Properties

Label 570.2.u.f.301.1
Level $570$
Weight $2$
Character 570.301
Analytic conductor $4.551$
Analytic rank $0$
Dimension $6$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [570,2,Mod(61,570)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(570, base_ring=CyclotomicField(18))
 
chi = DirichletCharacter(H, H._module([0, 0, 2]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("570.61");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 570 = 2 \cdot 3 \cdot 5 \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 570.u (of order \(9\), degree \(6\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(4.55147291521\)
Analytic rank: \(0\)
Dimension: \(6\)
Coefficient field: \(\Q(\zeta_{18})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - x^{3} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{9}]$

Embedding invariants

Embedding label 301.1
Root \(0.939693 - 0.342020i\) of defining polynomial
Character \(\chi\) \(=\) 570.301
Dual form 570.2.u.f.481.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.766044 - 0.642788i) q^{2} +(-0.939693 + 0.342020i) q^{3} +(0.173648 + 0.984808i) q^{4} +(-0.173648 + 0.984808i) q^{5} +(0.939693 + 0.342020i) q^{6} +(-0.266044 - 0.460802i) q^{7} +(0.500000 - 0.866025i) q^{8} +(0.766044 - 0.642788i) q^{9} +O(q^{10})\) \(q+(-0.766044 - 0.642788i) q^{2} +(-0.939693 + 0.342020i) q^{3} +(0.173648 + 0.984808i) q^{4} +(-0.173648 + 0.984808i) q^{5} +(0.939693 + 0.342020i) q^{6} +(-0.266044 - 0.460802i) q^{7} +(0.500000 - 0.866025i) q^{8} +(0.766044 - 0.642788i) q^{9} +(0.766044 - 0.642788i) q^{10} +(-1.85844 + 3.21891i) q^{11} +(-0.500000 - 0.866025i) q^{12} +(-3.09240 - 1.12554i) q^{13} +(-0.0923963 + 0.524005i) q^{14} +(-0.173648 - 0.984808i) q^{15} +(-0.939693 + 0.342020i) q^{16} +(-0.624485 - 0.524005i) q^{17} -1.00000 q^{18} +(4.21688 - 1.10359i) q^{19} -1.00000 q^{20} +(0.407604 + 0.342020i) q^{21} +(3.49273 - 1.27125i) q^{22} +(-1.01367 - 5.74881i) q^{23} +(-0.173648 + 0.984808i) q^{24} +(-0.939693 - 0.342020i) q^{25} +(1.64543 + 2.84997i) q^{26} +(-0.500000 + 0.866025i) q^{27} +(0.407604 - 0.342020i) q^{28} +(-7.68139 + 6.44545i) q^{29} +(-0.500000 + 0.866025i) q^{30} +(-4.70574 - 8.15058i) q^{31} +(0.939693 + 0.342020i) q^{32} +(0.645430 - 3.66041i) q^{33} +(0.141559 + 0.802823i) q^{34} +(0.500000 - 0.181985i) q^{35} +(0.766044 + 0.642788i) q^{36} -8.04189 q^{37} +(-3.93969 - 1.86516i) q^{38} +3.29086 q^{39} +(0.766044 + 0.642788i) q^{40} +(-9.69119 + 3.52730i) q^{41} +(-0.0923963 - 0.524005i) q^{42} +(0.768571 - 4.35878i) q^{43} +(-3.49273 - 1.27125i) q^{44} +(0.500000 + 0.866025i) q^{45} +(-2.91875 + 5.05542i) q^{46} +(-8.35117 + 7.00746i) q^{47} +(0.766044 - 0.642788i) q^{48} +(3.35844 - 5.81699i) q^{49} +(0.500000 + 0.866025i) q^{50} +(0.766044 + 0.278817i) q^{51} +(0.571452 - 3.24086i) q^{52} +(-0.180922 - 1.02606i) q^{53} +(0.939693 - 0.342020i) q^{54} +(-2.84730 - 2.38917i) q^{55} -0.532089 q^{56} +(-3.58512 + 2.47929i) q^{57} +10.0273 q^{58} +(5.09627 + 4.27628i) q^{59} +(0.939693 - 0.342020i) q^{60} +(2.48886 + 14.1150i) q^{61} +(-1.63429 + 9.26849i) q^{62} +(-0.500000 - 0.181985i) q^{63} +(-0.500000 - 0.866025i) q^{64} +(1.64543 - 2.84997i) q^{65} +(-2.84730 + 2.38917i) q^{66} +(3.91740 - 3.28709i) q^{67} +(0.407604 - 0.705990i) q^{68} +(2.91875 + 5.05542i) q^{69} +(-0.500000 - 0.181985i) q^{70} +(0.595800 - 3.37895i) q^{71} +(-0.173648 - 0.984808i) q^{72} +(-1.02094 + 0.371593i) q^{73} +(6.16044 + 5.16923i) q^{74} +1.00000 q^{75} +(1.81908 + 3.96118i) q^{76} +1.97771 q^{77} +(-2.52094 - 2.11532i) q^{78} +(-11.8623 + 4.31753i) q^{79} +(-0.173648 - 0.984808i) q^{80} +(0.173648 - 0.984808i) q^{81} +(9.69119 + 3.52730i) q^{82} +(-9.02141 - 15.6255i) q^{83} +(-0.266044 + 0.460802i) q^{84} +(0.624485 - 0.524005i) q^{85} +(-3.39053 + 2.84499i) q^{86} +(5.01367 - 8.68393i) q^{87} +(1.85844 + 3.21891i) q^{88} +(-3.60607 - 1.31250i) q^{89} +(0.173648 - 0.984808i) q^{90} +(0.304063 + 1.72443i) q^{91} +(5.48545 - 1.99654i) q^{92} +(7.20961 + 6.04958i) q^{93} +10.9017 q^{94} +(0.354570 + 4.34445i) q^{95} -1.00000 q^{96} +(2.01501 + 1.69080i) q^{97} +(-6.31180 + 2.29731i) q^{98} +(0.645430 + 3.66041i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q + 3 q^{7} + 3 q^{8}+O(q^{10}) \) Copy content Toggle raw display \( 6 q + 3 q^{7} + 3 q^{8} - 3 q^{11} - 3 q^{12} - 15 q^{13} + 3 q^{14} + 9 q^{17} - 6 q^{18} + 9 q^{19} - 6 q^{20} + 6 q^{21} + 3 q^{22} + 15 q^{23} - 6 q^{26} - 3 q^{27} + 6 q^{28} + 3 q^{29} - 3 q^{30} - 18 q^{31} - 12 q^{33} + 9 q^{34} + 3 q^{35} - 42 q^{37} - 18 q^{38} - 12 q^{39} - 12 q^{41} + 3 q^{42} - 15 q^{43} - 3 q^{44} + 3 q^{45} - 15 q^{46} - 24 q^{47} + 12 q^{49} + 3 q^{50} + 3 q^{52} - 18 q^{53} - 15 q^{55} + 6 q^{56} + 18 q^{58} + 3 q^{59} + 21 q^{61} - 3 q^{63} - 3 q^{64} - 6 q^{65} - 15 q^{66} + 30 q^{67} + 6 q^{68} + 15 q^{69} - 3 q^{70} + 42 q^{71} - 3 q^{73} - 9 q^{74} + 6 q^{75} - 6 q^{76} + 24 q^{77} - 12 q^{78} - 39 q^{79} + 12 q^{82} + 15 q^{83} + 3 q^{84} - 9 q^{85} - 3 q^{86} + 9 q^{87} + 3 q^{88} + 3 q^{89} + 15 q^{91} - 3 q^{92} + 9 q^{93} + 42 q^{94} + 18 q^{95} - 6 q^{96} - 18 q^{97} - 3 q^{98} - 12 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/570\mathbb{Z}\right)^\times\).

