Properties

Label 570.2.u.f.481.1
Level $570$
Weight $2$
Character 570.481
Analytic conductor $4.551$
Analytic rank $0$
Dimension $6$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [570,2,Mod(61,570)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(570, base_ring=CyclotomicField(18))
 
chi = DirichletCharacter(H, H._module([0, 0, 2]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("570.61");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 570 = 2 \cdot 3 \cdot 5 \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 570.u (of order \(9\), degree \(6\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(4.55147291521\)
Analytic rank: \(0\)
Dimension: \(6\)
Coefficient field: \(\Q(\zeta_{18})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - x^{3} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{9}]$

Embedding invariants

Embedding label 481.1
Root \(0.939693 + 0.342020i\) of defining polynomial
Character \(\chi\) \(=\) 570.481
Dual form 570.2.u.f.301.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.766044 + 0.642788i) q^{2} +(-0.939693 - 0.342020i) q^{3} +(0.173648 - 0.984808i) q^{4} +(-0.173648 - 0.984808i) q^{5} +(0.939693 - 0.342020i) q^{6} +(-0.266044 + 0.460802i) q^{7} +(0.500000 + 0.866025i) q^{8} +(0.766044 + 0.642788i) q^{9} +O(q^{10})\) \(q+(-0.766044 + 0.642788i) q^{2} +(-0.939693 - 0.342020i) q^{3} +(0.173648 - 0.984808i) q^{4} +(-0.173648 - 0.984808i) q^{5} +(0.939693 - 0.342020i) q^{6} +(-0.266044 + 0.460802i) q^{7} +(0.500000 + 0.866025i) q^{8} +(0.766044 + 0.642788i) q^{9} +(0.766044 + 0.642788i) q^{10} +(-1.85844 - 3.21891i) q^{11} +(-0.500000 + 0.866025i) q^{12} +(-3.09240 + 1.12554i) q^{13} +(-0.0923963 - 0.524005i) q^{14} +(-0.173648 + 0.984808i) q^{15} +(-0.939693 - 0.342020i) q^{16} +(-0.624485 + 0.524005i) q^{17} -1.00000 q^{18} +(4.21688 + 1.10359i) q^{19} -1.00000 q^{20} +(0.407604 - 0.342020i) q^{21} +(3.49273 + 1.27125i) q^{22} +(-1.01367 + 5.74881i) q^{23} +(-0.173648 - 0.984808i) q^{24} +(-0.939693 + 0.342020i) q^{25} +(1.64543 - 2.84997i) q^{26} +(-0.500000 - 0.866025i) q^{27} +(0.407604 + 0.342020i) q^{28} +(-7.68139 - 6.44545i) q^{29} +(-0.500000 - 0.866025i) q^{30} +(-4.70574 + 8.15058i) q^{31} +(0.939693 - 0.342020i) q^{32} +(0.645430 + 3.66041i) q^{33} +(0.141559 - 0.802823i) q^{34} +(0.500000 + 0.181985i) q^{35} +(0.766044 - 0.642788i) q^{36} -8.04189 q^{37} +(-3.93969 + 1.86516i) q^{38} +3.29086 q^{39} +(0.766044 - 0.642788i) q^{40} +(-9.69119 - 3.52730i) q^{41} +(-0.0923963 + 0.524005i) q^{42} +(0.768571 + 4.35878i) q^{43} +(-3.49273 + 1.27125i) q^{44} +(0.500000 - 0.866025i) q^{45} +(-2.91875 - 5.05542i) q^{46} +(-8.35117 - 7.00746i) q^{47} +(0.766044 + 0.642788i) q^{48} +(3.35844 + 5.81699i) q^{49} +(0.500000 - 0.866025i) q^{50} +(0.766044 - 0.278817i) q^{51} +(0.571452 + 3.24086i) q^{52} +(-0.180922 + 1.02606i) q^{53} +(0.939693 + 0.342020i) q^{54} +(-2.84730 + 2.38917i) q^{55} -0.532089 q^{56} +(-3.58512 - 2.47929i) q^{57} +10.0273 q^{58} +(5.09627 - 4.27628i) q^{59} +(0.939693 + 0.342020i) q^{60} +(2.48886 - 14.1150i) q^{61} +(-1.63429 - 9.26849i) q^{62} +(-0.500000 + 0.181985i) q^{63} +(-0.500000 + 0.866025i) q^{64} +(1.64543 + 2.84997i) q^{65} +(-2.84730 - 2.38917i) q^{66} +(3.91740 + 3.28709i) q^{67} +(0.407604 + 0.705990i) q^{68} +(2.91875 - 5.05542i) q^{69} +(-0.500000 + 0.181985i) q^{70} +(0.595800 + 3.37895i) q^{71} +(-0.173648 + 0.984808i) q^{72} +(-1.02094 - 0.371593i) q^{73} +(6.16044 - 5.16923i) q^{74} +1.00000 q^{75} +(1.81908 - 3.96118i) q^{76} +1.97771 q^{77} +(-2.52094 + 2.11532i) q^{78} +(-11.8623 - 4.31753i) q^{79} +(-0.173648 + 0.984808i) q^{80} +(0.173648 + 0.984808i) q^{81} +(9.69119 - 3.52730i) q^{82} +(-9.02141 + 15.6255i) q^{83} +(-0.266044 - 0.460802i) q^{84} +(0.624485 + 0.524005i) q^{85} +(-3.39053 - 2.84499i) q^{86} +(5.01367 + 8.68393i) q^{87} +(1.85844 - 3.21891i) q^{88} +(-3.60607 + 1.31250i) q^{89} +(0.173648 + 0.984808i) q^{90} +(0.304063 - 1.72443i) q^{91} +(5.48545 + 1.99654i) q^{92} +(7.20961 - 6.04958i) q^{93} +10.9017 q^{94} +(0.354570 - 4.34445i) q^{95} -1.00000 q^{96} +(2.01501 - 1.69080i) q^{97} +(-6.31180 - 2.29731i) q^{98} +(0.645430 - 3.66041i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q + 3 q^{7} + 3 q^{8}+O(q^{10}) \) Copy content Toggle raw display \( 6 q + 3 q^{7} + 3 q^{8} - 3 q^{11} - 3 q^{12} - 15 q^{13} + 3 q^{14} + 9 q^{17} - 6 q^{18} + 9 q^{19} - 6 q^{20} + 6 q^{21} + 3 q^{22} + 15 q^{23} - 6 q^{26} - 3 q^{27} + 6 q^{28} + 3 q^{29} - 3 q^{30} - 18 q^{31} - 12 q^{33} + 9 q^{34} + 3 q^{35} - 42 q^{37} - 18 q^{38} - 12 q^{39} - 12 q^{41} + 3 q^{42} - 15 q^{43} - 3 q^{44} + 3 q^{45} - 15 q^{46} - 24 q^{47} + 12 q^{49} + 3 q^{50} + 3 q^{52} - 18 q^{53} - 15 q^{55} + 6 q^{56} + 18 q^{58} + 3 q^{59} + 21 q^{61} - 3 q^{63} - 3 q^{64} - 6 q^{65} - 15 q^{66} + 30 q^{67} + 6 q^{68} + 15 q^{69} - 3 q^{70} + 42 q^{71} - 3 q^{73} - 9 q^{74} + 6 q^{75} - 6 q^{76} + 24 q^{77} - 12 q^{78} - 39 q^{79} + 12 q^{82} + 15 q^{83} + 3 q^{84} - 9 q^{85} - 3 q^{86} + 9 q^{87} + 3 q^{88} + 3 q^{89} + 15 q^{91} - 3 q^{92} + 9 q^{93} + 42 q^{94} + 18 q^{95} - 6 q^{96} - 18 q^{97} - 3 q^{98} - 12 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/570\mathbb{Z}\right)^\times\).

