552279i
\(359\) −3.67412 20.8369i −0.193912 1.09973i −0.913959 0.405806i \(-0.866991\pi\)
0.720047 0.693926i \(-0.244120\pi\)
\(360\) 1.00000 0.0527046
\(361\) 14.1946 12.6299i 0.747084 0.664730i
\(362\) −3.65270 −0.191982
\(363\) 0.307934 + 1.74638i 0.0161623 + 0.0916611i
\(364\) 2.35844 1.97897i 0.123616 0.103726i
\(365\) 2.84477 1.03541i 0.148902 0.0541959i
\(366\) −0.333626 0.121430i −0.0174389 0.00634724i
\(367\) 9.71142 + 8.14885i 0.506932 + 0.425366i 0.860048 0.510213i \(-0.170433\pi\)
−0.353116 + 0.935580i \(0.614878\pi\)
\(368\) 4.55303 7.88609i 0.237343 0.411091i
\(369\) −3.30793 5.72951i −0.172204 0.298266i
\(370\) −0.236482 + 1.34115i −0.0122941 + 0.0697233i
\(371\) −0.639033 + 3.62414i −0.0331769 + 0.188156i
\(372\) −2.40760 4.17009i −0.124828 0.216209i
\(373\) −13.2023 + 22.8671i −0.683591 + 1.18401i 0.290286 + 0.956940i \(0.406249\pi\)
−0.973877 + 0.227074i \(0.927084\pi\)
\(374\) −0.620615 0.520758i −0.0320912 0.0269277i
\(375\) 0.939693 + 0.342020i 0.0485255 + 0.0176618i
\(376\) −11.0890 + 4.03606i −0.571871 + 0.208144i
\(377\) −32.9313 + 27.6326i −1.69605 + 1.42315i
\(378\) 0.113341 + 0.642788i 0.00582962 + 0.0330614i
\(379\) 13.2490 0.680554 0.340277 0.940325i \(-0.389479\pi\)
0.340277 + 0.940325i \(0.389479\pi\)
\(380\) −4.07398 + 1.55007i −0.208991 + 0.0795167i
\(381\) 16.9659 0.869187
\(382\) 1.66385 + 9.43615i 0.0851299 + 0.482795i
\(383\) 1.88847 1.58461i 0.0964963 0.0809700i −0.593263 0.805009i \(-0.702161\pi\)
0.689760 + 0.724039i \(0.257716\pi\)
\(384\) 0.939693 0.342020i 0.0479535 0.0174536i
\(385\) −2.19207 0.797847i −0.111718 0.0406620i
\(386\) −10.2515 8.60203i −0.521787 0.437832i
\(387\) −6.14543 + 10.6442i −0.312390 + 0.541075i
\(388\) −0.273318 0.473401i −0.0138756 0.0240333i
\(389\) −4.64068 + 26.3186i −0.235292 + 1.33441i 0.606706 + 0.794926i \(0.292490\pi\)
−0.841998 + 0.539481i \(0.818621\pi\)
\(390\) −0.819078 + 4.64522i −0.0414756 + 0.235220i
\(391\) 1.03209 + 1.78763i 0.0521950 + 0.0904044i
\(392\) −3.28699 + 5.69323i −0.166018 + 0.287552i
\(393\) 9.35504 + 7.84981i 0.471899 + 0.395970i
\(394\) 19.8221 + 7.21464i 0.998622 + 0.363469i
\(395\) −9.46451 + 3.44480i −0.476211 + 0.173327i
\(396\) 2.73783 2.29731i 0.137581 0.115444i
\(397\) −1.06893 6.06218i −0.0536478 0.304252i 0.946163 0.323690i \(-0.104923\pi\)
−0.999811 + 0.0194379i \(0.993812\pi\)
\(398\) 24.1607 1.21107
\(399\) −1.45811 2.44302i −0.0729968 0.122304i
\(400\) 1.00000 0.0500000
\(401\) −2.48767 14.1083i −0.124228 0.704535i −0.981763 0.190108i \(-0.939116\pi\)
0.857535 0.514426i \(-0.171995\pi\)
\(402\) 9.25877 7.76903i 0.461785 0.387484i
\(403\) 21.3430 7.76822i 1.06317 0.386963i
\(404\) −13.1356 4.78098i −0.653522 0.237863i
\(405\) −0.766044 0.642788i −0.0380651 0.0319404i
\(406\) −2.97431 + 5.15165i −0.147612 + 0.255672i
\(407\) 2.43360 + 4.21512i 0.120629 + 0.208936i
\(408\) −0.0393628 + 0.223238i −0.00194875 + 0.0110519i
\(409\) −3.17247 + 17.9919i −0.156868 + 0.889645i 0.800189 + 0.599747i \(0.204732\pi\)