\(n\) \(191\) \(211\) \(457\)
\(\chi(n)\) \(1\) \(e\left(\frac{2}{9}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.766044 0.642788i −0.541675 0.454519i
\(3\) −0.939693 + 0.342020i −0.542532 + 0.197465i
\(4\) 0.173648 + 0.984808i 0.0868241 + 0.492404i
\(5\) −0.173648 + 0.984808i −0.0776578 + 0.440419i
\(6\) 0.939693 + 0.342020i 0.383628 + 0.139629i
\(7\) −0.266044 0.460802i −0.100555 0.174167i 0.811358 0.584549i \(-0.198729\pi\)
−0.911914 + 0.410382i \(0.865395\pi\)
\(8\) 0.500000 0.866025i 0.176777 0.306186i
\(9\) 0.766044 0.642788i 0.255348 0.214263i
\(10\) 0.766044 0.642788i 0.242245 0.203267i
\(11\) −1.85844 + 3.21891i −0.560341 + 0.970539i 0.437125 + 0.899401i \(0.355997\pi\)
−0.997466 + 0.0711385i \(0.977337\pi\)
\(12\) −0.500000 0.866025i −0.144338 0.250000i
\(13\) −3.09240 1.12554i −0.857676 0.312169i −0.124510 0.992218i \(-0.539736\pi\)
−0.733166 + 0.680050i \(0.761958\pi\)
\(14\) −0.0923963 + 0.524005i −0.0246939 + 0.140046i
\(15\) −0.173648 0.984808i −0.0448358 0.254276i
\(16\) −0.939693 + 0.342020i −0.234923 + 0.0855050i
\(17\) −0.624485 0.524005i −0.151460 0.127090i 0.563909 0.825837i \(-0.309297\pi\)
−0.715369 + 0.698747i \(0.753741\pi\)
\(18\) −1.00000 −0.235702
\(19\) 4.21688 1.10359i 0.967419 0.253181i
\(20\) −1.00000 −0.223607
\(21\) 0.407604 + 0.342020i 0.0889464 + 0.0746349i
\(22\) 3.49273 1.27125i 0.744652 0.271031i
\(23\) −1.01367 5.74881i −0.211365 1.19871i −0.887104 0.461569i \(-0.847287\pi\)
0.675739 0.737141i \(-0.263825\pi\)
\(24\) −0.173648 + 0.984808i −0.0354458 + 0.201023i
\(25\) −0.939693 0.342020i −0.187939 0.0684040i
\(26\) 1.64543 + 2.84997i 0.322695 + 0.558925i
\(27\) −0.500000 + 0.866025i −0.0962250 + 0.166667i
\(28\) 0.407604 0.342020i 0.0770299 0.0646357i
\(29\) −7.68139 + 6.44545i −1.42640 + 1.19689i −0.478594 + 0.878036i \(0.658854\pi\)
−0.947804 + 0.318854i \(0.896702\pi\)
\(30\) −0.500000 + 0.866025i −0.0912871 + 0.158114i
\(31\) −4.70574 8.15058i −0.845175 1.46389i −0.885469 0.464699i \(-0.846163\pi\)
0.0402935 0.999188i \(-0.487171\pi\)
\(32\) 0.939693 + 0.342020i 0.166116 + 0.0604612i
\(33\) 0.645430 3.66041i 0.112355 0.637196i
\(34\) 0.141559 + 0.802823i 0.0242772 + 0.137683i
\(35\) 0.500000 0.181985i 0.0845154 0.0307611i
\(36\) 0.766044 + 0.642788i 0.127674 + 0.107131i
\(37\) −8.04189 −1.32208 −0.661039 0.750351i \(-0.729884\pi\)
−0.661039 + 0.750351i \(0.729884\pi\)
\(38\) −3.93969 1.86516i −0.639103 0.302569i
\(39\) 3.29086 0.526959
\(40\) 0.766044 + 0.642788i 0.121122 + 0.101634i
\(41\) −9.69119 + 3.52730i −1.51351 + 0.550872i −0.959517 0.281650i \(-0.909118\pi\)
−0.553992 + 0.832522i \(0.686896\pi\)
\(42\) −0.0923963 0.524005i −0.0142571 0.0808558i
\(43\) 0.768571 4.35878i 0.117206 0.664708i −0.868428 0.495815i \(-0.834870\pi\)
0.985634 0.168893i \(-0.0540193\pi\)
\(44\) −3.49273 1.27125i −0.526548 0.191648i
\(45\) 0.500000 + 0.866025i 0.0745356 + 0.129099i
\(46\) −2.91875 + 5.05542i −0.430346 + 0.745381i
\(47\) −8.35117 + 7.00746i −1.21814 + 1.02214i −0.219223 + 0.975675i \(0.570352\pi\)
−0.998920 + 0.0464685i \(0.985203\pi\)
\(48\) 0.766044 0.642788i 0.110569 0.0927784i
\(49\) 3.35844 5.81699i 0.479777 0.830999i
\(50\) 0.500000 + 0.866025i 0.0707107 + 0.122474i
\(51\) 0.766044 + 0.278817i 0.107268 + 0.0390422i
\(52\) 0.571452 3.24086i 0.0792461 0.449427i
\(53\) −0.180922 1.02606i −0.0248516 0.140940i 0.969857 0.243673i \(-0.0783524\pi\)
−0.994709 + 0.102733i \(0.967241\pi\)
\(54\) 0.939693 0.342020i 0.127876 0.0465430i
\(55\) −2.84730 2.38917i −0.383929 0.322155i
\(56\) −0.532089 −0.0711034
\(57\) −3.58512 + 2.47929i −0.474861 + 0.328390i
\(58\) 10.0273 1.31665
\(59\) 5.09627 + 4.27628i 0.663477 + 0.556724i 0.911127 0.412126i \(-0.135214\pi\)
−0.247649 + 0.968850i \(0.579658\pi\)
\(60\) 0.939693 0.342020i 0.121314 0.0441546i
\(61\) 2.48886 + 14.1150i 0.318665 + 1.80724i 0.550889 + 0.834578i \(0.314289\pi\)
−0.232224 + 0.972662i \(0.574600\pi\)
\(62\) −1.63429 + 9.26849i −0.207554 + 1.17710i
\(63\) −0.500000 0.181985i −0.0629941 0.0229280i
\(64\) −0.500000 0.866025i −0.0625000 0.108253i
\(65\) 1.64543 2.84997i 0.204090 0.353495i
\(66\) −2.84730 + 2.38917i −0.350478 + 0.294086i
\(67\) 3.91740 3.28709i 0.478587 0.401582i −0.371328 0.928502i \(-0.621098\pi\)
0.849915 + 0.526919i \(0.176653\pi\)
\(68\) 0.407604 0.705990i 0.0494292 0.0856139i
\(69\) 2.91875 + 5.05542i 0.351376 + 0.608601i
\(70\) −0.500000 0.181985i −0.0597614 0.0217514i
\(71\) 0.595800 3.37895i 0.0707084 0.401007i −0.928827 0.370515i \(-0.879181\pi\)
0.999535 0.0304926i \(-0.00970761\pi\)
\(72\) −0.173648 0.984808i −0.0204646 0.116061i
\(73\) −1.02094 + 0.371593i −0.119493 + 0.0434917i −0.401074 0.916045i \(-0.631363\pi\)
0.281582 + 0.959537i \(0.409141\pi\)
\(74\) 6.16044 + 5.16923i 0.716137 + 0.600910i
\(75\) 1.00000 0.115470
\(76\) 1.81908 + 3.96118i 0.208663 + 0.454379i
\(77\) 1.97771 0.225381
\(78\) −2.52094 2.11532i −0.285441 0.239513i
\(79\) −11.8623 + 4.31753i −1.33461 + 0.485760i −0.908112 0.418727i \(-0.862477\pi\)
−0.426502 + 0.904487i \(0.640254\pi\)
\(80\) −0.173648 0.984808i −0.0194145 0.110105i
\(81\) 0.173648 0.984808i 0.0192942 0.109423i
\(82\) 9.69119 + 3.52730i 1.07021 + 0.389526i
\(83\) −9.02141 15.6255i −0.990229 1.71513i −0.615885 0.787836i \(-0.711201\pi\)
−0.374344 0.927290i \(-0.622132\pi\)
\(84\) −0.266044 + 0.460802i −0.0290278 + 0.0502777i
\(85\) 0.624485 0.524005i 0.0677349 0.0568364i
\(86\) −3.39053 + 2.84499i −0.365610 + 0.306783i
\(87\) 5.01367 8.68393i 0.537522 0.931015i
\(88\) 1.85844 + 3.21891i 0.198110 + 0.343137i
\(89\) −3.60607 1.31250i −0.382242 0.139125i 0.143750 0.989614i \(-0.454084\pi\)
−0.525993 + 0.850489i \(0.676306\pi\)
\(90\) 0.173648 0.984808i 0.0183041 0.103808i
\(91\) 0.304063 + 1.72443i 0.0318745 + 0.180769i
\(92\) 5.48545 1.99654i 0.571898 0.208154i
\(93\) 7.20961 + 6.04958i 0.747601 + 0.627312i
\(94\) 10.9017 1.12442
\(95\) 0.354570 + 4.34445i 0.0363781 + 0.445732i
\(96\) −1.00000 −0.102062
\(97\) 2.01501 + 1.69080i 0.204594 + 0.171675i 0.739327 0.673346i \(-0.235144\pi\)
−0.534734 + 0.845021i \(0.679588\pi\)
\(98\) −6.31180 + 2.29731i −0.637588 + 0.232063i
\(99\) 0.645430 + 3.66041i 0.0648681 + 0.367885i
\(100\) 0.173648 0.984808i 0.0173648 0.0984808i
\(101\) 12.1074 + 4.40674i 1.20473 + 0.438487i 0.864874 0.501990i \(-0.167398\pi\)
0.339859 + 0.940476i \(0.389621\pi\)
\(102\) −0.407604 0.705990i −0.0403588 0.0699035i