\(n\) \(191\) \(211\) \(457\)
\(\chi(n)\) \(1\) \(e\left(\frac{7}{9}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.766044 + 0.642788i −0.541675 + 0.454519i
\(3\) −0.939693 0.342020i −0.542532 0.197465i
\(4\) 0.173648 0.984808i 0.0868241 0.492404i
\(5\) −0.173648 0.984808i −0.0776578 0.440419i
\(6\) 0.939693 0.342020i 0.383628 0.139629i
\(7\) −0.266044 + 0.460802i −0.100555 + 0.174167i −0.911914 0.410382i \(-0.865395\pi\)
0.811358 + 0.584549i \(0.198729\pi\)
\(8\) 0.500000 + 0.866025i 0.176777 + 0.306186i
\(9\) 0.766044 + 0.642788i 0.255348 + 0.214263i
\(10\) 0.766044 + 0.642788i 0.242245 + 0.203267i
\(11\) −1.85844 3.21891i −0.560341 0.970539i −0.997466 0.0711385i \(-0.977337\pi\)
0.437125 0.899401i \(-0.355997\pi\)
\(12\) −0.500000 + 0.866025i −0.144338 + 0.250000i
\(13\) −3.09240 + 1.12554i −0.857676 + 0.312169i −0.733166 0.680050i \(-0.761958\pi\)
−0.124510 + 0.992218i \(0.539736\pi\)
\(14\) −0.0923963 0.524005i −0.0246939 0.140046i
\(15\) −0.173648 + 0.984808i −0.0448358 + 0.254276i
\(16\) −0.939693 0.342020i −0.234923 0.0855050i
\(17\) −0.624485 + 0.524005i −0.151460 + 0.127090i −0.715369 0.698747i \(-0.753741\pi\)
0.563909 + 0.825837i \(0.309297\pi\)
\(18\) −1.00000 −0.235702
\(19\) 4.21688 + 1.10359i 0.967419 + 0.253181i
\(20\) −1.00000 −0.223607
\(21\) 0.407604 0.342020i 0.0889464 0.0746349i
\(22\) 3.49273 + 1.27125i 0.744652 + 0.271031i
\(23\) −1.01367 + 5.74881i −0.211365 + 1.19871i 0.675739 + 0.737141i \(0.263825\pi\)
−0.887104 + 0.461569i \(0.847287\pi\)
\(24\) −0.173648 0.984808i −0.0354458 0.201023i
\(25\) −0.939693 + 0.342020i −0.187939 + 0.0684040i
\(26\) 1.64543 2.84997i 0.322695 0.558925i
\(27\) −0.500000 0.866025i −0.0962250 0.166667i
\(28\) 0.407604 + 0.342020i 0.0770299 + 0.0646357i
\(29\) −7.68139 6.44545i −1.42640 1.19689i −0.947804 0.318854i \(-0.896702\pi\)
−0.478594 0.878036i \(-0.658854\pi\)
\(30\) −0.500000 0.866025i −0.0912871 0.158114i
\(31\) −4.70574 + 8.15058i −0.845175 + 1.46389i 0.0402935 + 0.999188i \(0.487171\pi\)
−0.885469 + 0.464699i \(0.846163\pi\)
\(32\) 0.939693 0.342020i 0.166116 0.0604612i
\(33\) 0.645430 + 3.66041i 0.112355 + 0.637196i
\(34\) 0.141559 0.802823i 0.0242772 0.137683i
\(35\) 0.500000 + 0.181985i 0.0845154 + 0.0307611i
\(36\) 0.766044 0.642788i 0.127674 0.107131i
\(37\) −8.04189 −1.32208 −0.661039 0.750351i \(-0.729884\pi\)
−0.661039 + 0.750351i \(0.729884\pi\)
\(38\) −3.93969 + 1.86516i −0.639103 + 0.302569i
\(39\) 3.29086 0.526959
\(40\) 0.766044 0.642788i 0.121122 0.101634i
\(41\) −9.69119 3.52730i −1.51351 0.550872i −0.553992 0.832522i \(-0.686896\pi\)
−0.959517 + 0.281650i \(0.909118\pi\)
\(42\) −0.0923963 + 0.524005i −0.0142571 + 0.0808558i
\(43\) 0.768571 + 4.35878i 0.117206 + 0.664708i 0.985634 + 0.168893i \(0.0540193\pi\)
−0.868428 + 0.495815i \(0.834870\pi\)
\(44\) −3.49273 + 1.27125i −0.526548 + 0.191648i
\(45\) 0.500000 0.866025i 0.0745356 0.129099i
\(46\) −2.91875 5.05542i −0.430346 0.745381i
\(47\) −8.35117 7.00746i −1.21814 1.02214i −0.998920 0.0464685i \(-0.985203\pi\)
−0.219223 0.975675i \(-0.570352\pi\)
\(48\) 0.766044 + 0.642788i 0.110569 + 0.0927784i
\(49\) 3.35844 + 5.81699i 0.479777 + 0.830999i
\(50\) 0.500000 0.866025i 0.0707107 0.122474i
\(51\) 0.766044 0.278817i 0.107268 0.0390422i
\(52\) 0.571452 + 3.24086i 0.0792461 + 0.449427i
\(53\) −0.180922 + 1.02606i −0.0248516 + 0.140940i −0.994709 0.102733i \(-0.967241\pi\)
0.969857 + 0.243673i \(0.0783524\pi\)
\(54\) 0.939693 + 0.342020i 0.127876 + 0.0465430i
\(55\) −2.84730 + 2.38917i −0.383929 + 0.322155i
\(56\) −0.532089 −0.0711034
\(57\) −3.58512 2.47929i −0.474861 0.328390i
\(58\) 10.0273 1.31665
\(59\) 5.09627 4.27628i 0.663477 0.556724i −0.247649 0.968850i \(-0.579658\pi\)
0.911127 + 0.412126i \(0.135214\pi\)
\(60\) 0.939693 + 0.342020i 0.121314 + 0.0441546i
\(61\) 2.48886 14.1150i 0.318665 1.80724i −0.232224 0.972662i \(-0.574600\pi\)
0.550889 0.834578i \(-0.314289\pi\)
\(62\) −1.63429 9.26849i −0.207554 1.17710i
\(63\) −0.500000 + 0.181985i −0.0629941 + 0.0229280i
\(64\) −0.500000 + 0.866025i −0.0625000 + 0.108253i
\(65\) 1.64543 + 2.84997i 0.204090 + 0.353495i
\(66\) −2.84730 2.38917i −0.350478 0.294086i
\(67\) 3.91740 + 3.28709i 0.478587 + 0.401582i 0.849915 0.526919i \(-0.176653\pi\)
−0.371328 + 0.928502i \(0.621098\pi\)
\(68\) 0.407604 + 0.705990i 0.0494292 + 0.0856139i
\(69\) 2.91875 5.05542i 0.351376 0.608601i
\(70\) −0.500000 + 0.181985i −0.0597614 + 0.0217514i
\(71\) 0.595800 + 3.37895i 0.0707084 + 0.401007i 0.999535 + 0.0304926i \(0.00970761\pi\)
−0.928827 + 0.370515i \(0.879181\pi\)
\(72\) −0.173648 + 0.984808i −0.0204646 + 0.116061i
\(73\) −1.02094 0.371593i −0.119493 0.0434917i 0.281582 0.959537i \(-0.409141\pi\)
−0.401074 + 0.916045i \(0.631363\pi\)
\(74\) 6.16044 5.16923i 0.716137 0.600910i
\(75\) 1.00000 0.115470
\(76\) 1.81908 3.96118i 0.208663 0.454379i
\(77\) 1.97771 0.225381
\(78\) −2.52094 + 2.11532i −0.285441 + 0.239513i
\(79\) −11.8623 4.31753i −1.33461 0.485760i −0.426502 0.904487i \(-0.640254\pi\)
−0.908112 + 0.418727i \(0.862477\pi\)
\(80\) −0.173648 + 0.984808i −0.0194145 + 0.110105i
\(81\) 0.173648 + 0.984808i 0.0192942 + 0.109423i
\(82\) 9.69119 3.52730i 1.07021 0.389526i
\(83\) −9.02141 + 15.6255i −0.990229 + 1.71513i −0.374344 + 0.927290i \(0.622132\pi\)
−0.615885 + 0.787836i \(0.711201\pi\)
\(84\) −0.266044 0.460802i −0.0290278 0.0502777i
\(85\) 0.624485 + 0.524005i 0.0677349 + 0.0568364i
\(86\) −3.39053 2.84499i −0.365610 0.306783i
\(87\) 5.01367 + 8.68393i 0.537522 + 0.931015i
\(88\) 1.85844 3.21891i 0.198110 0.343137i
\(89\) −3.60607 + 1.31250i −0.382242 + 0.139125i −0.525993 0.850489i \(-0.676306\pi\)
0.143750 + 0.989614i \(0.454084\pi\)
\(90\) 0.173648 + 0.984808i 0.0183041 + 0.103808i
\(91\) 0.304063 1.72443i 0.0318745 0.180769i
\(92\) 5.48545 + 1.99654i 0.571898 + 0.208154i
\(93\) 7.20961 6.04958i 0.747601 0.627312i
\(94\) 10.9017 1.12442
\(95\) 0.354570 4.34445i 0.0363781 0.445732i
\(96\) −1.00000 −0.102062
\(97\) 2.01501 1.69080i 0.204594 0.171675i −0.534734 0.845021i \(-0.679588\pi\)
0.739327 + 0.673346i \(0.235144\pi\)
\(98\) −6.31180 2.29731i −0.637588 0.232063i
\(99\) 0.645430 3.66041i 0.0648681 0.367885i
\(100\) 0.173648 + 0.984808i 0.0173648 + 0.0984808i
\(101\) 12.1074 4.40674i 1.20473 0.438487i 0.339859 0.940476i \(-0.389621\pi\)
0.864874 + 0.501990i \(0.167398\pi\)
\(102\) −0.407604 + 0.705990i −0.0403588 + 0.0699035i
\(103\) 5.26264 + 9.11516i 0.518543 + 0.898144i 0.999768 + 0.0215461i \(0.00685887\pi\)