−0.957058 + 0.289897i \(0.906379\pi\)
\(410\) −3.30793 5.72951i −0.163367 0.282960i
\(411\) 9.86618 17.0887i 0.486663 0.842925i
\(412\) 8.63429 + 7.24503i 0.425381 + 0.356937i
\(413\) 5.44609 + 1.98221i 0.267985 + 0.0975384i
\(414\) −8.55690 + 3.11446i −0.420549 + 0.153067i
\(415\) 13.3289 11.1843i 0.654289 0.549014i
\(416\) 0.819078 + 4.64522i 0.0401586 + 0.227751i
\(417\) 12.8726 0.630373
\(418\) −7.59286 + 13.6030i −0.371379 + 0.665344i
\(419\) −23.4466 −1.14544 −0.572720 0.819751i \(-0.694112\pi\)
−0.572720 + 0.819751i \(0.694112\pi\)
\(420\) 0.113341 + 0.642788i 0.00553046 + 0.0313648i
\(421\) 8.42649 7.07066i 0.410682 0.344603i −0.413923 0.910312i \(-0.635842\pi\)
0.824605 + 0.565709i \(0.191397\pi\)
\(422\) 19.3799 7.05369i 0.943396 0.343368i
\(423\) 11.0890 + 4.03606i 0.539165 + 0.196240i
\(424\) −4.31908 3.62414i −0.209753 0.176004i
\(425\) −0.113341 + 0.196312i −0.00549784 + 0.00952253i
\(426\) −6.07785 10.5271i −0.294473 0.510042i
\(427\) 0.0402402 0.228213i 0.00194736 0.0110440i
\(428\) −0.624485 + 3.54163i −0.0301856 + 0.171191i
\(429\) 8.42902 + 14.5995i 0.406957 + 0.704870i
\(430\) −6.14543 + 10.6442i −0.296359 + 0.513309i
\(431\) −2.78518 2.33704i −0.134157 0.112571i 0.573240 0.819388i \(-0.305686\pi\)
−0.707397 + 0.706816i \(0.750131\pi\)
\(432\) −0.939693 0.342020i −0.0452110 0.0164555i
\(433\) −9.53761 + 3.47141i −0.458348 + 0.166825i −0.560867 0.827906i \(-0.689532\pi\)
0.102519 + 0.994731i \(0.467310\pi\)
\(434\) 2.40760 2.02022i 0.115569 0.0969736i
\(435\) −1.58260 8.97535i −0.0758797 0.430335i
\(436\) 5.31046 0.254325
\(437\) 30.0330 25.9520i 1.43667 1.24145i
\(438\) −3.02734 −0.144652
\(439\) 5.13041 + 29.0960i 0.244861 + 1.38868i 0.820814 + 0.571195i \(0.193520\pi\)
−0.575953 + 0.817483i \(0.695369\pi\)
\(440\) 2.73783 2.29731i 0.130521 0.109520i
\(441\) 6.17752 2.24843i 0.294168 0.107068i
\(442\) −1.00475 0.365698i −0.0477910 0.0173945i
\(443\) 31.0278 + 26.0354i 1.47418 + 1.23698i 0.912147 + 0.409862i \(0.134423\pi\)
0.562028 + 0.827118i \(0.310021\pi\)
\(444\) 0.680922 1.17939i 0.0323151 0.0559715i
\(445\) 3.55303 + 6.15403i 0.168430 + 0.291729i
\(446\) −1.30288 + 7.38901i −0.0616932 + 0.349880i
\(447\) 2.63176 14.9254i 0.124478 0.705949i
\(448\) 0.326352 + 0.565258i 0.0154187 + 0.0267059i
\(449\) 4.24557 7.35354i 0.200361 0.347035i −0.748284 0.663379i \(-0.769122\pi\)
0.948645 + 0.316344i \(0.102455\pi\)
\(450\) −0.766044 0.642788i −0.0361117 0.0303013i
\(451\) −22.2190 8.08705i −1.04625 0.380804i
\(452\) 8.29086 3.01763i 0.389969 0.141937i
\(453\) 1.57532 1.32185i 0.0740151 0.0621060i
\(454\) 2.22803 + 12.6358i 0.104566 + 0.593026i
\(455\) −3.07873 −0.144333
\(456\) 4.35844 0.0632028i 0.204103 0.00295974i
\(457\) 1.01186 0.0473328 0.0236664 0.999720i \(-0.492466\pi\)
0.0236664 + 0.999720i \(0.492466\pi\)
\(458\) −1.40167 7.94929i −0.0654959 0.371446i
\(459\) 0.173648 0.145708i 0.00810520 0.00680107i