\(103\) 5.26264 9.11516i 0.518543 0.898144i −0.481224 0.876597i \(-0.659808\pi\)
0.999768 0.0215461i \(-0.00685887\pi\)
\(104\) −2.52094 + 2.11532i −0.247199 + 0.207425i
\(105\) −0.407604 + 0.342020i −0.0397781 + 0.0333777i
\(106\) −0.520945 + 0.902302i −0.0505986 + 0.0876394i
\(107\) −3.31908 5.74881i −0.320867 0.555759i 0.659800 0.751441i \(-0.270641\pi\)
−0.980667 + 0.195683i \(0.937308\pi\)
\(108\) −0.939693 0.342020i −0.0904220 0.0329109i
\(109\) 1.97565 11.2045i 0.189233 1.07319i −0.731162 0.682204i \(-0.761022\pi\)
0.920395 0.390990i \(-0.127867\pi\)
\(110\) 0.645430 + 3.66041i 0.0615393 + 0.349007i
\(111\) 7.55690 2.75049i 0.717270 0.261065i
\(112\) 0.407604 + 0.342020i 0.0385149 + 0.0323179i
\(113\) 2.45336 0.230793 0.115396 0.993320i \(-0.463186\pi\)
0.115396 + 0.993320i \(0.463186\pi\)
\(114\) 4.34002 + 0.405223i 0.406480 + 0.0379526i
\(115\) 5.83750 0.544349
\(116\) −7.68139 6.44545i −0.713199 0.598445i
\(117\) −3.09240 + 1.12554i −0.285892 + 0.104056i
\(118\) −1.15523 6.55163i −0.106348 0.603127i
\(119\) −0.0753221 + 0.427173i −0.00690477 + 0.0391589i
\(120\) −0.939693 0.342020i −0.0857818 0.0312220i
\(121\) −1.40760 2.43804i −0.127964 0.221640i
\(122\) 7.16637 12.4125i 0.648813 1.12378i
\(123\) 7.90033 6.62916i 0.712349 0.597732i
\(124\) 7.20961 6.04958i 0.647442 0.543268i
\(125\) 0.500000 0.866025i 0.0447214 0.0774597i
\(126\) 0.266044 + 0.460802i 0.0237011 + 0.0410515i
\(127\) 2.31268 + 0.841747i 0.205217 + 0.0746930i 0.442584 0.896727i \(-0.354062\pi\)
−0.237366 + 0.971420i \(0.576284\pi\)
\(128\) −0.173648 + 0.984808i −0.0153485 + 0.0870455i
\(129\) 0.768571 + 4.35878i 0.0676689 + 0.383769i
\(130\) −3.09240 + 1.12554i −0.271221 + 0.0987164i
\(131\) 4.34730 + 3.64781i 0.379825 + 0.318711i 0.812634 0.582775i \(-0.198033\pi\)
−0.432809 + 0.901486i \(0.642477\pi\)
\(132\) 3.71688 0.323513
\(133\) −1.63041 1.64955i −0.141375 0.143034i
\(134\) −5.11381 −0.441766
\(135\) −0.766044 0.642788i −0.0659306 0.0553223i
\(136\) −0.766044 + 0.278817i −0.0656878 + 0.0239084i
\(137\) 3.47653 + 19.7164i 0.297020 + 1.68448i 0.658877 + 0.752250i \(0.271032\pi\)
−0.361857 + 0.932233i \(0.617857\pi\)
\(138\) 1.01367 5.74881i 0.0862894 0.489371i
\(139\) 10.0753 + 3.66712i 0.854578 + 0.311041i 0.731905 0.681406i \(-0.238631\pi\)
0.122672 + 0.992447i \(0.460854\pi\)
\(140\) 0.266044 + 0.460802i 0.0224849 + 0.0389449i
\(141\) 5.45084 9.44113i 0.459043 0.795086i
\(142\) −2.62836 + 2.20545i −0.220567 + 0.185077i
\(143\) 9.37005 7.86241i 0.783563 0.657488i
\(144\) −0.500000 + 0.866025i −0.0416667 + 0.0721688i
\(145\) −5.01367 8.68393i −0.416363 0.721161i
\(146\) 1.02094 + 0.371593i 0.0844940 + 0.0307533i
\(147\) −1.16637 + 6.61484i −0.0962009 + 0.545583i
\(148\) −1.39646 7.91971i −0.114788 0.650997i
\(149\) 0.405078 0.147436i 0.0331852 0.0120784i −0.325374 0.945585i \(-0.605490\pi\)
0.358559 + 0.933507i \(0.383268\pi\)
\(150\) −0.766044 0.642788i −0.0625473 0.0524834i
\(151\) 11.1061 0.903799 0.451899 0.892069i \(-0.350747\pi\)
0.451899 + 0.892069i \(0.350747\pi\)
\(152\) 1.15270 4.20372i 0.0934966 0.340967i
\(153\) −0.815207 −0.0659056
\(154\) −1.51501 1.27125i −0.122083 0.102440i
\(155\) 8.84389 3.21891i 0.710359 0.258549i
\(156\) 0.571452 + 3.24086i 0.0457528 + 0.259477i
\(157\) −2.83363 + 16.0703i −0.226148 + 1.28255i 0.634331 + 0.773062i \(0.281276\pi\)
−0.860478 + 0.509487i \(0.829835\pi\)
\(158\) 11.8623 + 4.31753i 0.943715 + 0.343484i
\(159\) 0.520945 + 0.902302i 0.0413136 + 0.0715572i
\(160\) −0.500000 + 0.866025i −0.0395285 + 0.0684653i
\(161\) −2.37939 + 1.99654i −0.187522 + 0.157349i
\(162\) −0.766044 + 0.642788i −0.0601861 + 0.0505022i
\(163\) −10.5778 + 18.3214i −0.828521 + 1.43504i 0.0706773 + 0.997499i \(0.477484\pi\)
−0.899198 + 0.437541i \(0.855849\pi\)
\(164\) −5.15657 8.93145i −0.402661 0.697429i
\(165\) 3.49273 + 1.27125i 0.271908 + 0.0989665i
\(166\) −3.13310 + 17.7687i −0.243176 + 1.37912i
\(167\) 1.05556 + 5.98638i 0.0816817 + 0.463240i 0.998023 + 0.0628427i \(0.0200167\pi\)
−0.916342 + 0.400397i \(0.868872\pi\)
\(168\) 0.500000 0.181985i 0.0385758 0.0140405i
\(169\) −1.66250 1.39501i −0.127885 0.107308i
\(170\) −0.815207 −0.0625236
\(171\) 2.52094 3.55596i 0.192781 0.271931i
\(172\) 4.42602 0.337481
\(173\) −11.2456 9.43615i −0.854985 0.717417i 0.105897 0.994377i \(-0.466229\pi\)
−0.960881 + 0.276960i \(0.910673\pi\)
\(174\) −9.42262 + 3.42955i −0.714327 + 0.259994i
\(175\) 0.0923963 + 0.524005i 0.00698450 + 0.0396111i
\(176\) 0.645430 3.66041i 0.0486511 0.275914i
\(177\) −6.25150 2.27536i −0.469891 0.171026i
\(178\) 1.91875 + 3.32337i 0.143816 + 0.249097i
\(179\) 5.51754 9.55666i 0.412400 0.714298i −0.582751 0.812651i \(-0.698024\pi\)
0.995152 + 0.0983522i \(0.0313572\pi\)
\(180\) −0.766044 + 0.642788i −0.0570976 + 0.0479106i
\(181\) 1.89053 1.58634i 0.140522 0.117912i −0.569817 0.821771i \(-0.692986\pi\)
0.710339 + 0.703860i \(0.248542\pi\)
\(182\) 0.875515 1.51644i 0.0648975 0.112406i
\(183\) −7.16637 12.4125i −0.529754 0.917560i
\(184\) −5.48545 1.99654i −0.404393 0.147187i
\(185\) 1.39646 7.91971i 0.102670 0.582269i
\(186\) −1.63429 9.26849i −0.119832 0.679599i
\(187\) 2.84730 1.03633i 0.208215 0.0757840i
\(188\) −8.35117 7.00746i −0.609071 0.511072i
\(189\) 0.532089 0.0387038
\(190\) 2.52094 3.55596i 0.182889 0.257976i
\(191\) 6.14796 0.444850 0.222425 0.974950i \(-0.428603\pi\)
0.222425 + 0.974950i \(0.428603\pi\)
\(192\) 0.766044 + 0.642788i 0.0552845 + 0.0463892i
\(193\) 3.05051 1.11029i 0.219580 0.0799207i −0.229888 0.973217i \(-0.573836\pi\)
0.449468 + 0.893296i \(0.351614\pi\)
\(194\) −0.456767 2.59045i −0.0327939 0.185984i
\(195\) −0.571452 + 3.24086i −0.0409225 + 0.232083i
\(196\) 6.31180 + 2.29731i 0.450843 + 0.164093i
\(197\) 5.98932 + 10.3738i 0.426722 + 0.739103i 0.996579 0.0826398i \(-0.0263351\pi\)
−0.569858 + 0.821743i \(0.693002\pi\)
\(198\) 1.85844 3.21891i 0.132074 0.228758i
\(199\) −13.0307 + 10.9341i −0.923725 + 0.775097i −0.974680 0.223604i \(-0.928218\pi\)
0.0509552 + 0.998701i \(0.483773\pi\)
\(200\) −0.766044 + 0.642788i −0.0541675 + 0.0454519i
\(201\) −2.55690 + 4.42869i −0.180350 + 0.312376i
\(202\) −6.44222 11.1583i −0.453273 0.785092i
\(203\) 5.01367 + 1.82483i 0.351891 + 0.128078i
\(204\) −0.141559 + 0.802823i −0.00991113 + 0.0562088i
\(205\) −1.79086 10.1565i −0.125079 0.709359i
\(206\) −9.89053 + 3.59986i −0.689106 + 0.250814i
\(207\) −4.47178 3.75227i −0.310810 0.260801i
\(208\) 3.29086 0.228180