−0.481224 + 0.876597i \(0.659808\pi\)
\(104\) −2.52094 2.11532i −0.247199 0.207425i
\(105\) −0.407604 0.342020i −0.0397781 0.0333777i
\(106\) −0.520945 0.902302i −0.0505986 0.0876394i
\(107\) −3.31908 + 5.74881i −0.320867 + 0.555759i −0.980667 0.195683i \(-0.937308\pi\)
0.659800 + 0.751441i \(0.270641\pi\)
\(108\) −0.939693 + 0.342020i −0.0904220 + 0.0329109i
\(109\) 1.97565 + 11.2045i 0.189233 + 1.07319i 0.920395 + 0.390990i \(0.127867\pi\)
−0.731162 + 0.682204i \(0.761022\pi\)
\(110\) 0.645430 3.66041i 0.0615393 0.349007i
\(111\) 7.55690 + 2.75049i 0.717270 + 0.261065i
\(112\) 0.407604 0.342020i 0.0385149 0.0323179i
\(113\) 2.45336 0.230793 0.115396 0.993320i \(-0.463186\pi\)
0.115396 + 0.993320i \(0.463186\pi\)
\(114\) 4.34002 0.405223i 0.406480 0.0379526i
\(115\) 5.83750 0.544349
\(116\) −7.68139 + 6.44545i −0.713199 + 0.598445i
\(117\) −3.09240 1.12554i −0.285892 0.104056i
\(118\) −1.15523 + 6.55163i −0.106348 + 0.603127i
\(119\) −0.0753221 0.427173i −0.00690477 0.0391589i
\(120\) −0.939693 + 0.342020i −0.0857818 + 0.0312220i
\(121\) −1.40760 + 2.43804i −0.127964 + 0.221640i
\(122\) 7.16637 + 12.4125i 0.648813 + 1.12378i
\(123\) 7.90033 + 6.62916i 0.712349 + 0.597732i
\(124\) 7.20961 + 6.04958i 0.647442 + 0.543268i
\(125\) 0.500000 + 0.866025i 0.0447214 + 0.0774597i
\(126\) 0.266044 0.460802i 0.0237011 0.0410515i
\(127\) 2.31268 0.841747i 0.205217 0.0746930i −0.237366 0.971420i \(-0.576284\pi\)
0.442584 + 0.896727i \(0.354062\pi\)
\(128\) −0.173648 0.984808i −0.0153485 0.0870455i
\(129\) 0.768571 4.35878i 0.0676689 0.383769i
\(130\) −3.09240 1.12554i −0.271221 0.0987164i
\(131\) 4.34730 3.64781i 0.379825 0.318711i −0.432809 0.901486i \(-0.642477\pi\)
0.812634 + 0.582775i \(0.198033\pi\)
\(132\) 3.71688 0.323513
\(133\) −1.63041 + 1.64955i −0.141375 + 0.143034i
\(134\) −5.11381 −0.441766
\(135\) −0.766044 + 0.642788i −0.0659306 + 0.0553223i
\(136\) −0.766044 0.278817i −0.0656878 0.0239084i
\(137\) 3.47653 19.7164i 0.297020 1.68448i −0.361857 0.932233i \(-0.617857\pi\)
0.658877 0.752250i \(-0.271032\pi\)
\(138\) 1.01367 + 5.74881i 0.0862894 + 0.489371i
\(139\) 10.0753 3.66712i 0.854578 0.311041i 0.122672 0.992447i \(-0.460854\pi\)
0.731905 + 0.681406i \(0.238631\pi\)
\(140\) 0.266044 0.460802i 0.0224849 0.0389449i
\(141\) 5.45084 + 9.44113i 0.459043 + 0.795086i
\(142\) −2.62836 2.20545i −0.220567 0.185077i
\(143\) 9.37005 + 7.86241i 0.783563 + 0.657488i
\(144\) −0.500000 0.866025i −0.0416667 0.0721688i
\(145\) −5.01367 + 8.68393i −0.416363 + 0.721161i
\(146\) 1.02094 0.371593i 0.0844940 0.0307533i
\(147\) −1.16637 6.61484i −0.0962009 0.545583i
\(148\) −1.39646 + 7.91971i −0.114788 + 0.650997i
\(149\) 0.405078 + 0.147436i 0.0331852 + 0.0120784i 0.358559 0.933507i \(-0.383268\pi\)
−0.325374 + 0.945585i \(0.605490\pi\)
\(150\) −0.766044 + 0.642788i −0.0625473 + 0.0524834i
\(151\) 11.1061 0.903799 0.451899 0.892069i \(-0.350747\pi\)
0.451899 + 0.892069i \(0.350747\pi\)
\(152\) 1.15270 + 4.20372i 0.0934966 + 0.340967i
\(153\) −0.815207 −0.0659056
\(154\) −1.51501 + 1.27125i −0.122083 + 0.102440i
\(155\) 8.84389 + 3.21891i 0.710359 + 0.258549i
\(156\) 0.571452 3.24086i 0.0457528 0.259477i
\(157\) −2.83363 16.0703i −0.226148 1.28255i −0.860478 0.509487i \(-0.829835\pi\)
0.634331 0.773062i \(-0.281276\pi\)
\(158\) 11.8623 4.31753i 0.943715 0.343484i
\(159\) 0.520945 0.902302i 0.0413136 0.0715572i
\(160\) −0.500000 0.866025i −0.0395285 0.0684653i
\(161\) −2.37939 1.99654i −0.187522 0.157349i
\(162\) −0.766044 0.642788i −0.0601861 0.0505022i
\(163\) −10.5778 18.3214i −0.828521 1.43504i −0.899198 0.437541i \(-0.855849\pi\)
0.0706773 0.997499i \(-0.477484\pi\)
\(164\) −5.15657 + 8.93145i −0.402661 + 0.697429i
\(165\) 3.49273 1.27125i 0.271908 0.0989665i
\(166\) −3.13310 17.7687i −0.243176 1.37912i
\(167\) 1.05556 5.98638i 0.0816817 0.463240i −0.916342 0.400397i \(-0.868872\pi\)
0.998023 0.0628427i \(-0.0200167\pi\)
\(168\) 0.500000 + 0.181985i 0.0385758 + 0.0140405i
\(169\) −1.66250 + 1.39501i −0.127885 + 0.107308i
\(170\) −0.815207 −0.0625236
\(171\) 2.52094 + 3.55596i 0.192781 + 0.271931i
\(172\) 4.42602 0.337481
\(173\) −11.2456 + 9.43615i −0.854985 + 0.717417i −0.960881 0.276960i \(-0.910673\pi\)
0.105897 + 0.994377i \(0.466229\pi\)
\(174\) −9.42262 3.42955i −0.714327 0.259994i
\(175\) 0.0923963 0.524005i 0.00698450 0.0396111i
\(176\) 0.645430 + 3.66041i 0.0486511 + 0.275914i
\(177\) −6.25150 + 2.27536i −0.469891 + 0.171026i
\(178\) 1.91875 3.32337i 0.143816 0.249097i
\(179\) 5.51754 + 9.55666i 0.412400 + 0.714298i 0.995152 0.0983522i \(-0.0313572\pi\)
−0.582751 + 0.812651i \(0.698024\pi\)
\(180\) −0.766044 0.642788i −0.0570976 0.0479106i
\(181\) 1.89053 + 1.58634i 0.140522 + 0.117912i 0.710339 0.703860i \(-0.248542\pi\)
−0.569817 + 0.821771i \(0.692986\pi\)
\(182\) 0.875515 + 1.51644i 0.0648975 + 0.112406i
\(183\) −7.16637 + 12.4125i −0.529754 + 0.917560i
\(184\) −5.48545 + 1.99654i −0.404393 + 0.147187i
\(185\) 1.39646 + 7.91971i 0.102670 + 0.582269i
\(186\) −1.63429 + 9.26849i −0.119832 + 0.679599i
\(187\) 2.84730 + 1.03633i 0.208215 + 0.0757840i
\(188\) −8.35117 + 7.00746i −0.609071 + 0.511072i
\(189\) 0.532089 0.0387038
\(190\) 2.52094 + 3.55596i 0.182889 + 0.257976i
\(191\) 6.14796 0.444850 0.222425 0.974950i \(-0.428603\pi\)
0.222425 + 0.974950i \(0.428603\pi\)
\(192\) 0.766044 0.642788i 0.0552845 0.0463892i
\(193\) 3.05051 + 1.11029i 0.219580 + 0.0799207i 0.449468 0.893296i \(-0.351614\pi\)
−0.229888 + 0.973217i \(0.573836\pi\)
\(194\) −0.456767 + 2.59045i −0.0327939 + 0.185984i
\(195\) −0.571452 3.24086i −0.0409225 0.232083i
\(196\) 6.31180 2.29731i 0.450843 0.164093i
\(197\) 5.98932 10.3738i 0.426722 0.739103i −0.569858 0.821743i \(-0.693002\pi\)
0.996579 + 0.0826398i \(0.0263351\pi\)
\(198\) 1.85844 + 3.21891i 0.132074 + 0.228758i
\(199\) −13.0307 10.9341i −0.923725 0.775097i 0.0509552 0.998701i \(-0.483773\pi\)
−0.974680 + 0.223604i \(0.928218\pi\)
\(200\) −0.766044 0.642788i −0.0541675 0.0454519i
\(201\) −2.55690 4.42869i −0.180350 0.312376i
\(202\) −6.44222 + 11.1583i −0.453273 + 0.785092i
\(203\) 5.01367 1.82483i 0.351891 0.128078i
\(204\) −0.141559 0.802823i −0.00991113 0.0562088i
\(205\) −1.79086 + 10.1565i −0.125079 + 0.709359i
\(206\) −9.89053 3.59986i −0.689106 0.250814i
\(207\) −4.47178 + 3.75227i −0.310810 + 0.260801i
\(208\) 3.29086 0.228180
\(209\) −4.28446 15.6247i −0.296362 1.08079i
\(210\) 0.532089 0.0367176