\(460\) −8.55690 + 3.11446i −0.398968 + 0.145212i
\(461\) 22.0415 + 8.02244i 1.02657 + 0.373642i 0.799775 0.600299i \(-0.204952\pi\)
0.226799 + 0.973942i \(0.427174\pi\)
\(462\) 1.78699 + 1.49946i 0.0831383 + 0.0697613i
\(463\) −14.4354 + 25.0029i −0.670870 + 1.16198i 0.306787 + 0.951778i \(0.400746\pi\)
−0.977658 + 0.210204i \(0.932587\pi\)
\(464\) −4.55690 7.89279i −0.211549 0.366414i
\(465\) −0.836152 + 4.74205i −0.0387756 + 0.219907i
\(466\) 0.680045 3.85673i 0.0315025 0.178659i
\(467\) 0.589870 + 1.02168i 0.0272959 + 0.0472779i 0.879351 0.476175i \(-0.157977\pi\)
−0.852055 + 0.523453i \(0.824644\pi\)
\(468\) 2.35844 4.08494i 0.109019 0.188826i
\(469\) 6.04323 + 5.07087i 0.279051 + 0.234151i
\(470\) 11.0890 + 4.03606i 0.511497 + 0.186170i
\(471\) −10.1775 + 3.70431i −0.468955 + 0.170686i
\(472\) −6.80200 + 5.70756i −0.313088 + 0.262712i
\(473\) 7.62789 + 43.2599i 0.350731 + 1.98909i
\(474\) 10.0719 0.462619
\(475\) 4.11721 + 1.43128i 0.188911 + 0.0656718i
\(476\) −0.147956 −0.00678155
\(477\) 0.979055 + 5.55250i 0.0448279 + 0.254231i
\(478\) 2.11856 1.77768i 0.0969005 0.0813091i
\(479\) 20.2545 7.37203i 0.925451 0.336837i 0.165046 0.986286i \(-0.447223\pi\)
0.760405 + 0.649449i \(0.225000\pi\)
\(480\) −0.939693 0.342020i −0.0428909 0.0156110i
\(481\) 4.92081 + 4.12905i 0.224370 + 0.188268i
\(482\) 0.301537 0.522277i 0.0137346 0.0237891i
\(483\) −2.97178 5.14728i −0.135221 0.234209i
\(484\) 0.307934 1.74638i 0.0139970 0.0793808i
\(485\) −0.0949225 + 0.538332i −0.00431021 + 0.0244444i
\(486\) 0.500000 + 0.866025i 0.0226805 + 0.0392837i
\(487\) −15.5424 + 26.9202i −0.704291 + 1.21987i 0.262655 + 0.964890i \(0.415402\pi\)
−0.966947 + 0.254979i \(0.917932\pi\)
\(488\) 0.271974 + 0.228213i 0.0123117 + 0.0103307i
\(489\) 2.56031 + 0.931876i 0.115781 + 0.0421409i
\(490\) 6.17752 2.24843i 0.279072 0.101574i
\(491\) 7.28564 6.11338i 0.328797 0.275893i −0.463413 0.886143i \(-0.653375\pi\)
0.792209 + 0.610249i \(0.208931\pi\)
\(492\) 1.14883 + 6.51536i 0.0517934 + 0.293735i
\(493\) 2.06593 0.0930449
\(494\) −3.27631 + 20.2977i −0.147408 + 0.913236i
\(495\) −3.57398 −0.160638
\(496\) 0.836152 + 4.74205i 0.0375443 + 0.212924i
\(497\) 6.07785 5.09992i 0.272629 0.228763i
\(498\) −16.3503 + 5.95102i −0.732674 + 0.266672i
\(499\) −15.0560 5.47995i −0.674000 0.245316i −0.0177310 0.999843i \(-0.505644\pi\)
−0.656269 + 0.754527i \(0.727866\pi\)
\(500\) −0.766044 0.642788i −0.0342585 0.0287463i
\(501\) −8.08512 + 14.0038i −0.361217 + 0.625646i
\(502\) −4.17617 7.23335i −0.186392 0.322840i
\(503\) −5.26264 + 29.8459i −0.234650 + 1.33076i 0.608701 + 0.793400i \(0.291691\pi\)
−0.843350 + 0.537364i \(0.819420\pi\)
\(504\) 0.113341 0.642788i 0.00504860 0.0286320i
\(505\) 6.98932 + 12.1059i 0.311021 + 0.538704i
\(506\) −16.2724 + 28.1847i −0.723398 + 1.25296i
\(507\) 7.08512 + 5.94512i 0.314661 + 0.264032i
\(508\) −15.9427 5.80266i −0.707342 0.257452i
\(509\) 0.615867 0.224157i 0.0272978 0.00993560i −0.328335 0.944561i \(-0.606488\pi\)