\(209\) −4.28446 + 15.6247i −0.296362 + 1.08079i
\(210\) 0.532089 0.0367176
\(211\) 6.47178 + 5.43047i 0.445536 + 0.373849i 0.837776 0.546014i \(-0.183855\pi\)
−0.392240 + 0.919863i \(0.628300\pi\)
\(212\) 0.979055 0.356347i 0.0672418 0.0244740i
\(213\) 0.595800 + 3.37895i 0.0408235 + 0.231522i
\(214\) −1.15270 + 6.53731i −0.0787972 + 0.446881i
\(215\) 4.15910 + 1.51379i 0.283648 + 0.103240i
\(216\) 0.500000 + 0.866025i 0.0340207 + 0.0589256i
\(217\) −2.50387 + 4.33683i −0.169974 + 0.294403i
\(218\) −8.71554 + 7.31320i −0.590291 + 0.495313i
\(219\) 0.832282 0.698367i 0.0562404 0.0471913i
\(220\) 1.85844 3.21891i 0.125296 0.217019i
\(221\) 1.34137 + 2.32332i 0.0902301 + 0.156283i
\(222\) −7.55690 2.75049i −0.507186 0.184601i
\(223\) −1.19800 + 6.79417i −0.0802238 + 0.454972i 0.918062 + 0.396438i \(0.129754\pi\)
−0.998285 + 0.0585339i \(0.981357\pi\)
\(224\) −0.0923963 0.524005i −0.00617349 0.0350116i
\(225\) −0.939693 + 0.342020i −0.0626462 + 0.0228013i
\(226\) −1.87939 1.57699i −0.125015 0.104900i
\(227\) 14.3182 0.950332 0.475166 0.879896i \(-0.342388\pi\)
0.475166 + 0.879896i \(0.342388\pi\)
\(228\) −3.06418 3.10013i −0.202930 0.205311i
\(229\) −14.6236 −0.966355 −0.483178 0.875522i \(-0.660517\pi\)
−0.483178 + 0.875522i \(0.660517\pi\)
\(230\) −4.47178 3.75227i −0.294861 0.247417i
\(231\) −1.85844 + 0.676417i −0.122276 + 0.0445050i
\(232\) 1.74123 + 9.87500i 0.114317 + 0.648326i
\(233\) 0.554378 3.14403i 0.0363185 0.205972i −0.961249 0.275682i \(-0.911096\pi\)
0.997567 + 0.0697099i \(0.0222074\pi\)
\(234\) 3.09240 + 1.12554i 0.202156 + 0.0735789i
\(235\) −5.45084 9.44113i −0.355573 0.615871i
\(236\) −3.32635 + 5.76141i −0.216527 + 0.375036i
\(237\) 9.67024 8.11430i 0.628150 0.527080i
\(238\) 0.332282 0.278817i 0.0215386 0.0180730i
\(239\) 9.84002 17.0434i 0.636498 1.10245i −0.349697 0.936863i \(-0.613716\pi\)
0.986196 0.165584i \(-0.0529510\pi\)
\(240\) 0.500000 + 0.866025i 0.0322749 + 0.0559017i
\(241\) −11.0287 4.01411i −0.710420 0.258572i −0.0385668 0.999256i \(-0.512279\pi\)
−0.671853 + 0.740684i \(0.734501\pi\)
\(242\) −0.488856 + 2.77244i −0.0314248 + 0.178219i
\(243\) 0.173648 + 0.984808i 0.0111395 + 0.0631754i
\(244\) −13.4684 + 4.90209i −0.862225 + 0.313824i
\(245\) 5.14543 + 4.31753i 0.328729 + 0.275837i
\(246\) −10.3131 −0.657542
\(247\) −14.2824 1.33353i −0.908768 0.0848506i
\(248\) −9.41147 −0.597629
\(249\) 13.8216 + 11.5977i 0.875909 + 0.734975i
\(250\) −0.939693 + 0.342020i −0.0594314 + 0.0216313i
\(251\) −3.12108 17.7005i −0.197001 1.11725i −0.909540 0.415616i \(-0.863566\pi\)
0.712539 0.701632i \(-0.247545\pi\)
\(252\) 0.0923963 0.524005i 0.00582042 0.0330092i
\(253\) 20.3888 + 7.42091i 1.28183 + 0.466548i
\(254\) −1.23055 2.13138i −0.0772117 0.133735i
\(255\) −0.407604 + 0.705990i −0.0255251 + 0.0442108i
\(256\) 0.766044 0.642788i 0.0478778 0.0401742i
\(257\) −23.2108 + 19.4762i −1.44785 + 1.21489i −0.513719 + 0.857959i \(0.671732\pi\)
−0.934131 + 0.356931i \(0.883823\pi\)
\(258\) 2.21301 3.83305i 0.137776 0.238635i
\(259\) 2.13950 + 3.70572i 0.132942 + 0.230262i
\(260\) 3.09240 + 1.12554i 0.191782 + 0.0698030i
\(261\) −1.74123 + 9.87500i −0.107779 + 0.611247i
\(262\) −0.985452 5.58878i −0.0608814 0.345276i
\(263\) 14.6420 5.32926i 0.902866 0.328616i 0.151465 0.988463i \(-0.451601\pi\)
0.751401 + 0.659846i \(0.229379\pi\)
\(264\) −2.84730 2.38917i −0.175239 0.147043i
\(265\) 1.04189 0.0640027
\(266\) 0.188663 + 2.31164i 0.0115677 + 0.141735i
\(267\) 3.83750 0.234851
\(268\) 3.91740 + 3.28709i 0.239294 + 0.200791i
\(269\) −24.2592 + 8.82964i −1.47911 + 0.538353i −0.950558 0.310547i \(-0.899488\pi\)
−0.528554 + 0.848900i \(0.677266\pi\)
\(270\) 0.173648 + 0.984808i 0.0105679 + 0.0599335i
\(271\) −2.19846 + 12.4681i −0.133547 + 0.757383i 0.842313 + 0.538988i \(0.181193\pi\)
−0.975860 + 0.218395i \(0.929918\pi\)
\(272\) 0.766044 + 0.278817i 0.0464483 + 0.0169058i
\(273\) −0.875515 1.51644i −0.0529886 0.0917789i
\(274\) 10.0103 17.3383i 0.604742 1.04744i
\(275\) 2.84730 2.38917i 0.171698 0.144072i
\(276\) −4.47178 + 3.75227i −0.269170 + 0.225860i
\(277\) −10.7267 + 18.5792i −0.644504 + 1.11631i 0.339912 + 0.940457i \(0.389603\pi\)
−0.984416 + 0.175856i \(0.943731\pi\)
\(278\) −5.36097 9.28547i −0.321529 0.556905i
\(279\) −8.84389 3.21891i −0.529470 0.192711i
\(280\) 0.0923963 0.524005i 0.00552173 0.0313153i
\(281\) 1.57604 + 8.93815i 0.0940185 + 0.533205i 0.995044 + 0.0994387i \(0.0317047\pi\)
−0.901025 + 0.433767i \(0.857184\pi\)
\(282\) −10.2442 + 3.72859i −0.610035 + 0.222034i
\(283\) 15.0025 + 12.5886i 0.891808 + 0.748315i 0.968572 0.248734i \(-0.0800144\pi\)
−0.0767643 + 0.997049i \(0.524459\pi\)
\(284\) 3.43107 0.203597
\(285\) −1.81908 3.96118i −0.107753 0.234640i
\(286\) −12.2317 −0.723278
\(287\) 4.20368 + 3.52730i 0.248135 + 0.208210i
\(288\) 0.939693 0.342020i 0.0553719 0.0201537i
\(289\) −2.83662 16.0873i −0.166860 0.946310i
\(290\) −1.74123 + 9.87500i −0.102249 + 0.579880i
\(291\) −2.47178 0.899655i −0.144898 0.0527387i
\(292\) −0.543233 0.940908i −0.0317903 0.0550625i
\(293\) 4.17365 7.22897i 0.243827 0.422321i −0.717974 0.696070i \(-0.754930\pi\)
0.961801 + 0.273749i \(0.0882637\pi\)
\(294\) 5.14543 4.31753i 0.300088 0.251803i
\(295\) −5.09627 + 4.27628i −0.296716 + 0.248974i
\(296\) −4.02094 + 6.96448i −0.233713 + 0.404802i
\(297\) −1.85844 3.21891i −0.107838 0.186780i
\(298\) −0.405078 0.147436i −0.0234655 0.00854075i
\(299\) −3.33585 + 18.9185i −0.192917 + 1.09409i
\(300\) 0.173648 + 0.984808i 0.0100256 + 0.0568579i
\(301\) −2.21301 + 0.805470i −0.127556 + 0.0464265i
\(302\) −8.50774 7.13884i −0.489565 0.410794i
\(303\) −12.8844 −0.740192
\(304\) −3.58512 + 2.47929i −0.205621 + 0.142197i
\(305\) −14.3327 −0.820691
\(306\) 0.624485 + 0.524005i 0.0356994 + 0.0299554i
\(307\) −18.2160 + 6.63008i −1.03964 + 0.378399i −0.804745 0.593621i \(-0.797698\pi\)
−0.234898 + 0.972020i \(0.575476\pi\)
\(308\) 0.343426 + 1.94767i 0.0195685 + 0.110979i
\(309\) −1.82770 + 10.3654i −0.103974 + 0.589666i
\(310\) −8.84389 3.21891i −0.502299 0.182822i
\(311\) −10.3045 17.8480i −0.584316 1.01207i −0.994960 0.100270i \(-0.968029\pi\)
0.410644 0.911796i \(-0.365304\pi\)
\(312\) 1.64543 2.84997i 0.0931541 0.161348i
\(313\) −17.4179 + 14.6153i −0.984516 + 0.826107i −0.984765 0.173893i \(-0.944365\pi\)
0.000248337 1.00000i \(0.499921\pi\)
\(314\) 12.5005 10.4891i 0.705442 0.591936i
\(315\) 0.266044 0.460802i 0.0149899 0.0259633i