\(211\) 6.47178 5.43047i 0.445536 0.373849i −0.392240 0.919863i \(-0.628300\pi\)
0.837776 + 0.546014i \(0.183855\pi\)
\(212\) 0.979055 + 0.356347i 0.0672418 + 0.0244740i
\(213\) 0.595800 3.37895i 0.0408235 0.231522i
\(214\) −1.15270 6.53731i −0.0787972 0.446881i
\(215\) 4.15910 1.51379i 0.283648 0.103240i
\(216\) 0.500000 0.866025i 0.0340207 0.0589256i
\(217\) −2.50387 4.33683i −0.169974 0.294403i
\(218\) −8.71554 7.31320i −0.590291 0.495313i
\(219\) 0.832282 + 0.698367i 0.0562404 + 0.0471913i
\(220\) 1.85844 + 3.21891i 0.125296 + 0.217019i
\(221\) 1.34137 2.32332i 0.0902301 0.156283i
\(222\) −7.55690 + 2.75049i −0.507186 + 0.184601i
\(223\) −1.19800 6.79417i −0.0802238 0.454972i −0.998285 0.0585339i \(-0.981357\pi\)
0.918062 0.396438i \(-0.129754\pi\)
\(224\) −0.0923963 + 0.524005i −0.00617349 + 0.0350116i
\(225\) −0.939693 0.342020i −0.0626462 0.0228013i
\(226\) −1.87939 + 1.57699i −0.125015 + 0.104900i
\(227\) 14.3182 0.950332 0.475166 0.879896i \(-0.342388\pi\)
0.475166 + 0.879896i \(0.342388\pi\)
\(228\) −3.06418 + 3.10013i −0.202930 + 0.205311i
\(229\) −14.6236 −0.966355 −0.483178 0.875522i \(-0.660517\pi\)
−0.483178 + 0.875522i \(0.660517\pi\)
\(230\) −4.47178 + 3.75227i −0.294861 + 0.247417i
\(231\) −1.85844 0.676417i −0.122276 0.0445050i
\(232\) 1.74123 9.87500i 0.114317 0.648326i
\(233\) 0.554378 + 3.14403i 0.0363185 + 0.205972i 0.997567 0.0697099i \(-0.0222074\pi\)
−0.961249 + 0.275682i \(0.911096\pi\)
\(234\) 3.09240 1.12554i 0.202156 0.0735789i
\(235\) −5.45084 + 9.44113i −0.355573 + 0.615871i
\(236\) −3.32635 5.76141i −0.216527 0.375036i
\(237\) 9.67024 + 8.11430i 0.628150 + 0.527080i
\(238\) 0.332282 + 0.278817i 0.0215386 + 0.0180730i
\(239\) 9.84002 + 17.0434i 0.636498 + 1.10245i 0.986196 + 0.165584i \(0.0529510\pi\)
−0.349697 + 0.936863i \(0.613716\pi\)
\(240\) 0.500000 0.866025i 0.0322749 0.0559017i
\(241\) −11.0287 + 4.01411i −0.710420 + 0.258572i −0.671853 0.740684i \(-0.734501\pi\)
−0.0385668 + 0.999256i \(0.512279\pi\)
\(242\) −0.488856 2.77244i −0.0314248 0.178219i
\(243\) 0.173648 0.984808i 0.0111395 0.0631754i
\(244\) −13.4684 4.90209i −0.862225 0.313824i
\(245\) 5.14543 4.31753i 0.328729 0.275837i
\(246\) −10.3131 −0.657542
\(247\) −14.2824 + 1.33353i −0.908768 + 0.0848506i
\(248\) −9.41147 −0.597629
\(249\) 13.8216 11.5977i 0.875909 0.734975i
\(250\) −0.939693 0.342020i −0.0594314 0.0216313i
\(251\) −3.12108 + 17.7005i −0.197001 + 1.11725i 0.712539 + 0.701632i \(0.247545\pi\)
−0.909540 + 0.415616i \(0.863566\pi\)
\(252\) 0.0923963 + 0.524005i 0.00582042 + 0.0330092i
\(253\) 20.3888 7.42091i 1.28183 0.466548i
\(254\) −1.23055 + 2.13138i −0.0772117 + 0.133735i
\(255\) −0.407604 0.705990i −0.0255251 0.0442108i
\(256\) 0.766044 + 0.642788i 0.0478778 + 0.0401742i
\(257\) −23.2108 19.4762i −1.44785 1.21489i −0.934131 0.356931i \(-0.883823\pi\)
−0.513719 0.857959i \(-0.671732\pi\)
\(258\) 2.21301 + 3.83305i 0.137776 + 0.238635i
\(259\) 2.13950 3.70572i 0.132942 0.230262i
\(260\) 3.09240 1.12554i 0.191782 0.0698030i
\(261\) −1.74123 9.87500i −0.107779 0.611247i
\(262\) −0.985452 + 5.58878i −0.0608814 + 0.345276i
\(263\) 14.6420 + 5.32926i 0.902866 + 0.328616i 0.751401 0.659846i \(-0.229379\pi\)
0.151465 + 0.988463i \(0.451601\pi\)
\(264\) −2.84730 + 2.38917i −0.175239 + 0.147043i
\(265\) 1.04189 0.0640027
\(266\) 0.188663 2.31164i 0.0115677 0.141735i
\(267\) 3.83750 0.234851
\(268\) 3.91740 3.28709i 0.239294 0.200791i
\(269\) −24.2592 8.82964i −1.47911 0.538353i −0.528554 0.848900i \(-0.677266\pi\)
−0.950558 + 0.310547i \(0.899488\pi\)
\(270\) 0.173648 0.984808i 0.0105679 0.0599335i
\(271\) −2.19846 12.4681i −0.133547 0.757383i −0.975860 0.218395i \(-0.929918\pi\)
0.842313 0.538988i \(-0.181193\pi\)
\(272\) 0.766044 0.278817i 0.0464483 0.0169058i
\(273\) −0.875515 + 1.51644i −0.0529886 + 0.0917789i
\(274\) 10.0103 + 17.3383i 0.604742 + 1.04744i
\(275\) 2.84730 + 2.38917i 0.171698 + 0.144072i
\(276\) −4.47178 3.75227i −0.269170 0.225860i
\(277\) −10.7267 18.5792i −0.644504 1.11631i −0.984416 0.175856i \(-0.943731\pi\)
0.339912 0.940457i \(-0.389603\pi\)
\(278\) −5.36097 + 9.28547i −0.321529 + 0.556905i
\(279\) −8.84389 + 3.21891i −0.529470 + 0.192711i
\(280\) 0.0923963 + 0.524005i 0.00552173 + 0.0313153i
\(281\) 1.57604 8.93815i 0.0940185 0.533205i −0.901025 0.433767i \(-0.857184\pi\)
0.995044 0.0994387i \(-0.0317047\pi\)
\(282\) −10.2442 3.72859i −0.610035 0.222034i
\(283\) 15.0025 12.5886i 0.891808 0.748315i −0.0767643 0.997049i \(-0.524459\pi\)
0.968572 + 0.248734i \(0.0800144\pi\)
\(284\) 3.43107 0.203597
\(285\) −1.81908 + 3.96118i −0.107753 + 0.234640i
\(286\) −12.2317 −0.723278
\(287\) 4.20368 3.52730i 0.248135 0.208210i
\(288\) 0.939693 + 0.342020i 0.0553719 + 0.0201537i
\(289\) −2.83662 + 16.0873i −0.166860 + 0.946310i
\(290\) −1.74123 9.87500i −0.102249 0.579880i
\(291\) −2.47178 + 0.899655i −0.144898 + 0.0527387i
\(292\) −0.543233 + 0.940908i −0.0317903 + 0.0550625i
\(293\) 4.17365 + 7.22897i 0.243827 + 0.422321i 0.961801 0.273749i \(-0.0882637\pi\)
−0.717974 + 0.696070i \(0.754930\pi\)
\(294\) 5.14543 + 4.31753i 0.300088 + 0.251803i
\(295\) −5.09627 4.27628i −0.296716 0.248974i
\(296\) −4.02094 6.96448i −0.233713 0.404802i
\(297\) −1.85844 + 3.21891i −0.107838 + 0.186780i
\(298\) −0.405078 + 0.147436i −0.0234655 + 0.00854075i
\(299\) −3.33585 18.9185i −0.192917 1.09409i
\(300\) 0.173648 0.984808i 0.0100256 0.0568579i
\(301\) −2.21301 0.805470i −0.127556 0.0464265i
\(302\) −8.50774 + 7.13884i −0.489565 + 0.410794i
\(303\) −12.8844 −0.740192
\(304\) −3.58512 2.47929i −0.205621 0.142197i
\(305\) −14.3327 −0.820691
\(306\) 0.624485 0.524005i 0.0356994 0.0299554i
\(307\) −18.2160 6.63008i −1.03964 0.378399i −0.234898 0.972020i \(-0.575476\pi\)
−0.804745 + 0.593621i \(0.797698\pi\)
\(308\) 0.343426 1.94767i 0.0195685 0.110979i
\(309\) −1.82770 10.3654i −0.103974 0.589666i
\(310\) −8.84389 + 3.21891i −0.502299 + 0.182822i
\(311\) −10.3045 + 17.8480i −0.584316 + 1.01207i 0.410644 + 0.911796i \(0.365304\pi\)
−0.994960 + 0.100270i \(0.968029\pi\)
\(312\) 1.64543 + 2.84997i 0.0931541 + 0.161348i
\(313\) −17.4179 14.6153i −0.984516 0.826107i 0.000248337 1.00000i \(-0.499921\pi\)
−0.984765 + 0.173893i \(0.944365\pi\)
\(314\) 12.5005 + 10.4891i 0.705442 + 0.591936i
\(315\) 0.266044 + 0.460802i 0.0149899 + 0.0259633i
\(316\) −6.31180 + 10.9324i −0.355067 + 0.614994i
\(317\) 7.24422 2.63668i 0.406876 0.148091i −0.130471 0.991452i \(-0.541649\pi\)
0.537347 + 0.843361i \(0.319427\pi\)