0.355633 + 0.934626i \(0.384265\pi\)
\(510\) 0.173648 0.145708i 0.00768927 0.00645206i
\(511\) −0.343121 1.94594i −0.0151788 0.0860832i
\(512\) −1.00000 −0.0441942
\(513\) −3.37939 2.75314i −0.149204 0.121554i
\(514\) −14.6212 −0.644915
\(515\) −1.95723 11.1000i −0.0862460 0.489125i
\(516\) 9.41534 7.90041i 0.414487 0.347796i
\(517\) 39.6318 14.4248i 1.74301 0.634402i
\(518\) 0.835275 + 0.304015i 0.0366999 + 0.0133577i
\(519\) 1.71167 + 1.43626i 0.0751338 + 0.0630448i
\(520\) 2.35844 4.08494i 0.103424 0.179136i
\(521\) −16.1604 27.9907i −0.708002 1.22630i −0.965597 0.260042i \(-0.916263\pi\)
0.257595 0.966253i \(-0.417070\pi\)
\(522\) −1.58260 + 8.97535i −0.0692683 + 0.392840i
\(523\) 6.01801 34.1298i 0.263149 1.49239i −0.511105 0.859518i \(-0.670764\pi\)
0.774254 0.632875i \(-0.218125\pi\)
\(524\) −6.10607 10.5760i −0.266745 0.462015i
\(525\) 0.326352 0.565258i 0.0142432 0.0246699i
\(526\) −0.332282 0.278817i −0.0144882 0.0121570i
\(527\) −1.02569 0.373321i −0.0446799 0.0162621i
\(528\) −3.35844 + 1.22237i −0.146157 + 0.0531969i
\(529\) 45.9017 38.5161i 1.99573 1.67461i
\(530\) 0.979055 + 5.55250i 0.0425275 + 0.241185i
\(531\) 8.87939 0.385332
\(532\) 0.534615 + 2.79439i 0.0231785 + 0.121152i
\(533\) −31.2063 −1.35169
\(534\) −1.23396 6.99811i −0.0533985 0.302838i
\(535\) 2.75490 2.31164i 0.119105 0.0999407i
\(536\) −11.3576 + 4.13381i −0.490572 + 0.178554i
\(537\) −15.2763 5.56012i −0.659221 0.239937i
\(538\) 3.05509 + 2.56353i 0.131714 + 0.110522i
\(539\) 11.7476 20.3475i 0.506006 0.876428i
\(540\) 0.500000 + 0.866025i 0.0215166 + 0.0372678i
\(541\) 0.125200 0.710047i 0.00538278 0.0305273i −0.981998 0.188891i \(-0.939511\pi\)
0.987381 + 0.158364i \(0.0506218\pi\)
\(542\) 1.16978 6.63414i 0.0502463 0.284961i
\(543\) −1.82635 3.16333i −0.0783763 0.135752i
\(544\) 0.113341 0.196312i 0.00485945 0.00841681i
\(545\) −4.06805 3.41350i −0.174256 0.146218i
\(546\) 2.89306 + 1.05299i 0.123811 + 0.0450636i
\(547\) 4.24510 1.54509i 0.181507 0.0660633i −0.249668 0.968332i \(-0.580321\pi\)
0.431175 + 0.902268i \(0.358099\pi\)
\(548\) −15.1159 + 12.6837i −0.645718 + 0.541822i
\(549\) −0.0616516 0.349643i −0.00263122 0.0149224i
\(550\) −3.57398 −0.152395
\(551\) −7.46492 39.0185i −0.318016 1.66224i
\(552\) 9.10607 0.387580
\(553\) 1.14156 + 6.47410i 0.0485440 + 0.275307i
\(554\) −7.79607 + 6.54168i −0.331223 + 0.277929i
\(555\) −1.27972 + 0.465778i −0.0543209 + 0.0197712i
\(556\) −12.0963 4.40268i −0.512996 0.186715i
\(557\) −10.3307 8.66848i −0.437725 0.367295i 0.397132 0.917761i \(-0.370006\pi\)
−0.834857 + 0.550466i \(0.814450\pi\)
\(558\) 2.40760 4.17009i 0.101922 0.176534i
\(559\) 28.9873 + 50.2074i 1.22603 + 2.12355i
\(560\) 0.113341 0.642788i 0.00478952 0.0271627i
\(561\) 0.140682 0.797847i 0.00593960 0.0336851i
\(562\) 1.93330 + 3.34857i 0.0815512 + 0.141251i
\(563\) −3.81773 + 6.61251i −0.160898 + 0.278684i −0.935191 0.354143i \(-0.884772\pi\)