\(316\) −6.31180 10.9324i −0.355067 0.614994i
\(317\) 7.24422 + 2.63668i 0.406876 + 0.148091i 0.537347 0.843361i \(-0.319427\pi\)
−0.130471 + 0.991452i \(0.541649\pi\)
\(318\) 0.180922 1.02606i 0.0101456 0.0575386i
\(319\) −6.47194 36.7042i −0.362359 2.05504i
\(320\) 0.939693 0.342020i 0.0525304 0.0191195i
\(321\) 5.08512 + 4.26692i 0.283824 + 0.238156i
\(322\) 3.10607 0.173094
\(323\) −3.21167 1.52049i −0.178702 0.0846025i
\(324\) 1.00000 0.0555556
\(325\) 2.52094 + 2.11532i 0.139837 + 0.117337i
\(326\) 19.8799 7.23567i 1.10104 0.400747i
\(327\) 1.97565 + 11.2045i 0.109254 + 0.619609i
\(328\) −1.79086 + 10.1565i −0.0988837 + 0.560797i
\(329\) 5.45084 + 1.98394i 0.300514 + 0.109378i
\(330\) −1.85844 3.21891i −0.102304 0.177195i
\(331\) −3.48633 + 6.03850i −0.191626 + 0.331906i −0.945789 0.324781i \(-0.894709\pi\)
0.754163 + 0.656687i \(0.228043\pi\)
\(332\) 13.8216 11.5977i 0.758559 0.636507i
\(333\) −6.16044 + 5.16923i −0.337590 + 0.283272i
\(334\) 3.03936 5.26433i 0.166307 0.288051i
\(335\) 2.55690 + 4.42869i 0.139699 + 0.241965i
\(336\) −0.500000 0.181985i −0.0272772 0.00992810i
\(337\) 4.02734 22.8402i 0.219383 1.24418i −0.653753 0.756708i \(-0.726806\pi\)
0.873136 0.487476i \(-0.162082\pi\)
\(338\) 0.376859 + 2.13727i 0.0204984 + 0.116252i
\(339\) −2.30541 + 0.839100i −0.125213 + 0.0455736i
\(340\) 0.624485 + 0.524005i 0.0338675 + 0.0284182i
\(341\) 34.9813 1.89435
\(342\) −4.21688 + 1.10359i −0.228023 + 0.0596753i
\(343\) −7.29860 −0.394087
\(344\) −3.39053 2.84499i −0.182805 0.153392i
\(345\) −5.48545 + 1.99654i −0.295327 + 0.107490i
\(346\) 2.54916 + 14.4570i 0.137044 + 0.777214i
\(347\) −0.192066 + 1.08926i −0.0103107 + 0.0584747i −0.989529 0.144334i \(-0.953896\pi\)
0.979218 + 0.202809i \(0.0650071\pi\)
\(348\) 9.42262 + 3.42955i 0.505105 + 0.183843i
\(349\) −13.8293 23.9531i −0.740268 1.28218i −0.952373 0.304935i \(-0.901365\pi\)
0.212105 0.977247i \(-0.431968\pi\)
\(350\) 0.266044 0.460802i 0.0142207 0.0246309i
\(351\) 2.52094 2.11532i 0.134558 0.112908i
\(352\) −2.84730 + 2.38917i −0.151761 + 0.127343i
\(353\) 5.02734 8.70761i 0.267578 0.463459i −0.700658 0.713498i \(-0.747110\pi\)
0.968236 + 0.250038i \(0.0804432\pi\)
\(354\) 3.32635 + 5.76141i 0.176794 + 0.306216i
\(355\) 3.22416 + 1.17350i 0.171120 + 0.0622827i
\(356\) 0.666374 3.77920i 0.0353178 0.200297i
\(357\) −0.0753221 0.427173i −0.00398647 0.0226084i
\(358\) −10.3696 + 3.77422i −0.548050 + 0.199474i
\(359\) 14.3537 + 12.0442i 0.757559 + 0.635667i 0.937490 0.348012i \(-0.113143\pi\)
−0.179931 + 0.983679i \(0.557588\pi\)
\(360\) 1.00000 0.0527046
\(361\) 16.5642 9.30742i 0.871799 0.489864i
\(362\) −2.46791 −0.129711
\(363\) 2.15657 + 1.80958i 0.113191 + 0.0949783i
\(364\) −1.64543 + 0.598887i −0.0862439 + 0.0313902i
\(365\) −0.188663 1.06996i −0.00987507 0.0560043i
\(366\) −2.48886 + 14.1150i −0.130095 + 0.737803i
\(367\) −31.8187 11.5810i −1.66092 0.604526i −0.670414 0.741987i \(-0.733883\pi\)
−0.990507 + 0.137462i \(0.956106\pi\)
\(368\) 2.91875 + 5.05542i 0.152150 + 0.263532i
\(369\) −5.15657 + 8.93145i −0.268441 + 0.464953i
\(370\) −6.16044 + 5.16923i −0.320266 + 0.268735i
\(371\) −0.424678 + 0.356347i −0.0220482 + 0.0185006i
\(372\) −4.70574 + 8.15058i −0.243981 + 0.422588i
\(373\) 0.300660 + 0.520758i 0.0155676 + 0.0269638i 0.873704 0.486458i \(-0.161711\pi\)
−0.858137 + 0.513421i \(0.828378\pi\)
\(374\) −2.84730 1.03633i −0.147230 0.0535874i
\(375\) −0.173648 + 0.984808i −0.00896715 + 0.0508553i
\(376\) 1.89306 + 10.7361i 0.0976269 + 0.553670i
\(377\) 31.0085 11.2862i 1.59702 0.581268i
\(378\) −0.407604 0.342020i −0.0209649 0.0175916i
\(379\) 1.82976 0.0939882 0.0469941 0.998895i \(-0.485036\pi\)
0.0469941 + 0.998895i \(0.485036\pi\)
\(380\) −4.21688 + 1.10359i −0.216321 + 0.0566130i
\(381\) −2.46110 −0.126086
\(382\) −4.70961 3.95183i −0.240964 0.202193i
\(383\) −28.3653 + 10.3241i −1.44940 + 0.527538i −0.942423 0.334422i \(-0.891459\pi\)
−0.506976 + 0.861960i \(0.669237\pi\)
\(384\) −0.173648 0.984808i −0.00886145 0.0502558i
\(385\) −0.343426 + 1.94767i −0.0175026 + 0.0992622i
\(386\) −3.05051 1.11029i −0.155267 0.0565125i
\(387\) −2.21301 3.83305i −0.112494 0.194845i
\(388\) −1.31521 + 2.27801i −0.0667695 + 0.115648i
\(389\) −2.17886 + 1.82828i −0.110473 + 0.0926976i −0.696351 0.717702i \(-0.745194\pi\)
0.585878 + 0.810399i \(0.300750\pi\)
\(390\) 2.52094 2.11532i 0.127653 0.107114i
\(391\) −2.37939 + 4.12122i −0.120331 + 0.208419i
\(392\) −3.35844 5.81699i −0.169627 0.293802i
\(393\) −5.33275 1.94096i −0.269002 0.0979086i
\(394\) 2.08007 11.7967i 0.104792 0.594307i
\(395\) −2.19207 12.4318i −0.110295 0.625513i
\(396\) −3.49273 + 1.27125i −0.175516 + 0.0638826i
\(397\) 7.22462 + 6.06218i 0.362593 + 0.304252i 0.805823 0.592156i \(-0.201723\pi\)
−0.443230 + 0.896408i \(0.646168\pi\)
\(398\) 17.0104 0.852656
\(399\) 2.09627 + 0.992431i 0.104945 + 0.0496837i
\(400\) 1.00000 0.0500000
\(401\) 8.69640 + 7.29715i 0.434278 + 0.364402i 0.833563 0.552425i \(-0.186297\pi\)
−0.399285 + 0.916827i \(0.630742\pi\)
\(402\) 4.80541 1.74903i 0.239672 0.0872334i
\(403\) 5.37820 + 30.5013i 0.267907 + 1.51938i
\(404\) −2.23736 + 12.6887i −0.111313 + 0.631286i
\(405\) 0.939693 + 0.342020i 0.0466937 + 0.0169951i
\(406\) −2.66772 4.62062i −0.132397 0.229318i
\(407\) 14.9454 25.8861i 0.740815 1.28313i
\(408\) 0.624485 0.524005i 0.0309166 0.0259421i
\(409\) 12.6079 10.5793i 0.623419 0.523111i −0.275457 0.961313i \(-0.588829\pi\)
0.898876 + 0.438202i \(0.144385\pi\)
\(410\) −5.15657 + 8.93145i −0.254665 + 0.441093i
\(411\) −10.0103 17.3383i −0.493770 0.855235i
\(412\) 9.89053 + 3.59986i 0.487271 + 0.177352i
\(413\) 0.614685 3.48605i 0.0302467 0.171537i
\(414\) 1.01367 + 5.74881i 0.0498192 + 0.282539i
\(415\) 16.9547 6.17101i 0.832274 0.302923i
\(416\) −2.52094 2.11532i −0.123599 0.103712i
\(417\) −10.7219 −0.525055
\(418\) 13.3255 9.21524i 0.651770 0.450732i
\(419\) 0.00505244 0.000246828 0.000123414 1.00000i \(-0.499961\pi\)
0.000123414 1.00000i \(0.499961\pi\)
\(420\) −0.407604 0.342020i −0.0198890 0.0166889i
\(421\) −10.3366 + 3.76222i −0.503776 + 0.183359i −0.581392 0.813624i \(-0.697492\pi\)
0.0776156 + 0.996983i \(0.475269\pi\)
\(422\) −1.46703 8.31996i −0.0714141 0.405009i
\(423\) −1.89306 + 10.7361i −0.0920435 + 0.522005i
\(424\) −0.979055 0.356347i −0.0475471 0.0173057i
\(425\) 0.407604 + 0.705990i 0.0197717 + 0.0342456i