\(318\) 0.180922 + 1.02606i 0.0101456 + 0.0575386i
\(319\) −6.47194 + 36.7042i −0.362359 + 2.05504i
\(320\) 0.939693 + 0.342020i 0.0525304 + 0.0191195i
\(321\) 5.08512 4.26692i 0.283824 0.238156i
\(322\) 3.10607 0.173094
\(323\) −3.21167 + 1.52049i −0.178702 + 0.0846025i
\(324\) 1.00000 0.0555556
\(325\) 2.52094 2.11532i 0.139837 0.117337i
\(326\) 19.8799 + 7.23567i 1.10104 + 0.400747i
\(327\) 1.97565 11.2045i 0.109254 0.619609i
\(328\) −1.79086 10.1565i −0.0988837 0.560797i
\(329\) 5.45084 1.98394i 0.300514 0.109378i
\(330\) −1.85844 + 3.21891i −0.102304 + 0.177195i
\(331\) −3.48633 6.03850i −0.191626 0.331906i 0.754163 0.656687i \(-0.228043\pi\)
−0.945789 + 0.324781i \(0.894709\pi\)
\(332\) 13.8216 + 11.5977i 0.758559 + 0.636507i
\(333\) −6.16044 5.16923i −0.337590 0.283272i
\(334\) 3.03936 + 5.26433i 0.166307 + 0.288051i
\(335\) 2.55690 4.42869i 0.139699 0.241965i
\(336\) −0.500000 + 0.181985i −0.0272772 + 0.00992810i
\(337\) 4.02734 + 22.8402i 0.219383 + 1.24418i 0.873136 + 0.487476i \(0.162082\pi\)
−0.653753 + 0.756708i \(0.726806\pi\)
\(338\) 0.376859 2.13727i 0.0204984 0.116252i
\(339\) −2.30541 0.839100i −0.125213 0.0455736i
\(340\) 0.624485 0.524005i 0.0338675 0.0284182i
\(341\) 34.9813 1.89435
\(342\) −4.21688 1.10359i −0.228023 0.0596753i
\(343\) −7.29860 −0.394087
\(344\) −3.39053 + 2.84499i −0.182805 + 0.153392i
\(345\) −5.48545 1.99654i −0.295327 0.107490i
\(346\) 2.54916 14.4570i 0.137044 0.777214i
\(347\) −0.192066 1.08926i −0.0103107 0.0584747i 0.979218 0.202809i \(-0.0650071\pi\)
−0.989529 + 0.144334i \(0.953896\pi\)
\(348\) 9.42262 3.42955i 0.505105 0.183843i
\(349\) −13.8293 + 23.9531i −0.740268 + 1.28218i 0.212105 + 0.977247i \(0.431968\pi\)
−0.952373 + 0.304935i \(0.901365\pi\)
\(350\) 0.266044 + 0.460802i 0.0142207 + 0.0246309i
\(351\) 2.52094 + 2.11532i 0.134558 + 0.112908i
\(352\) −2.84730 2.38917i −0.151761 0.127343i
\(353\) 5.02734 + 8.70761i 0.267578 + 0.463459i 0.968236 0.250038i \(-0.0804432\pi\)
−0.700658 + 0.713498i \(0.747110\pi\)
\(354\) 3.32635 5.76141i 0.176794 0.306216i
\(355\) 3.22416 1.17350i 0.171120 0.0622827i
\(356\) 0.666374 + 3.77920i 0.0353178 + 0.200297i
\(357\) −0.0753221 + 0.427173i −0.00398647 + 0.0226084i
\(358\) −10.3696 3.77422i −0.548050 0.199474i
\(359\) 14.3537 12.0442i 0.757559 0.635667i −0.179931 0.983679i \(-0.557588\pi\)
0.937490 + 0.348012i \(0.113143\pi\)
\(360\) 1.00000 0.0527046
\(361\) 16.5642 + 9.30742i 0.871799 + 0.489864i
\(362\) −2.46791 −0.129711
\(363\) 2.15657 1.80958i 0.113191 0.0949783i
\(364\) −1.64543 0.598887i −0.0862439 0.0313902i
\(365\) −0.188663 + 1.06996i −0.00987507 + 0.0560043i
\(366\) −2.48886 14.1150i −0.130095 0.737803i
\(367\) −31.8187 + 11.5810i −1.66092 + 0.604526i −0.990507 0.137462i \(-0.956106\pi\)
−0.670414 + 0.741987i \(0.733883\pi\)
\(368\) 2.91875 5.05542i 0.152150 0.263532i
\(369\) −5.15657 8.93145i −0.268441 0.464953i
\(370\) −6.16044 5.16923i −0.320266 0.268735i
\(371\) −0.424678 0.356347i −0.0220482 0.0185006i
\(372\) −4.70574 8.15058i −0.243981 0.422588i
\(373\) 0.300660 0.520758i 0.0155676 0.0269638i −0.858137 0.513421i \(-0.828378\pi\)
0.873704 + 0.486458i \(0.161711\pi\)
\(374\) −2.84730 + 1.03633i −0.147230 + 0.0535874i
\(375\) −0.173648 0.984808i −0.00896715 0.0508553i
\(376\) 1.89306 10.7361i 0.0976269 0.553670i
\(377\) 31.0085 + 11.2862i 1.59702 + 0.581268i
\(378\) −0.407604 + 0.342020i −0.0209649 + 0.0175916i
\(379\) 1.82976 0.0939882 0.0469941 0.998895i \(-0.485036\pi\)
0.0469941 + 0.998895i \(0.485036\pi\)
\(380\) −4.21688 1.10359i −0.216321 0.0566130i
\(381\) −2.46110 −0.126086
\(382\) −4.70961 + 3.95183i −0.240964 + 0.202193i
\(383\) −28.3653 10.3241i −1.44940 0.527538i −0.506976 0.861960i \(-0.669237\pi\)
−0.942423 + 0.334422i \(0.891459\pi\)
\(384\) −0.173648 + 0.984808i −0.00886145 + 0.0502558i
\(385\) −0.343426 1.94767i −0.0175026 0.0992622i
\(386\) −3.05051 + 1.11029i −0.155267 + 0.0565125i
\(387\) −2.21301 + 3.83305i −0.112494 + 0.194845i
\(388\) −1.31521 2.27801i −0.0667695 0.115648i
\(389\) −2.17886 1.82828i −0.110473 0.0926976i 0.585878 0.810399i \(-0.300750\pi\)
−0.696351 + 0.717702i \(0.745194\pi\)
\(390\) 2.52094 + 2.11532i 0.127653 + 0.107114i
\(391\) −2.37939 4.12122i −0.120331 0.208419i
\(392\) −3.35844 + 5.81699i −0.169627 + 0.293802i
\(393\) −5.33275 + 1.94096i −0.269002 + 0.0979086i
\(394\) 2.08007 + 11.7967i 0.104792 + 0.594307i
\(395\) −2.19207 + 12.4318i −0.110295 + 0.625513i
\(396\) −3.49273 1.27125i −0.175516 0.0638826i
\(397\) 7.22462 6.06218i 0.362593 0.304252i −0.443230 0.896408i \(-0.646168\pi\)
0.805823 + 0.592156i \(0.201723\pi\)
\(398\) 17.0104 0.852656
\(399\) 2.09627 0.992431i 0.104945 0.0496837i
\(400\) 1.00000 0.0500000
\(401\) 8.69640 7.29715i 0.434278 0.364402i −0.399285 0.916827i \(-0.630742\pi\)
0.833563 + 0.552425i \(0.186297\pi\)
\(402\) 4.80541 + 1.74903i 0.239672 + 0.0872334i
\(403\) 5.37820 30.5013i 0.267907 1.51938i
\(404\) −2.23736 12.6887i −0.111313 0.631286i
\(405\) 0.939693 0.342020i 0.0466937 0.0169951i
\(406\) −2.66772 + 4.62062i −0.132397 + 0.229318i
\(407\) 14.9454 + 25.8861i 0.740815 + 1.28313i
\(408\) 0.624485 + 0.524005i 0.0309166 + 0.0259421i
\(409\) 12.6079 + 10.5793i 0.623419 + 0.523111i 0.898876 0.438202i \(-0.144385\pi\)
−0.275457 + 0.961313i \(0.588829\pi\)
\(410\) −5.15657 8.93145i −0.254665 0.441093i
\(411\) −10.0103 + 17.3383i −0.493770 + 0.855235i
\(412\) 9.89053 3.59986i 0.487271 0.177352i
\(413\) 0.614685 + 3.48605i 0.0302467 + 0.171537i
\(414\) 1.01367 5.74881i 0.0498192 0.282539i
\(415\) 16.9547 + 6.17101i 0.832274 + 0.302923i
\(416\) −2.52094 + 2.11532i −0.123599 + 0.103712i
\(417\) −10.7219 −0.525055
\(418\) 13.3255 + 9.21524i 0.651770 + 0.450732i
\(419\) 0.00505244 0.000246828 0.000123414 1.00000i \(-0.499961\pi\)
0.000123414 1.00000i \(0.499961\pi\)
\(420\) −0.407604 + 0.342020i −0.0198890 + 0.0166889i
\(421\) −10.3366 3.76222i −0.503776 0.183359i 0.0776156 0.996983i \(-0.475269\pi\)
−0.581392 + 0.813624i \(0.697492\pi\)
\(422\) −1.46703 + 8.31996i −0.0714141 + 0.405009i
\(423\) −1.89306 10.7361i −0.0920435 0.522005i
\(424\) −0.979055 + 0.356347i −0.0475471 + 0.0173057i
\(425\) 0.407604 0.705990i 0.0197717 0.0342456i
\(426\) 1.71554 + 2.97140i 0.0831181 + 0.143965i
\(427\) 5.84208 + 4.90209i 0.282718 + 0.237229i
\(428\) 5.08512 + 4.26692i 0.245799 + 0.206250i
\(429\) −6.11587 10.5930i −0.295277 0.511434i
\(430\) −2.21301 + 3.83305i −0.106721 + 0.184846i