0.774293 + 0.632828i \(0.218106\pi\)
\(564\) −9.03983 7.58532i −0.380645 0.319399i
\(565\) −8.29086 3.01763i −0.348799 0.126952i
\(566\) 17.7319 6.45388i 0.745327 0.271277i
\(567\) −0.500000 + 0.419550i −0.0209980 + 0.0176194i
\(568\) 2.11081 + 11.9710i 0.0885678 + 0.502293i
\(569\) −1.31996 −0.0553354 −0.0276677 0.999617i \(-0.508808\pi\)
−0.0276677 + 0.999617i \(0.508808\pi\)
\(570\) −3.37939 2.75314i −0.141547 0.115316i
\(571\) 14.6477 0.612985 0.306493 0.951873i \(-0.400845\pi\)
0.306493 + 0.951873i \(0.400845\pi\)
\(572\) −2.92737 16.6019i −0.122399 0.694161i
\(573\) −7.34002 + 6.15901i −0.306634 + 0.257296i
\(574\) −4.05778 + 1.47691i −0.169369 + 0.0616451i
\(575\) 8.55690 + 3.11446i 0.356848 + 0.129882i
\(576\) 0.766044 + 0.642788i 0.0319185 + 0.0267828i
\(577\) −19.3045 + 33.4364i −0.803658 + 1.39198i 0.113535 + 0.993534i \(0.463783\pi\)
−0.917193 + 0.398443i \(0.869551\pi\)
\(578\) −8.47431 14.6779i −0.352485 0.610521i
\(579\) 2.32383 13.1791i 0.0965749 0.547703i
\(580\) −1.58260 + 8.97535i −0.0657137 + 0.372681i
\(581\) −5.67840 9.83527i −0.235580 0.408036i
\(582\) 0.273318 0.473401i 0.0113294 0.0196231i
\(583\) 15.4363 + 12.9526i 0.639306 + 0.536441i
\(584\) 2.84477 + 1.03541i 0.117717 + 0.0428456i
\(585\) −4.43242 + 1.61327i −0.183258 + 0.0667004i
\(586\) 4.68866 3.93426i 0.193687 0.162523i
\(587\) 1.96023 + 11.1170i 0.0809072 + 0.458848i 0.998165 + 0.0605534i \(0.0192866\pi\)
−0.917258 + 0.398294i \(0.869602\pi\)
\(588\) −6.57398 −0.271106
\(589\) −3.34461 + 20.7208i −0.137812 + 0.853786i
\(590\) 8.87939 0.365559
\(591\) 3.66297 + 20.7737i 0.150674 + 0.854517i
\(592\) −1.04323 + 0.875377i −0.0428766 + 0.0359778i
\(593\) 11.8991 4.33094i 0.488639 0.177850i −0.0859379 0.996300i \(-0.527389\pi\)
0.574577 + 0.818450i \(0.305166\pi\)
\(594\) 3.35844 + 1.22237i 0.137798 + 0.0501545i
\(595\) 0.113341 + 0.0951042i 0.00464652 + 0.00389889i
\(596\) −7.57785 + 13.1252i −0.310401 + 0.537630i
\(597\) 12.0804 + 20.9238i 0.494417 + 0.856355i
\(598\) −7.45858 + 42.2997i −0.305004 + 1.72976i
\(599\) −4.17752 + 23.6919i −0.170689 + 0.968024i 0.772314 + 0.635240i \(0.219099\pi\)
−0.943003 + 0.332784i \(0.892012\pi\)
\(600\) 0.500000 + 0.866025i 0.0204124 + 0.0353553i
\(601\) 11.3071 19.5844i 0.461224 0.798864i −0.537798 0.843074i \(-0.680744\pi\)
0.999022 + 0.0442097i \(0.0140770\pi\)
\(602\) 6.14543 + 5.15663i 0.250469 + 0.210168i
\(603\) 11.3576 + 4.13381i 0.462516 + 0.168342i
\(604\) −1.93242 + 0.703343i −0.0786290 + 0.0286186i
\(605\) −1.35844 + 1.13987i −0.0552285 + 0.0463422i
\(606\) −2.42737 13.7663i −0.0986050 0.559217i
\(607\) −26.3732 −1.07046 −0.535228 0.844708i \(-0.679774\pi\)
−0.535228 + 0.844708i \(0.679774\pi\)
\(608\) −4.11721 1.43128i −0.166975 0.0580462i
\(609\) −5.94862 −0.241050
\(610\) −0.0616516 0.349643i −0.00249620 0.0141566i
\(611\) 42.6398 35.7790i 1.72502 1.44747i
\(612\) −0.213011 + 0.0775297i −0.00861046 + 0.00313395i