\(426\) 1.71554 2.97140i 0.0831181 0.143965i
\(427\) 5.84208 4.90209i 0.282718 0.237229i
\(428\) 5.08512 4.26692i 0.245799 0.206250i
\(429\) −6.11587 + 10.5930i −0.295277 + 0.511434i
\(430\) −2.21301 3.83305i −0.106721 0.184846i
\(431\) −33.6313 12.2408i −1.61997 0.589619i −0.636590 0.771203i \(-0.719655\pi\)
−0.983375 + 0.181584i \(0.941878\pi\)
\(432\) 0.173648 0.984808i 0.00835465 0.0473816i
\(433\) 4.05762 + 23.0119i 0.194997 + 1.10588i 0.912423 + 0.409247i \(0.134209\pi\)
−0.717427 + 0.696634i \(0.754680\pi\)
\(434\) 4.70574 1.71275i 0.225883 0.0822145i
\(435\) 7.68139 + 6.44545i 0.368294 + 0.309036i
\(436\) 11.3773 0.544875
\(437\) −10.6189 23.1234i −0.507969 1.10614i
\(438\) −1.08647 −0.0519134
\(439\) 14.3229 + 12.0184i 0.683597 + 0.573606i 0.917055 0.398761i \(-0.130560\pi\)
−0.233458 + 0.972367i \(0.575004\pi\)
\(440\) −3.49273 + 1.27125i −0.166509 + 0.0606044i
\(441\) −1.16637 6.61484i −0.0555416 0.314992i
\(442\) 0.465852 2.64198i 0.0221583 0.125666i
\(443\) 10.4667 + 3.80958i 0.497289 + 0.180999i 0.578474 0.815701i \(-0.303648\pi\)
−0.0811851 + 0.996699i \(0.525870\pi\)
\(444\) 4.02094 + 6.96448i 0.190826 + 0.330520i
\(445\) 1.91875 3.32337i 0.0909574 0.157543i
\(446\) 5.28493 4.43458i 0.250249 0.209984i
\(447\) −0.330222 + 0.277089i −0.0156190 + 0.0131059i
\(448\) −0.266044 + 0.460802i −0.0125694 + 0.0217709i
\(449\) −17.8576 30.9302i −0.842751 1.45969i −0.887560 0.460691i \(-0.847602\pi\)
0.0448100 0.998996i \(-0.485732\pi\)
\(450\) 0.939693 + 0.342020i 0.0442975 + 0.0161230i
\(451\) 6.65641 37.7504i 0.313438 1.77760i
\(452\) 0.426022 + 2.41609i 0.0200384 + 0.113643i
\(453\) −10.4363 + 3.79850i −0.490340 + 0.178469i
\(454\) −10.9684 9.20356i −0.514771 0.431945i
\(455\) −1.75103 −0.0820895
\(456\) 0.354570 + 4.34445i 0.0166043 + 0.203448i
\(457\) 30.8161 1.44152 0.720759 0.693186i \(-0.243793\pi\)
0.720759 + 0.693186i \(0.243793\pi\)
\(458\) 11.2023 + 9.39987i 0.523451 + 0.439227i
\(459\) 0.766044 0.278817i 0.0357559 0.0130141i
\(460\) 1.01367 + 5.74881i 0.0472626 + 0.268040i
\(461\) 0.509962 2.89214i 0.0237513 0.134700i −0.970626 0.240592i \(-0.922658\pi\)
0.994378 + 0.105891i \(0.0337696\pi\)
\(462\) 1.85844 + 0.676417i 0.0864625 + 0.0314698i
\(463\) 3.82753 + 6.62948i 0.177881 + 0.308098i 0.941154 0.337977i \(-0.109743\pi\)
−0.763274 + 0.646075i \(0.776409\pi\)
\(464\) 5.01367 8.68393i 0.232754 0.403141i
\(465\) −7.20961 + 6.04958i −0.334338 + 0.280543i
\(466\) −2.44562 + 2.05212i −0.113291 + 0.0950627i
\(467\) −5.92649 + 10.2650i −0.274245 + 0.475007i −0.969944 0.243327i \(-0.921761\pi\)
0.695699 + 0.718333i \(0.255095\pi\)
\(468\) −1.64543 2.84997i −0.0760600 0.131740i
\(469\) −2.55690 0.930637i −0.118067 0.0429728i
\(470\) −1.89306 + 10.7361i −0.0873202 + 0.495217i
\(471\) −2.83363 16.0703i −0.130567 0.740480i
\(472\) 6.25150 2.27536i 0.287748 0.104732i
\(473\) 12.6022 + 10.5745i 0.579450 + 0.486216i
\(474\) −12.6236 −0.579822
\(475\) −4.34002 0.405223i −0.199134 0.0185929i
\(476\) −0.433763 −0.0198815
\(477\) −0.798133 0.669713i −0.0365440 0.0306641i
\(478\) −18.4932 + 6.73097i −0.845859 + 0.307867i
\(479\) −1.34848 7.64760i −0.0616136 0.349428i −0.999993 0.00382028i \(-0.998784\pi\)
0.938379 0.345608i \(-0.112327\pi\)
\(480\) 0.173648 0.984808i 0.00792592 0.0449501i
\(481\) 24.8687 + 9.05147i 1.13392 + 0.412711i
\(482\) 5.86824 + 10.1641i 0.267291 + 0.462962i
\(483\) 1.55303 2.68993i 0.0706655 0.122396i
\(484\) 2.15657 1.80958i 0.0980261 0.0822537i
\(485\) −2.01501 + 1.69080i −0.0914971 + 0.0767752i
\(486\) 0.500000 0.866025i 0.0226805 0.0392837i
\(487\) −0.476529 0.825373i −0.0215936 0.0374012i 0.855027 0.518584i \(-0.173541\pi\)
−0.876620 + 0.481183i \(0.840207\pi\)
\(488\) 13.4684 + 4.90209i 0.609685 + 0.221907i
\(489\) 3.67365 20.8343i 0.166128 0.942159i
\(490\) −1.16637 6.61484i −0.0526914 0.298828i
\(491\) 19.5116 7.10165i 0.880547 0.320493i 0.138116 0.990416i \(-0.455895\pi\)
0.742430 + 0.669923i \(0.233673\pi\)
\(492\) 7.90033 + 6.62916i 0.356174 + 0.298866i
\(493\) 8.17436 0.368155
\(494\) 10.0838 + 10.2021i 0.453691 + 0.459014i
\(495\) −3.71688 −0.167061
\(496\) 7.20961 + 6.04958i 0.323721 + 0.271634i
\(497\) −1.71554 + 0.624404i −0.0769524 + 0.0280084i
\(498\) −3.13310 17.7687i −0.140398 0.796235i
\(499\) 0.980238 5.55920i 0.0438815 0.248864i −0.954974 0.296689i \(-0.904118\pi\)
0.998856 + 0.0478244i \(0.0152288\pi\)
\(500\) 0.939693 + 0.342020i 0.0420243 + 0.0152956i
\(501\) −3.03936 5.26433i −0.135789 0.235193i
\(502\) −8.98680 + 15.5656i −0.401100 + 0.694726i
\(503\) 7.12701 5.98027i 0.317778 0.266647i −0.469920 0.882709i \(-0.655717\pi\)
0.787698 + 0.616062i \(0.211273\pi\)
\(504\) −0.407604 + 0.342020i −0.0181561 + 0.0152348i
\(505\) −6.44222 + 11.1583i −0.286675 + 0.496536i
\(506\) −10.8486 18.7904i −0.482281 0.835335i
\(507\) 2.03936 + 0.742267i 0.0905713 + 0.0329653i
\(508\) −0.427366 + 2.42371i −0.0189613 + 0.107535i
\(509\) 4.31315 + 24.4611i 0.191177 + 1.08422i 0.917759 + 0.397138i \(0.129997\pi\)
−0.726582 + 0.687080i \(0.758892\pi\)
\(510\) 0.766044 0.278817i 0.0339210 0.0123462i
\(511\) 0.442848 + 0.371593i 0.0195904 + 0.0164383i
\(512\) −1.00000 −0.0441942
\(513\) −1.15270 + 4.20372i −0.0508931 + 0.185599i
\(514\) 30.2995 1.33646
\(515\) 8.06283 + 6.76552i 0.355291 + 0.298124i
\(516\) −4.15910 + 1.51379i −0.183094 + 0.0666408i
\(517\) −7.03626 39.9046i −0.309455 1.75500i
\(518\) 0.743041 4.21399i 0.0326473 0.185152i
\(519\) 13.7947 + 5.02087i 0.605521 + 0.220392i
\(520\) −1.64543 2.84997i −0.0721569 0.124979i
\(521\) 0.896926 1.55352i 0.0392951 0.0680610i −0.845709 0.533644i \(-0.820822\pi\)
0.885004 + 0.465583i \(0.154155\pi\)
\(522\) 7.68139 6.44545i 0.336205 0.282110i
\(523\) −21.5089 + 18.0481i −0.940520 + 0.789190i −0.977676 0.210120i \(-0.932615\pi\)
0.0371561 + 0.999309i \(0.488170\pi\)
\(524\) −2.83750 + 4.91469i −0.123957 + 0.214699i
\(525\) −0.266044 0.460802i −0.0116111 0.0201111i
\(526\) −14.6420 5.32926i −0.638423 0.232367i
\(527\) −1.33228 + 7.55574i −0.0580351 + 0.329133i
\(528\) 0.645430 + 3.66041i 0.0280887 + 0.159299i
\(529\) −10.4084 + 3.78834i −0.452538 + 0.164710i
\(530\) −0.798133 0.669713i −0.0346687 0.0290905i
\(531\) 6.65270 0.288703
\(532\) 1.34137 1.89209i 0.0581556 0.0820323i
\(533\) 33.9391 1.47007
\(534\) −2.93969 2.46669i −0.127213 0.106744i
\(535\) 6.23783 2.27038i 0.269685 0.0981572i
\(536\) −0.888003 5.03612i −0.0383559 0.217527i