\(431\) −33.6313 + 12.2408i −1.61997 + 0.589619i −0.983375 0.181584i \(-0.941878\pi\)
−0.636590 + 0.771203i \(0.719655\pi\)
\(432\) 0.173648 + 0.984808i 0.00835465 + 0.0473816i
\(433\) 4.05762 23.0119i 0.194997 1.10588i −0.717427 0.696634i \(-0.754680\pi\)
0.912423 0.409247i \(-0.134209\pi\)
\(434\) 4.70574 + 1.71275i 0.225883 + 0.0822145i
\(435\) 7.68139 6.44545i 0.368294 0.309036i
\(436\) 11.3773 0.544875
\(437\) −10.6189 + 23.1234i −0.507969 + 1.10614i
\(438\) −1.08647 −0.0519134
\(439\) 14.3229 12.0184i 0.683597 0.573606i −0.233458 0.972367i \(-0.575004\pi\)
0.917055 + 0.398761i \(0.130560\pi\)
\(440\) −3.49273 1.27125i −0.166509 0.0606044i
\(441\) −1.16637 + 6.61484i −0.0555416 + 0.314992i
\(442\) 0.465852 + 2.64198i 0.0221583 + 0.125666i
\(443\) 10.4667 3.80958i 0.497289 0.180999i −0.0811851 0.996699i \(-0.525870\pi\)
0.578474 + 0.815701i \(0.303648\pi\)
\(444\) 4.02094 6.96448i 0.190826 0.330520i
\(445\) 1.91875 + 3.32337i 0.0909574 + 0.157543i
\(446\) 5.28493 + 4.43458i 0.250249 + 0.209984i
\(447\) −0.330222 0.277089i −0.0156190 0.0131059i
\(448\) −0.266044 0.460802i −0.0125694 0.0217709i
\(449\) −17.8576 + 30.9302i −0.842751 + 1.45969i 0.0448100 + 0.998996i \(0.485732\pi\)
−0.887560 + 0.460691i \(0.847602\pi\)
\(450\) 0.939693 0.342020i 0.0442975 0.0161230i
\(451\) 6.65641 + 37.7504i 0.313438 + 1.77760i
\(452\) 0.426022 2.41609i 0.0200384 0.113643i
\(453\) −10.4363 3.79850i −0.490340 0.178469i
\(454\) −10.9684 + 9.20356i −0.514771 + 0.431945i
\(455\) −1.75103 −0.0820895
\(456\) 0.354570 4.34445i 0.0166043 0.203448i
\(457\) 30.8161 1.44152 0.720759 0.693186i \(-0.243793\pi\)
0.720759 + 0.693186i \(0.243793\pi\)
\(458\) 11.2023 9.39987i 0.523451 0.439227i
\(459\) 0.766044 + 0.278817i 0.0357559 + 0.0130141i
\(460\) 1.01367 5.74881i 0.0472626 0.268040i
\(461\) 0.509962 + 2.89214i 0.0237513 + 0.134700i 0.994378 0.105891i \(-0.0337696\pi\)
−0.970626 + 0.240592i \(0.922658\pi\)
\(462\) 1.85844 0.676417i 0.0864625 0.0314698i
\(463\) 3.82753 6.62948i 0.177881 0.308098i −0.763274 0.646075i \(-0.776409\pi\)
0.941154 + 0.337977i \(0.109743\pi\)
\(464\) 5.01367 + 8.68393i 0.232754 + 0.403141i
\(465\) −7.20961 6.04958i −0.334338 0.280543i
\(466\) −2.44562 2.05212i −0.113291 0.0950627i
\(467\) −5.92649 10.2650i −0.274245 0.475007i 0.695699 0.718333i \(-0.255095\pi\)
−0.969944 + 0.243327i \(0.921761\pi\)
\(468\) −1.64543 + 2.84997i −0.0760600 + 0.131740i
\(469\) −2.55690 + 0.930637i −0.118067 + 0.0429728i
\(470\) −1.89306 10.7361i −0.0873202 0.495217i
\(471\) −2.83363 + 16.0703i −0.130567 + 0.740480i
\(472\) 6.25150 + 2.27536i 0.287748 + 0.104732i
\(473\) 12.6022 10.5745i 0.579450 0.486216i
\(474\) −12.6236 −0.579822
\(475\) −4.34002 + 0.405223i −0.199134 + 0.0185929i
\(476\) −0.433763 −0.0198815
\(477\) −0.798133 + 0.669713i −0.0365440 + 0.0306641i
\(478\) −18.4932 6.73097i −0.845859 0.307867i
\(479\) −1.34848 + 7.64760i −0.0616136 + 0.349428i 0.938379 + 0.345608i \(0.112327\pi\)
−0.999993 + 0.00382028i \(0.998784\pi\)
\(480\) 0.173648 + 0.984808i 0.00792592 + 0.0449501i
\(481\) 24.8687 9.05147i 1.13392 0.412711i
\(482\) 5.86824 10.1641i 0.267291 0.462962i
\(483\) 1.55303 + 2.68993i 0.0706655 + 0.122396i
\(484\) 2.15657 + 1.80958i 0.0980261 + 0.0822537i
\(485\) −2.01501 1.69080i −0.0914971 0.0767752i
\(486\) 0.500000 + 0.866025i 0.0226805 + 0.0392837i
\(487\) −0.476529 + 0.825373i −0.0215936 + 0.0374012i −0.876620 0.481183i \(-0.840207\pi\)
0.855027 + 0.518584i \(0.173541\pi\)
\(488\) 13.4684 4.90209i 0.609685 0.221907i
\(489\) 3.67365 + 20.8343i 0.166128 + 0.942159i
\(490\) −1.16637 + 6.61484i −0.0526914 + 0.298828i
\(491\) 19.5116 + 7.10165i 0.880547 + 0.320493i 0.742430 0.669923i \(-0.233673\pi\)
0.138116 + 0.990416i \(0.455895\pi\)
\(492\) 7.90033 6.62916i 0.356174 0.298866i
\(493\) 8.17436 0.368155
\(494\) 10.0838 10.2021i 0.453691 0.459014i
\(495\) −3.71688 −0.167061
\(496\) 7.20961 6.04958i 0.323721 0.271634i
\(497\) −1.71554 0.624404i −0.0769524 0.0280084i
\(498\) −3.13310 + 17.7687i −0.140398 + 0.796235i
\(499\) 0.980238 + 5.55920i 0.0438815 + 0.248864i 0.998856 0.0478244i \(-0.0152288\pi\)
−0.954974 + 0.296689i \(0.904118\pi\)
\(500\) 0.939693 0.342020i 0.0420243 0.0152956i
\(501\) −3.03936 + 5.26433i −0.135789 + 0.235193i
\(502\) −8.98680 15.5656i −0.401100 0.694726i
\(503\) 7.12701 + 5.98027i 0.317778 + 0.266647i 0.787698 0.616062i \(-0.211273\pi\)
−0.469920 + 0.882709i \(0.655717\pi\)
\(504\) −0.407604 0.342020i −0.0181561 0.0152348i
\(505\) −6.44222 11.1583i −0.286675 0.496536i
\(506\) −10.8486 + 18.7904i −0.482281 + 0.835335i
\(507\) 2.03936 0.742267i 0.0905713 0.0329653i
\(508\) −0.427366 2.42371i −0.0189613 0.107535i
\(509\) 4.31315 24.4611i 0.191177 1.08422i −0.726582 0.687080i \(-0.758892\pi\)
0.917759 0.397138i \(-0.129997\pi\)
\(510\) 0.766044 + 0.278817i 0.0339210 + 0.0123462i
\(511\) 0.442848 0.371593i 0.0195904 0.0164383i
\(512\) −1.00000 −0.0441942
\(513\) −1.15270 4.20372i −0.0508931 0.185599i
\(514\) 30.2995 1.33646
\(515\) 8.06283 6.76552i 0.355291 0.298124i
\(516\) −4.15910 1.51379i −0.183094 0.0666408i
\(517\) −7.03626 + 39.9046i −0.309455 + 1.75500i
\(518\) 0.743041 + 4.21399i 0.0326473 + 0.185152i
\(519\) 13.7947 5.02087i 0.605521 0.220392i
\(520\) −1.64543 + 2.84997i −0.0721569 + 0.124979i
\(521\) 0.896926 + 1.55352i 0.0392951 + 0.0680610i 0.885004 0.465583i \(-0.154155\pi\)
−0.845709 + 0.533644i \(0.820822\pi\)
\(522\) 7.68139 + 6.44545i 0.336205 + 0.282110i
\(523\) −21.5089 18.0481i −0.940520 0.789190i 0.0371561 0.999309i \(-0.488170\pi\)
−0.977676 + 0.210120i \(0.932615\pi\)
\(524\) −2.83750 4.91469i −0.123957 0.214699i
\(525\) −0.266044 + 0.460802i −0.0116111 + 0.0201111i
\(526\) −14.6420 + 5.32926i −0.638423 + 0.232367i
\(527\) −1.33228 7.55574i −0.0580351 0.329133i
\(528\) 0.645430 3.66041i 0.0280887 0.159299i
\(529\) −10.4084 3.78834i −0.452538 0.164710i
\(530\) −0.798133 + 0.669713i −0.0346687 + 0.0290905i
\(531\) 6.65270 0.288703
\(532\) 1.34137 + 1.89209i 0.0581556 + 0.0820323i
\(533\) 33.9391 1.47007
\(534\) −2.93969 + 2.46669i −0.127213 + 0.106744i
\(535\) 6.23783 + 2.27038i 0.269685 + 0.0981572i
\(536\) −0.888003 + 5.03612i −0.0383559 + 0.217527i
\(537\) −1.91622 10.8674i −0.0826911 0.468964i
\(538\) 24.2592 8.82964i 1.04589 0.380673i
\(539\) 12.4829 21.6211i 0.537678 0.931285i
\(540\) 0.500000 + 0.866025i 0.0215166 + 0.0372678i
\(541\) 29.4085 + 24.6767i 1.26437 + 1.06093i 0.995202 + 0.0978411i \(0.0311937\pi\)
0.269170 + 0.963093i \(0.413251\pi\)
\(542\) 9.69846 + 8.13798i 0.416585 + 0.349556i