\(613\) −42.8594 15.5995i −1.73107 0.630059i −0.732368 0.680910i \(-0.761585\pi\)
−0.998706 + 0.0508502i \(0.983807\pi\)
\(614\) −3.95858 3.32164i −0.159755 0.134051i
\(615\) 3.30793 5.72951i 0.133389 0.231036i
\(616\) −1.16637 2.02022i −0.0469946 0.0813970i
\(617\) −4.88696 + 27.7153i −0.196742 + 1.11578i 0.713175 + 0.700986i \(0.247257\pi\)
−0.909916 + 0.414792i \(0.863854\pi\)
\(618\) −1.95723 + 11.1000i −0.0787315 + 0.446508i
\(619\) −11.8405 20.5083i −0.475909 0.824299i 0.523710 0.851897i \(-0.324548\pi\)
−0.999619 + 0.0275975i \(0.991214\pi\)
\(620\) 2.40760 4.17009i 0.0966917 0.167475i
\(621\) −6.97565 5.85327i −0.279923 0.234884i
\(622\) −13.6702 4.97556i −0.548127 0.199502i
\(623\) 4.35844 1.58634i 0.174617 0.0635555i
\(624\) −3.61334 + 3.03195i −0.144649 + 0.121375i
\(625\) 0.173648 + 0.984808i 0.00694593 + 0.0393923i
\(626\) −17.1584 −0.685787
\(627\) −15.5770 + 0.225885i −0.622084 + 0.00902099i
\(628\) 10.8307 0.432192
\(629\) −0.0536061 0.304015i −0.00213741 0.0121219i
\(630\) −0.500000 + 0.419550i −0.0199205 + 0.0167153i
\(631\) 20.6163 7.50373i 0.820723 0.298719i 0.102677 0.994715i \(-0.467259\pi\)
0.718046 + 0.695996i \(0.245037\pi\)
\(632\) −9.46451 3.44480i −0.376478 0.137027i
\(633\) 15.7986 + 13.2566i 0.627938 + 0.526903i
\(634\) −7.85844 + 13.6112i −0.312099 + 0.540571i
\(635\) 8.48293 + 14.6929i 0.336635 + 0.583068i
\(636\) 0.979055 5.55250i 0.0388221 0.220171i
\(637\) 5.38460 30.5376i 0.213346 1.20994i
\(638\) 16.2863 + 28.2087i 0.644780 + 1.11679i
\(639\) 6.07785 10.5271i 0.240436 0.416447i
\(640\) 0.766044 + 0.642788i 0.0302806 + 0.0254084i
\(641\) −22.1805 8.07305i −0.876078 0.318866i −0.135452 0.990784i \(-0.543249\pi\)
−0.740626 + 0.671918i \(0.765471\pi\)
\(642\) −3.37939 + 1.23000i −0.133374 + 0.0485441i
\(643\) 37.7165 31.6479i 1.48739 1.24807i 0.589567 0.807720i \(-0.299299\pi\)
0.897826 0.440351i \(-0.145146\pi\)
\(644\) 1.03209 + 5.85327i 0.0406700 + 0.230651i
\(645\) −12.2909 −0.483952
\(646\) 0.747626 0.646035i 0.0294150 0.0254179i
\(647\) −6.06324 −0.238371 −0.119185 0.992872i \(-0.538028\pi\)
−0.119185 + 0.992872i \(0.538028\pi\)
\(648\) −0.173648 0.984808i −0.00682154 0.0386869i
\(649\) 24.3102 20.3987i 0.954259 0.800719i
\(650\) −4.43242 + 1.61327i −0.173854 + 0.0632776i
\(651\) 2.95336 + 1.07494i 0.115751 + 0.0421301i
\(652\) −2.08718 1.75135i −0.0817403 0.0685883i
\(653\) −24.2422 + 41.9887i −0.948669 + 1.64314i −0.200437 + 0.979707i \(0.564236\pi\)
−0.748233 + 0.663436i \(0.769097\pi\)
\(654\) 2.65523 + 4.59899i 0.103828 + 0.179835i
\(655\) −2.12061 + 12.0266i −0.0828593 + 0.469918i
\(656\) 1.14883 6.51536i 0.0448544 0.254382i
\(657\) −1.51367 2.62175i −0.0590539 0.102284i
\(658\) 3.85117 6.67042i 0.150134 0.260040i
\(659\) 6.07398 + 5.09667i 0.236609 + 0.198538i 0.753380 0.657585i \(-0.228422\pi\)
−0.516772 + 0.856123i \(0.672866\pi\)
\(660\) 3.35844 + 1.22237i 0.130727 + 0.0475808i
\(661\) −26.0398 + 9.47772i −1.01283 + 0.368641i −0.794520 0.607238i \(-0.792277\pi\)