\(537\) −1.91622 + 10.8674i −0.0826911 + 0.468964i
\(538\) 24.2592 + 8.82964i 1.04589 + 0.380673i
\(539\) 12.4829 + 21.6211i 0.537678 + 0.931285i
\(540\) 0.500000 0.866025i 0.0215166 0.0372678i
\(541\) 29.4085 24.6767i 1.26437 1.06093i 0.269170 0.963093i \(-0.413251\pi\)
0.995202 0.0978411i \(-0.0311937\pi\)
\(542\) 9.69846 8.13798i 0.416585 0.349556i
\(543\) −1.23396 + 2.13727i −0.0529541 + 0.0917192i
\(544\) −0.407604 0.705990i −0.0174759 0.0302691i
\(545\) 10.6912 + 3.89127i 0.457960 + 0.166684i
\(546\) −0.304063 + 1.72443i −0.0130127 + 0.0737987i
\(547\) 0.762174 + 4.32250i 0.0325882 + 0.184817i 0.996757 0.0804736i \(-0.0256433\pi\)
−0.964169 + 0.265290i \(0.914532\pi\)
\(548\) −18.8131 + 6.84743i −0.803658 + 0.292508i
\(549\) 10.9795 + 9.21291i 0.468595 + 0.393198i
\(550\) −3.71688 −0.158488
\(551\) −25.2784 + 35.6568i −1.07689 + 1.51903i
\(552\) 5.83750 0.248460
\(553\) 5.14543 + 4.31753i 0.218806 + 0.183600i
\(554\) 20.1596 7.33748i 0.856498 0.311740i
\(555\) 1.39646 + 7.91971i 0.0592764 + 0.336173i
\(556\) −1.86184 + 10.5590i −0.0789598 + 0.447803i
\(557\) 16.8182 + 6.12132i 0.712610 + 0.259369i 0.672785 0.739838i \(-0.265098\pi\)
0.0398248 + 0.999207i \(0.487320\pi\)
\(558\) 4.70574 + 8.15058i 0.199210 + 0.345041i
\(559\) −7.28271 + 12.6140i −0.308026 + 0.533516i
\(560\) −0.407604 + 0.342020i −0.0172244 + 0.0144530i
\(561\) −2.32114 + 1.94767i −0.0979985 + 0.0822305i
\(562\) 4.53802 7.86008i 0.191425 0.331557i
\(563\) −12.6322 21.8797i −0.532385 0.922118i −0.999285 0.0378076i \(-0.987963\pi\)
0.466900 0.884310i \(-0.345371\pi\)
\(564\) 10.2442 + 3.72859i 0.431360 + 0.157002i
\(565\) −0.426022 + 2.41609i −0.0179229 + 0.101646i
\(566\) −3.40080 19.2869i −0.142946 0.810688i
\(567\) −0.500000 + 0.181985i −0.0209980 + 0.00764266i
\(568\) −2.62836 2.20545i −0.110283 0.0925387i
\(569\) −4.44562 −0.186370 −0.0931851 0.995649i \(-0.529705\pi\)
−0.0931851 + 0.995649i \(0.529705\pi\)
\(570\) −1.15270 + 4.20372i −0.0482814 + 0.176075i
\(571\) 5.02641 0.210349 0.105174 0.994454i \(-0.466460\pi\)
0.105174 + 0.994454i \(0.466460\pi\)
\(572\) 9.37005 + 7.86241i 0.391782 + 0.328744i
\(573\) −5.77719 + 2.10272i −0.241346 + 0.0878426i
\(574\) −0.952896 5.40414i −0.0397731 0.225565i
\(575\) −1.01367 + 5.74881i −0.0422730 + 0.239742i
\(576\) −0.939693 0.342020i −0.0391539 0.0142508i
\(577\) −10.4693 18.1333i −0.435841 0.754898i 0.561523 0.827461i \(-0.310216\pi\)
−0.997364 + 0.0725627i \(0.976882\pi\)
\(578\) −8.16772 + 14.1469i −0.339732 + 0.588434i
\(579\) −2.48680 + 2.08667i −0.103348 + 0.0867190i
\(580\) 7.68139 6.44545i 0.318952 0.267633i
\(581\) −4.80019 + 8.31418i −0.199146 + 0.344930i
\(582\) 1.31521 + 2.27801i 0.0545171 + 0.0944264i
\(583\) 3.63903 + 1.32450i 0.150713 + 0.0548552i
\(584\) −0.188663 + 1.06996i −0.00780693 + 0.0442753i
\(585\) −0.571452 3.24086i −0.0236266 0.133993i
\(586\) −7.84389 + 2.85494i −0.324028 + 0.117937i
\(587\) −22.4618 18.8477i −0.927098 0.777928i 0.0481957 0.998838i \(-0.484653\pi\)
−0.975294 + 0.220910i \(0.929097\pi\)
\(588\) −6.71688 −0.277000
\(589\) −28.8384 29.1768i −1.18827 1.20221i
\(590\) 6.65270 0.273887
\(591\) −9.17617 7.69972i −0.377457 0.316724i
\(592\) 7.55690 2.75049i 0.310587 0.113044i
\(593\) −4.92309 27.9202i −0.202167 1.14655i −0.901836 0.432078i \(-0.857780\pi\)
0.699669 0.714467i \(-0.253331\pi\)
\(594\) −0.645430 + 3.66041i −0.0264823 + 0.150189i
\(595\) −0.407604 0.148356i −0.0167101 0.00608199i
\(596\) 0.215537 + 0.373321i 0.00882875 + 0.0152918i
\(597\) 8.50521 14.7315i 0.348095 0.602919i
\(598\) 14.7160 12.3482i 0.601782 0.504955i
\(599\) 3.16637 2.65690i 0.129375 0.108558i −0.575804 0.817587i \(-0.695311\pi\)
0.705179 + 0.709029i \(0.250867\pi\)
\(600\) 0.500000 0.866025i 0.0204124 0.0353553i
\(601\) 6.69001 + 11.5874i 0.272891 + 0.472661i 0.969601 0.244692i \(-0.0786868\pi\)
−0.696710 + 0.717353i \(0.745353\pi\)
\(602\) 2.21301 + 0.805470i 0.0901956 + 0.0328285i
\(603\) 0.888003 5.03612i 0.0361623 0.205087i
\(604\) 1.92855 + 10.9373i 0.0784715 + 0.445034i
\(605\) 2.64543 0.962858i 0.107552 0.0391457i
\(606\) 9.87005 + 8.28196i 0.400943 + 0.336432i
\(607\) 44.3688 1.80087 0.900436 0.434988i \(-0.143247\pi\)
0.900436 + 0.434988i \(0.143247\pi\)
\(608\) 4.34002 + 0.405223i 0.176011 + 0.0164340i
\(609\) −5.33544 −0.216203
\(610\) 10.9795 + 9.21291i 0.444548 + 0.373020i
\(611\) 33.7123 12.2703i 1.36385 0.496402i
\(612\) −0.141559 0.802823i −0.00572220 0.0324522i
\(613\) −1.61510 + 9.15966i −0.0652331 + 0.369955i 0.934663 + 0.355535i \(0.115701\pi\)
−0.999896 + 0.0144202i \(0.995410\pi\)
\(614\) 18.2160 + 6.63008i 0.735138 + 0.267568i
\(615\) 5.15657 + 8.93145i 0.207933 + 0.360151i
\(616\) 0.988856 1.71275i 0.0398421 0.0690086i
\(617\) −15.3150 + 12.8508i −0.616557 + 0.517353i −0.896719 0.442600i \(-0.854056\pi\)
0.280162 + 0.959953i \(0.409612\pi\)
\(618\) 8.06283 6.76552i 0.324335 0.272149i
\(619\) 8.34255 14.4497i 0.335315 0.580783i −0.648230 0.761445i \(-0.724490\pi\)
0.983545 + 0.180661i \(0.0578238\pi\)
\(620\) 4.70574 + 8.15058i 0.188987 + 0.327335i
\(621\) 5.48545 + 1.99654i 0.220124 + 0.0801184i
\(622\) −3.57873 + 20.2960i −0.143494 + 0.813794i
\(623\) 0.354570 + 2.01087i 0.0142056 + 0.0805637i
\(624\) −3.09240 + 1.12554i −0.123795 + 0.0450577i
\(625\) 0.766044 + 0.642788i 0.0306418 + 0.0257115i
\(626\) 22.7374 0.908770
\(627\) −1.31790 16.1478i −0.0526317 0.644882i
\(628\) −16.3182 −0.651167
\(629\) 5.02204 + 4.21399i 0.200242 + 0.168023i
\(630\) −0.500000 + 0.181985i −0.0199205 + 0.00725046i
\(631\) 5.69341 + 32.2889i 0.226651 + 1.28540i 0.859504 + 0.511130i \(0.170773\pi\)
−0.632852 + 0.774272i \(0.718116\pi\)
\(632\) −2.19207 + 12.4318i −0.0871957 + 0.494512i
\(633\) −7.93882 2.88949i −0.315540 0.114847i
\(634\) −3.85457 6.67631i −0.153085 0.265150i
\(635\) −1.23055 + 2.13138i −0.0488330 + 0.0845812i
\(636\) −0.798133 + 0.669713i −0.0316480 + 0.0265559i
\(637\) −16.9329 + 14.2084i −0.670905 + 0.562956i
\(638\) −18.6352 + 32.2771i −0.737775 + 1.27786i
\(639\) −1.71554 2.97140i −0.0678656 0.117547i
\(640\) −0.939693 0.342020i −0.0371446 0.0135195i
\(641\) −0.434640 + 2.46497i −0.0171673 + 0.0973603i −0.992187 0.124756i \(-0.960185\pi\)
0.975020 + 0.222116i \(0.0712964\pi\)
\(642\) −1.15270 6.53731i −0.0454936 0.258007i
\(643\) 4.62284 1.68257i 0.182307 0.0663543i −0.249254 0.968438i \(-0.580185\pi\)
0.431561 + 0.902084i \(0.357963\pi\)
\(644\) −2.37939 1.99654i −0.0937609 0.0786747i