\(543\) −1.23396 2.13727i −0.0529541 0.0917192i
\(544\) −0.407604 + 0.705990i −0.0174759 + 0.0302691i
\(545\) 10.6912 3.89127i 0.457960 0.166684i
\(546\) −0.304063 1.72443i −0.0130127 0.0737987i
\(547\) 0.762174 4.32250i 0.0325882 0.184817i −0.964169 0.265290i \(-0.914532\pi\)
0.996757 + 0.0804736i \(0.0256433\pi\)
\(548\) −18.8131 6.84743i −0.803658 0.292508i
\(549\) 10.9795 9.21291i 0.468595 0.393198i
\(550\) −3.71688 −0.158488
\(551\) −25.2784 35.6568i −1.07689 1.51903i
\(552\) 5.83750 0.248460
\(553\) 5.14543 4.31753i 0.218806 0.183600i
\(554\) 20.1596 + 7.33748i 0.856498 + 0.311740i
\(555\) 1.39646 7.91971i 0.0592764 0.336173i
\(556\) −1.86184 10.5590i −0.0789598 0.447803i
\(557\) 16.8182 6.12132i 0.712610 0.259369i 0.0398248 0.999207i \(-0.487320\pi\)
0.672785 + 0.739838i \(0.265098\pi\)
\(558\) 4.70574 8.15058i 0.199210 0.345041i
\(559\) −7.28271 12.6140i −0.308026 0.533516i
\(560\) −0.407604 0.342020i −0.0172244 0.0144530i
\(561\) −2.32114 1.94767i −0.0979985 0.0822305i
\(562\) 4.53802 + 7.86008i 0.191425 + 0.331557i
\(563\) −12.6322 + 21.8797i −0.532385 + 0.922118i 0.466900 + 0.884310i \(0.345371\pi\)
−0.999285 + 0.0378076i \(0.987963\pi\)
\(564\) 10.2442 3.72859i 0.431360 0.157002i
\(565\) −0.426022 2.41609i −0.0179229 0.101646i
\(566\) −3.40080 + 19.2869i −0.142946 + 0.810688i
\(567\) −0.500000 0.181985i −0.0209980 0.00764266i
\(568\) −2.62836 + 2.20545i −0.110283 + 0.0925387i
\(569\) −4.44562 −0.186370 −0.0931851 0.995649i \(-0.529705\pi\)
−0.0931851 + 0.995649i \(0.529705\pi\)
\(570\) −1.15270 4.20372i −0.0482814 0.176075i
\(571\) 5.02641 0.210349 0.105174 0.994454i \(-0.466460\pi\)
0.105174 + 0.994454i \(0.466460\pi\)
\(572\) 9.37005 7.86241i 0.391782 0.328744i
\(573\) −5.77719 2.10272i −0.241346 0.0878426i
\(574\) −0.952896 + 5.40414i −0.0397731 + 0.225565i
\(575\) −1.01367 5.74881i −0.0422730 0.239742i
\(576\) −0.939693 + 0.342020i −0.0391539 + 0.0142508i
\(577\) −10.4693 + 18.1333i −0.435841 + 0.754898i −0.997364 0.0725627i \(-0.976882\pi\)
0.561523 + 0.827461i \(0.310216\pi\)
\(578\) −8.16772 14.1469i −0.339732 0.588434i
\(579\) −2.48680 2.08667i −0.103348 0.0867190i
\(580\) 7.68139 + 6.44545i 0.318952 + 0.267633i
\(581\) −4.80019 8.31418i −0.199146 0.344930i
\(582\) 1.31521 2.27801i 0.0545171 0.0944264i
\(583\) 3.63903 1.32450i 0.150713 0.0548552i
\(584\) −0.188663 1.06996i −0.00780693 0.0442753i
\(585\) −0.571452 + 3.24086i −0.0236266 + 0.133993i
\(586\) −7.84389 2.85494i −0.324028 0.117937i
\(587\) −22.4618 + 18.8477i −0.927098 + 0.777928i −0.975294 0.220910i \(-0.929097\pi\)
0.0481957 + 0.998838i \(0.484653\pi\)
\(588\) −6.71688 −0.277000
\(589\) −28.8384 + 29.1768i −1.18827 + 1.20221i
\(590\) 6.65270 0.273887
\(591\) −9.17617 + 7.69972i −0.377457 + 0.316724i
\(592\) 7.55690 + 2.75049i 0.310587 + 0.113044i
\(593\) −4.92309 + 27.9202i −0.202167 + 1.14655i 0.699669 + 0.714467i \(0.253331\pi\)
−0.901836 + 0.432078i \(0.857780\pi\)
\(594\) −0.645430 3.66041i −0.0264823 0.150189i
\(595\) −0.407604 + 0.148356i −0.0167101 + 0.00608199i
\(596\) 0.215537 0.373321i 0.00882875 0.0152918i
\(597\) 8.50521 + 14.7315i 0.348095 + 0.602919i
\(598\) 14.7160 + 12.3482i 0.601782 + 0.504955i
\(599\) 3.16637 + 2.65690i 0.129375 + 0.108558i 0.705179 0.709029i \(-0.250867\pi\)
−0.575804 + 0.817587i \(0.695311\pi\)
\(600\) 0.500000 + 0.866025i 0.0204124 + 0.0353553i
\(601\) 6.69001 11.5874i 0.272891 0.472661i −0.696710 0.717353i \(-0.745353\pi\)
0.969601 + 0.244692i \(0.0786868\pi\)
\(602\) 2.21301 0.805470i 0.0901956 0.0328285i
\(603\) 0.888003 + 5.03612i 0.0361623 + 0.205087i
\(604\) 1.92855 10.9373i 0.0784715 0.445034i
\(605\) 2.64543 + 0.962858i 0.107552 + 0.0391457i
\(606\) 9.87005 8.28196i 0.400943 0.336432i
\(607\) 44.3688 1.80087 0.900436 0.434988i \(-0.143247\pi\)
0.900436 + 0.434988i \(0.143247\pi\)
\(608\) 4.34002 0.405223i 0.176011 0.0164340i
\(609\) −5.33544 −0.216203
\(610\) 10.9795 9.21291i 0.444548 0.373020i
\(611\) 33.7123 + 12.2703i 1.36385 + 0.496402i
\(612\) −0.141559 + 0.802823i −0.00572220 + 0.0324522i
\(613\) −1.61510 9.15966i −0.0652331 0.369955i −0.999896 0.0144202i \(-0.995410\pi\)
0.934663 0.355535i \(-0.115701\pi\)
\(614\) 18.2160 6.63008i 0.735138 0.267568i
\(615\) 5.15657 8.93145i 0.207933 0.360151i
\(616\) 0.988856 + 1.71275i 0.0398421 + 0.0690086i
\(617\) −15.3150 12.8508i −0.616557 0.517353i 0.280162 0.959953i \(-0.409612\pi\)
−0.896719 + 0.442600i \(0.854056\pi\)
\(618\) 8.06283 + 6.76552i 0.324335 + 0.272149i
\(619\) 8.34255 + 14.4497i 0.335315 + 0.580783i 0.983545 0.180661i \(-0.0578238\pi\)
−0.648230 + 0.761445i \(0.724490\pi\)
\(620\) 4.70574 8.15058i 0.188987 0.327335i
\(621\) 5.48545 1.99654i 0.220124 0.0801184i
\(622\) −3.57873 20.2960i −0.143494 0.813794i
\(623\) 0.354570 2.01087i 0.0142056 0.0805637i
\(624\) −3.09240 1.12554i −0.123795 0.0450577i
\(625\) 0.766044 0.642788i 0.0306418 0.0257115i
\(626\) 22.7374 0.908770
\(627\) −1.31790 + 16.1478i −0.0526317 + 0.644882i
\(628\) −16.3182 −0.651167
\(629\) 5.02204 4.21399i 0.200242 0.168023i
\(630\) −0.500000 0.181985i −0.0199205 0.00725046i
\(631\) 5.69341 32.2889i 0.226651 1.28540i −0.632852 0.774272i \(-0.718116\pi\)
0.859504 0.511130i \(-0.170773\pi\)
\(632\) −2.19207 12.4318i −0.0871957 0.494512i
\(633\) −7.93882 + 2.88949i −0.315540 + 0.114847i
\(634\) −3.85457 + 6.67631i −0.153085 + 0.265150i
\(635\) −1.23055 2.13138i −0.0488330 0.0845812i
\(636\) −0.798133 0.669713i −0.0316480 0.0265559i
\(637\) −16.9329 14.2084i −0.670905 0.562956i
\(638\) −18.6352 32.2771i −0.737775 1.27786i
\(639\) −1.71554 + 2.97140i −0.0678656 + 0.117547i
\(640\) −0.939693 + 0.342020i −0.0371446 + 0.0135195i
\(641\) −0.434640 2.46497i −0.0171673 0.0973603i 0.975020 0.222116i \(-0.0712964\pi\)
−0.992187 + 0.124756i \(0.960185\pi\)
\(642\) −1.15270 + 6.53731i −0.0454936 + 0.258007i
\(643\) 4.62284 + 1.68257i 0.182307 + 0.0663543i 0.431561 0.902084i \(-0.357963\pi\)
−0.249254 + 0.968438i \(0.580185\pi\)
\(644\) −2.37939 + 1.99654i −0.0937609 + 0.0786747i
\(645\) −4.42602 −0.174274
\(646\) 1.48293 3.22918i 0.0583449 0.127051i
\(647\) −36.4807 −1.43420 −0.717102 0.696968i \(-0.754532\pi\)
−0.717102 + 0.696968i \(0.754532\pi\)
\(648\) −0.766044 + 0.642788i −0.0300931 + 0.0252511i
\(649\) −23.2361 8.45724i −0.912096 0.331976i
\(650\) −0.571452 + 3.24086i −0.0224142 + 0.127117i
\(651\) 0.869585 + 4.93166i 0.0340817 + 0.193287i
\(652\) −19.8799 + 7.23567i −0.778555 + 0.283371i