−0.218312 + 0.975879i \(0.570055\pi\)
\(662\) −20.0043 + 16.7856i −0.777491 + 0.652392i
\(663\) −0.185670 1.05299i −0.00721082 0.0408946i
\(664\) 17.3996 0.675236
\(665\) 1.38666 2.48427i 0.0537723 0.0963358i
\(666\) 1.36184 0.0527704
\(667\) −14.4112 81.7301i −0.558005 3.16460i
\(668\) 12.3871 10.3940i 0.479272 0.402157i
\(669\) −7.05051 + 2.56617i −0.272588 + 0.0992140i
\(670\) 11.3576 + 4.13381i 0.438781 + 0.159703i
\(671\) −0.972030 0.815630i −0.0375248 0.0314870i
\(672\) −0.326352 + 0.565258i −0.0125893 + 0.0218053i
\(673\) 4.86736 + 8.43052i 0.187623 + 0.324973i 0.944457 0.328634i \(-0.106588\pi\)
−0.756834 + 0.653607i \(0.773255\pi\)
\(674\) −2.79292 + 15.8394i −0.107579 + 0.610112i
\(675\) 0.173648 0.984808i 0.00668372 0.0379053i
\(676\) −4.62449 8.00984i −0.177865 0.308071i
\(677\) 6.02363 10.4332i 0.231507 0.400982i −0.726745 0.686908i \(-0.758968\pi\)
0.958252 + 0.285926i \(0.0923010\pi\)
\(678\) 6.75877 + 5.67128i 0.259569 + 0.217804i
\(679\) 0.335275 + 0.122030i 0.0128667 + 0.00468308i
\(680\) −0.213011 + 0.0775297i −0.00816860 + 0.00297313i
\(681\) −9.82888 + 8.24741i −0.376643 + 0.316041i
\(682\) −2.98839 16.9480i −0.114431 0.648972i
\(683\) 4.00681 0.153316 0.0766581 0.997057i \(-0.475575\pi\)
0.0766581 + 0.997057i \(0.475575\pi\)
\(684\) 2.23396 + 3.74292i 0.0854174 + 0.143114i
\(685\) 19.7324 0.753935
\(686\) −1.53849 8.72518i −0.0587396 0.333129i
\(687\) 6.18345 5.18853i 0.235913 0.197955i
\(688\) −11.5496 + 4.20372i −0.440326 + 0.160265i
\(689\) 24.9907 + 9.09586i 0.952069 + 0.346525i
\(690\) −6.97565 5.85327i −0.265559 0.222830i
\(691\) −19.1616 + 33.1889i −0.728943 + 1.26257i 0.228388 + 0.973570i \(0.426655\pi\)
−0.957330 + 0.288995i \(0.906679\pi\)
\(692\) −1.11721 1.93507i −0.0424700 0.0735602i
\(693\) −0.405078 + 2.29731i −0.0153876 + 0.0872675i
\(694\) −1.37939 + 7.82288i −0.0523607 + 0.296953i
\(695\) 6.43629 + 11.1480i 0.244142 + 0.422867i
\(696\) 4.55690 7.89279i 0.172729 0.299175i
\(697\) 1.14883 + 0.963986i 0.0435152 + 0.0365136i
\(698\) −20.9820 7.63684i −0.794182 0.289059i
\(699\) 3.68004 1.33943i 0.139192 0.0506618i
\(700\) −0.500000 + 0.419550i −0.0188982 + 0.0158575i
\(701\) 5.57414 + 31.6125i 0.210532 + 1.19399i 0.888493 + 0.458890i \(0.151753\pi\)
−0.677961 + 0.735098i \(0.737136\pi\)
\(702\) 4.71688 0.178027
\(703\) −5.54812 + 2.11095i −0.209251 + 0.0796159i
\(704\) 3.57398 0.134699
\(705\) 2.04916 + 11.6214i 0.0771759 + 0.437687i
\(706\) −21.6236 + 18.1444i −0.813815 + 0.682872i
\(707\) 8.57367 3.12056i 0.322446 0.117361i
\(708\) −8.34389 3.03693i −0.313583 0.114135i
\(709\) −31.2743 26.2422i −1.17453 0.985547i −1.00000 0.000895081i \(-0.999715\pi\)
−0.174530 0.984652i \(-0.555840\pi\)
\(710\) 6.07785 10.5271i 0.228098 0.395077i
\(711\) 5.03596 + 8.72254i 0.188863 + 0.327121i
\(712\) −1.23396 + 6.99811i −0.0462444 + 0.262265i
\(713\) −7.61406 + 43.1815i −0.285149 + 1.61716i
\(714\) −0.0739780 0.128134i −0.00276856 0.00479528i
\(715\) −8.42902 + 14.5995i −0.315227 + 0.545990i
\(716\) 12.4534 + 10.4496i 0.465404 + 0.390520i
\(717\) 2.59879 + 0.945883i 0.0970537 + 0.0353247i
\(718\) −19.8824 + 7.23659i −0.742004 + 0.270067i
\(719\) −23.7906 + 19.9627i −0.887240 + 0.744483i −0.967655 0.252279i \(-0.918820\pi\)
0.0804145 + 0.996762i \(0.474376\pi\)
\(720\) −0.173648 0.984808i −0.00647149 0.0367016i
\(721\) −7.35679 −0.273981
\(722\) −14.9029 11.7858i −0.554627 0.438622i
\(723\) 0.603074 0.0224286
\(724\) 0.634285 + 3.59721i 0.0235730 + 0.133689i
\(725\) 6.98158 5.85824i 0.259289 0.217570i
\(726\) 1.66637 0.606511i 0.0618449 0.0225097i
\(727\) 21.3187 + 7.75936i 0.790666 + 0.287779i 0.705613 0.708598i \(-0.250672\pi\)
0.0850529 + 0.996376i \(0.472894\pi\)
\(728\) −2.35844 1.97897i −0.0874096 0.0733454i
\(729\) −0.500000 + 0.866025i −0.0185185 + 0.0320750i
\(730\) −1.51367 2.62175i −0.0560235 0.0970355i
\(731\) 0.483803 2.74378i 0.0178941 0.101483i
\(732\) −0.0616516 + 0.349643i −0.00227871 + 0.0129232i
\(733\) 8.77038 + 15.1907i 0.323941 + 0.561083i 0.981298 0.192497i \(-0.0616586\pi\)
−0.657356 + 0.753580i \(0.728325\pi\)
\(734\) 6.33868 10.9789i 0.233965 0.405239i
\(735\) 5.03596 + 4.22567i 0.185754 + 0.155866i
\(736\) −8.55690 3.11446i −0.315412 0.114800i
\(737\) 40.5917 14.7742i 1.49521 0.544213i
\(738\) −5.06805 + 4.25260i −0.186557 + 0.156540i
\(739\) −2.36366 13.4050i −0.0869485 0.493109i −0.996919 0.0784366i \(-0.975007\pi\)
0.909971 0.414673i \(-0.136104\pi\)
\(740\) 1.36184 0.0500624
\(741\) −19.2165 + 7.31148i −0.705935 + 0.268594i
\(742\) 3.68004 0.135099
\(743\) 2.33678 + 13.2525i 0.0857282 + 0.486189i 0.997197 + 0.0748197i \(0.0238381\pi\)
−0.911469 + 0.411369i \(0.865051\pi\)
\(744\) −3.68866 + 3.09516i −0.135233 + 0.113474i
\(745\) 14.2417 5.18355i 0.521775 0.189911i
\(746\) 24.8123 + 9.03093i 0.908442 + 0.330646i
\(747\) −13.3289 11.1843i −0.487678 0.409211i
\(748\) −0.405078 + 0.701615i −0.0148111 + 0.0256536i
\(749\) −1.17365 2.03282i −0.0428842 0.0742776i
\(750\) 0.173648 0.984808i 0.00634073 0.0359601i
\(751\) −0.220590 + 1.25103i −0.00804943 + 0.0456506i −0.988568 0.150776i \(-0.951823\pi\)
0.980518 + 0.196427i \(0.0629338\pi\)
\(752\) 5.90033 + 10.2197i 0.215163 + 0.372673i
\(753\) 4.17617 7.23335i 0.152188 0.263598i
\(754\) 32.9313 + 27.6326i 1.19929 + 1.00632i
\(755\) 1.93242 + 0.703343i 0.0703279 + 0.0255973i
\(756\) 0.613341 0.223238i 0.0223070 0.00811908i
\(757\) −7.61515 + 6.38987i −0.276777 + 0.232244i −0.770600 0.637319i \(-0.780044\pi\)
0.493823 + 0.869562i \(0.335599\pi\)
\(758\) −2.30066 13.0477i −0.0835637 0.473913i
\(759\) −32.5449 −1.18130
\(760\) 2.23396 + 3.74292i 0.0810341 + 0.135770i
\(761\) 6.04727 0.219213 0.109607 0.993975i \(-0.465041\pi\)
0.109607 + 0.993975i \(0.465041\pi\)
\(762\) −2.94609 16.7081i −0.106726 0.605271i
\(763\) −2.65523 + 2.22800i −0.0961258 + 0.0806591i
\(764\) 9.00387 3.27714i 0.325749 0.118563i
\(765\) 0.213011 + 0.0775297i 0.00770143 + 0.00280309i