\(653\) 8.54488 14.8002i 0.334387 0.579175i −0.648980 0.760806i \(-0.724804\pi\)
0.983367 + 0.181630i \(0.0581374\pi\)
\(654\) 5.68866 + 9.85305i 0.222444 + 0.385285i
\(655\) −4.34730 3.64781i −0.169863 0.142532i
\(656\) 7.90033 + 6.62916i 0.308456 + 0.258825i
\(657\) −0.543233 0.940908i −0.0211935 0.0367083i
\(658\) −2.90033 + 5.02352i −0.113067 + 0.195837i
\(659\) 6.21688 2.26276i 0.242175 0.0881446i −0.218081 0.975931i \(-0.569980\pi\)
0.460256 + 0.887786i \(0.347757\pi\)
\(660\) −0.645430 3.66041i −0.0251233 0.142481i
\(661\) −6.75578 + 38.3139i −0.262769 + 1.49024i 0.512544 + 0.858661i \(0.328703\pi\)
−0.775313 + 0.631577i \(0.782408\pi\)
\(662\) 6.55216 + 2.38479i 0.254657 + 0.0926875i
\(663\) −2.05509 + 1.72443i −0.0798132 + 0.0669712i
\(664\) −18.0428 −0.700197
\(665\) 1.90760 + 1.31920i 0.0739737 + 0.0511566i
\(666\) 8.04189 0.311617
\(667\) 44.8401 37.6253i 1.73621 1.45686i
\(668\) −5.71213 2.07905i −0.221009 0.0804407i
\(669\) −1.19800 + 6.79417i −0.0463172 + 0.262678i
\(670\) 0.888003 + 5.03612i 0.0343066 + 0.194562i
\(671\) −50.0604 + 18.2205i −1.93256 + 0.703394i
\(672\) 0.266044 0.460802i 0.0102629 0.0177758i
\(673\) 1.36366 + 2.36192i 0.0525650 + 0.0910453i 0.891111 0.453786i \(-0.149927\pi\)
−0.838546 + 0.544831i \(0.816594\pi\)
\(674\) −17.7665 14.9079i −0.684340 0.574230i
\(675\) 0.766044 + 0.642788i 0.0294851 + 0.0247409i
\(676\) 1.08512 + 1.87949i 0.0417355 + 0.0722880i
\(677\) −16.5082 + 28.5931i −0.634462 + 1.09892i 0.352167 + 0.935937i \(0.385445\pi\)
−0.986629 + 0.162983i \(0.947888\pi\)
\(678\) 2.30541 0.839100i 0.0885386 0.0322254i
\(679\) 0.243041 + 1.37835i 0.00932704 + 0.0528963i
\(680\) −0.141559 + 0.802823i −0.00542855 + 0.0307868i
\(681\) −13.4547 4.89711i −0.515586 0.187658i
\(682\) −26.7973 + 22.4856i −1.02612 + 0.861017i
\(683\) 25.3746 0.970934 0.485467 0.874255i \(-0.338650\pi\)
0.485467 + 0.874255i \(0.338650\pi\)
\(684\) 3.93969 1.86516i 0.150638 0.0713162i
\(685\) −20.0205 −0.764945
\(686\) 5.59105 4.69145i 0.213467 0.179120i
\(687\) 13.7417 + 5.00157i 0.524278 + 0.190822i
\(688\) 0.768571 4.35878i 0.0293015 0.166177i
\(689\) −0.595389 3.37662i −0.0226825 0.128639i
\(690\) 5.48545 1.99654i 0.208828 0.0760070i
\(691\) −18.4770 + 32.0031i −0.702898 + 1.21746i 0.264547 + 0.964373i \(0.414778\pi\)
−0.967445 + 0.253082i \(0.918556\pi\)
\(692\) 7.34002 + 12.7133i 0.279026 + 0.483287i
\(693\) 1.51501 + 1.27125i 0.0575507 + 0.0482907i
\(694\) 0.847296 + 0.710966i 0.0321629 + 0.0269879i
\(695\) −5.36097 9.28547i −0.203353 0.352218i
\(696\) −5.01367 + 8.68393i −0.190043 + 0.329164i
\(697\) 7.90033 2.87548i 0.299246 0.108917i
\(698\) −4.80288 27.2385i −0.181792 1.03099i
\(699\) 0.554378 3.14403i 0.0209685 0.118918i
\(700\) −0.500000 0.181985i −0.0188982 0.00687839i
\(701\) −22.8102 + 19.1400i −0.861530 + 0.722909i −0.962297 0.272001i \(-0.912315\pi\)
0.100767 + 0.994910i \(0.467870\pi\)
\(702\) −3.29086 −0.124205
\(703\) −33.9117 8.87495i −1.27900 0.334725i
\(704\) 3.71688 0.140085
\(705\) 8.35117 7.00746i 0.314523 0.263916i
\(706\) −9.44831 3.43890i −0.355592 0.129425i
\(707\) −1.19047 + 6.75151i −0.0447724 + 0.253917i
\(708\) 1.15523 + 6.55163i 0.0434162 + 0.246225i
\(709\) 4.92427 1.79229i 0.184935 0.0673107i −0.247893 0.968787i \(-0.579738\pi\)
0.432828 + 0.901477i \(0.357516\pi\)
\(710\) −1.71554 + 2.97140i −0.0643830 + 0.111515i
\(711\) −6.31180 10.9324i −0.236711 0.409996i
\(712\) −2.93969 2.46669i −0.110170 0.0924433i
\(713\) −42.0861 35.3144i −1.57614 1.32253i
\(714\) −0.216881 0.375650i −0.00811658 0.0140583i
\(715\) 6.11587 10.5930i 0.228720 0.396155i
\(716\) 10.3696 3.77422i 0.387530 0.141049i
\(717\) −3.41740 19.3811i −0.127625 0.723799i
\(718\) −3.25372 + 18.4528i −0.121428 + 0.688651i
\(719\) 37.6874 + 13.7171i 1.40550 + 0.511561i 0.929806 0.368049i \(-0.119974\pi\)
0.475696 + 0.879610i \(0.342196\pi\)
\(720\) −0.766044 + 0.642788i −0.0285488 + 0.0239553i
\(721\) −5.60039 −0.208569
\(722\) −18.6716 + 3.51735i −0.694885 + 0.130902i
\(723\) 11.7365 0.436484
\(724\) 1.89053 1.58634i 0.0702610 0.0589560i
\(725\) 9.42262 + 3.42955i 0.349947 + 0.127370i
\(726\) −0.488856 + 2.77244i −0.0181431 + 0.102895i
\(727\) −7.10725 40.3072i −0.263593 1.49491i −0.773011 0.634392i \(-0.781250\pi\)
0.509418 0.860519i \(-0.329861\pi\)
\(728\) 1.64543 0.598887i 0.0609837 0.0221962i
\(729\) −0.500000 + 0.866025i −0.0185185 + 0.0320750i
\(730\) −0.543233 0.940908i −0.0201060 0.0348246i
\(731\) −2.76399 2.31926i −0.102230 0.0857809i
\(732\) 10.9795 + 9.21291i 0.405815 + 0.340519i
\(733\) −19.4918 33.7609i −0.719948 1.24699i −0.961020 0.276479i \(-0.910832\pi\)
0.241072 0.970507i \(-0.422501\pi\)
\(734\) 16.9304 29.3242i 0.624911 1.08238i
\(735\) −6.31180 + 2.29731i −0.232814 + 0.0847375i
\(736\) 1.01367 + 5.74881i 0.0373644 + 0.211904i
\(737\) 3.30060 18.7187i 0.121579 0.689510i
\(738\) 9.69119 + 3.52730i 0.356738 + 0.129842i
\(739\) 21.7310 18.2345i 0.799388 0.670767i −0.148661 0.988888i \(-0.547496\pi\)
0.948050 + 0.318122i \(0.103052\pi\)
\(740\) 8.04189 0.295626
\(741\) 13.8772 + 3.63176i 0.509790 + 0.133416i
\(742\) 0.554378 0.0203518
\(743\) −38.4372 + 32.2527i −1.41012 + 1.18324i −0.453737 + 0.891136i \(0.649909\pi\)
−0.956388 + 0.292100i \(0.905646\pi\)
\(744\) 8.84389 + 3.21891i 0.324233 + 0.118011i
\(745\) 0.0748553 0.424525i 0.00274249 0.0155534i
\(746\) 0.104418 + 0.592184i 0.00382301 + 0.0216814i
\(747\) −16.9547 + 6.17101i −0.620340 + 0.225785i
\(748\) 1.51501 2.62408i 0.0553944 0.0959460i
\(749\) −1.76604 3.05888i −0.0645299 0.111769i
\(750\) 0.766044 + 0.642788i 0.0279720 + 0.0234713i
\(751\) −12.8038 10.7437i −0.467218 0.392042i 0.378561 0.925576i \(-0.376419\pi\)
−0.845779 + 0.533534i \(0.820864\pi\)
\(752\) 5.45084 + 9.44113i 0.198772 + 0.344282i
\(753\) 8.98680 15.5656i 0.327497 0.567242i
\(754\) −31.0085 + 11.2862i −1.12926 + 0.411018i
\(755\) −1.92855 10.9373i −0.0701871 0.398051i
\(756\) 0.0923963 0.524005i 0.00336042 0.0190579i
\(757\) 23.6805 + 8.61900i 0.860683 + 0.313263i 0.734388 0.678730i \(-0.237469\pi\)
0.126295 + 0.991993i \(0.459691\pi\)
\(758\) −1.40167 + 1.17614i −0.0509111 + 0.0427195i
\(759\) −21.6973 −0.787561
\(760\) 3.93969 1.86516i 0.142908 0.0676565i
\(761\) −39.0164 −1.41434 −0.707172 0.707042i \(-0.750029\pi\)
−0.707172 + 0.707042i \(0.750029\pi\)
\(762\) 1.88532 1.58197i 0.0682978 0.0573086i
\(763\) −5.68866 2.07050i −0.205943 0.0749573i
\(764\) 1.06758 6.05455i 0.0386237 0.219046i
\(765\) 0.141559 + 0.802823i 0.00511809 + 0.0290261i