\(645\) −4.42602 −0.174274
\(646\) 1.48293 + 3.22918i 0.0583449 + 0.127051i
\(647\) −36.4807 −1.43420 −0.717102 0.696968i \(-0.754532\pi\)
−0.717102 + 0.696968i \(0.754532\pi\)
\(648\) −0.766044 0.642788i −0.0300931 0.0252511i
\(649\) −23.2361 + 8.45724i −0.912096 + 0.331976i
\(650\) −0.571452 3.24086i −0.0224142 0.127117i
\(651\) 0.869585 4.93166i 0.0340817 0.193287i
\(652\) −19.8799 7.23567i −0.778555 0.283371i
\(653\) 8.54488 + 14.8002i 0.334387 + 0.579175i 0.983367 0.181630i \(-0.0581374\pi\)
−0.648980 + 0.760806i \(0.724804\pi\)
\(654\) 5.68866 9.85305i 0.222444 0.385285i
\(655\) −4.34730 + 3.64781i −0.169863 + 0.142532i
\(656\) 7.90033 6.62916i 0.308456 0.258825i
\(657\) −0.543233 + 0.940908i −0.0211935 + 0.0367083i
\(658\) −2.90033 5.02352i −0.113067 0.195837i
\(659\) 6.21688 + 2.26276i 0.242175 + 0.0881446i 0.460256 0.887786i \(-0.347757\pi\)
−0.218081 + 0.975931i \(0.569980\pi\)
\(660\) −0.645430 + 3.66041i −0.0251233 + 0.142481i
\(661\) −6.75578 38.3139i −0.262769 1.49024i −0.775313 0.631577i \(-0.782408\pi\)
0.512544 0.858661i \(-0.328703\pi\)
\(662\) 6.55216 2.38479i 0.254657 0.0926875i
\(663\) −2.05509 1.72443i −0.0798132 0.0669712i
\(664\) −18.0428 −0.700197
\(665\) 1.90760 1.31920i 0.0739737 0.0511566i
\(666\) 8.04189 0.311617
\(667\) 44.8401 + 37.6253i 1.73621 + 1.45686i
\(668\) −5.71213 + 2.07905i −0.221009 + 0.0804407i
\(669\) −1.19800 6.79417i −0.0463172 0.262678i
\(670\) 0.888003 5.03612i 0.0343066 0.194562i
\(671\) −50.0604 18.2205i −1.93256 0.703394i
\(672\) 0.266044 + 0.460802i 0.0102629 + 0.0177758i
\(673\) 1.36366 2.36192i 0.0525650 0.0910453i −0.838546 0.544831i \(-0.816594\pi\)
0.891111 + 0.453786i \(0.149927\pi\)
\(674\) −17.7665 + 14.9079i −0.684340 + 0.574230i
\(675\) 0.766044 0.642788i 0.0294851 0.0247409i
\(676\) 1.08512 1.87949i 0.0417355 0.0722880i
\(677\) −16.5082 28.5931i −0.634462 1.09892i −0.986629 0.162983i \(-0.947888\pi\)
0.352167 0.935937i \(-0.385445\pi\)
\(678\) 2.30541 + 0.839100i 0.0885386 + 0.0322254i
\(679\) 0.243041 1.37835i 0.00932704 0.0528963i
\(680\) −0.141559 0.802823i −0.00542855 0.0307868i
\(681\) −13.4547 + 4.89711i −0.515586 + 0.187658i
\(682\) −26.7973 22.4856i −1.02612 0.861017i
\(683\) 25.3746 0.970934 0.485467 0.874255i \(-0.338650\pi\)
0.485467 + 0.874255i \(0.338650\pi\)
\(684\) 3.93969 + 1.86516i 0.150638 + 0.0713162i
\(685\) −20.0205 −0.764945
\(686\) 5.59105 + 4.69145i 0.213467 + 0.179120i
\(687\) 13.7417 5.00157i 0.524278 0.190822i
\(688\) 0.768571 + 4.35878i 0.0293015 + 0.166177i
\(689\) −0.595389 + 3.37662i −0.0226825 + 0.128639i
\(690\) 5.48545 + 1.99654i 0.208828 + 0.0760070i
\(691\) −18.4770 32.0031i −0.702898 1.21746i −0.967445 0.253082i \(-0.918556\pi\)
0.264547 0.964373i \(-0.414778\pi\)
\(692\) 7.34002 12.7133i 0.279026 0.483287i
\(693\) 1.51501 1.27125i 0.0575507 0.0482907i
\(694\) 0.847296 0.710966i 0.0321629 0.0269879i
\(695\) −5.36097 + 9.28547i −0.203353 + 0.352218i
\(696\) −5.01367 8.68393i −0.190043 0.329164i
\(697\) 7.90033 + 2.87548i 0.299246 + 0.108917i
\(698\) −4.80288 + 27.2385i −0.181792 + 1.03099i
\(699\) 0.554378 + 3.14403i 0.0209685 + 0.118918i
\(700\) −0.500000 + 0.181985i −0.0188982 + 0.00687839i
\(701\) −22.8102 19.1400i −0.861530 0.722909i 0.100767 0.994910i \(-0.467870\pi\)
−0.962297 + 0.272001i \(0.912315\pi\)
\(702\) −3.29086 −0.124205
\(703\) −33.9117 + 8.87495i −1.27900 + 0.334725i
\(704\) 3.71688 0.140085
\(705\) 8.35117 + 7.00746i 0.314523 + 0.263916i
\(706\) −9.44831 + 3.43890i −0.355592 + 0.129425i
\(707\) −1.19047 6.75151i −0.0447724 0.253917i
\(708\) 1.15523 6.55163i 0.0434162 0.246225i
\(709\) 4.92427 + 1.79229i 0.184935 + 0.0673107i 0.432828 0.901477i \(-0.357516\pi\)
−0.247893 + 0.968787i \(0.579738\pi\)
\(710\) −1.71554 2.97140i −0.0643830 0.111515i
\(711\) −6.31180 + 10.9324i −0.236711 + 0.409996i
\(712\) −2.93969 + 2.46669i −0.110170 + 0.0924433i
\(713\) −42.0861 + 35.3144i −1.57614 + 1.32253i
\(714\) −0.216881 + 0.375650i −0.00811658 + 0.0140583i
\(715\) 6.11587 + 10.5930i 0.228720 + 0.396155i
\(716\) 10.3696 + 3.77422i 0.387530 + 0.141049i
\(717\) −3.41740 + 19.3811i −0.127625 + 0.723799i
\(718\) −3.25372 18.4528i −0.121428 0.688651i
\(719\) 37.6874 13.7171i 1.40550 0.511561i 0.475696 0.879610i \(-0.342196\pi\)
0.929806 + 0.368049i \(0.119974\pi\)
\(720\) −0.766044 0.642788i −0.0285488 0.0239553i
\(721\) −5.60039 −0.208569
\(722\) −18.6716 3.51735i −0.694885 0.130902i
\(723\) 11.7365 0.436484
\(724\) 1.89053 + 1.58634i 0.0702610 + 0.0589560i
\(725\) 9.42262 3.42955i 0.349947 0.127370i
\(726\) −0.488856 2.77244i −0.0181431 0.102895i
\(727\) −7.10725 + 40.3072i −0.263593 + 1.49491i 0.509418 + 0.860519i \(0.329861\pi\)
−0.773011 + 0.634392i \(0.781250\pi\)
\(728\) 1.64543 + 0.598887i 0.0609837 + 0.0221962i
\(729\) −0.500000 0.866025i −0.0185185 0.0320750i
\(730\) −0.543233 + 0.940908i −0.0201060 + 0.0348246i
\(731\) −2.76399 + 2.31926i −0.102230 + 0.0857809i
\(732\) 10.9795 9.21291i 0.405815 0.340519i
\(733\) −19.4918 + 33.7609i −0.719948 + 1.24699i 0.241072 + 0.970507i \(0.422501\pi\)
−0.961020 + 0.276479i \(0.910832\pi\)
\(734\) 16.9304 + 29.3242i 0.624911 + 1.08238i
\(735\) −6.31180 2.29731i −0.232814 0.0847375i
\(736\) 1.01367 5.74881i 0.0373644 0.211904i
\(737\) 3.30060 + 18.7187i 0.121579 + 0.689510i
\(738\) 9.69119 3.52730i 0.356738 0.129842i
\(739\) 21.7310 + 18.2345i 0.799388 + 0.670767i 0.948050 0.318122i \(-0.103052\pi\)
−0.148661 + 0.988888i \(0.547496\pi\)
\(740\) 8.04189 0.295626
\(741\) 13.8772 3.63176i 0.509790 0.133416i
\(742\) 0.554378 0.0203518
\(743\) −38.4372 32.2527i −1.41012 1.18324i −0.956388 0.292100i \(-0.905646\pi\)
−0.453737 0.891136i \(-0.649909\pi\)
\(744\) 8.84389 3.21891i 0.324233 0.118011i
\(745\) 0.0748553 + 0.424525i 0.00274249 + 0.0155534i
\(746\) 0.104418 0.592184i 0.00382301 0.0216814i
\(747\) −16.9547 6.17101i −0.620340 0.225785i
\(748\) 1.51501 + 2.62408i 0.0553944 + 0.0959460i
\(749\) −1.76604 + 3.05888i −0.0645299 + 0.111769i
\(750\) 0.766044 0.642788i 0.0279720 0.0234713i
\(751\) −12.8038 + 10.7437i −0.467218 + 0.392042i −0.845779 0.533534i \(-0.820864\pi\)
0.378561 + 0.925576i \(0.376419\pi\)
\(752\) 5.45084 9.44113i 0.198772 0.344282i
\(753\) 8.98680 + 15.5656i 0.327497 + 0.567242i
\(754\) −31.0085 11.2862i −1.12926 0.411018i
\(755\) −1.92855 + 10.9373i −0.0701871 + 0.398051i
\(756\) 0.0923963 + 0.524005i 0.00336042 + 0.0190579i
\(757\) 23.6805 8.61900i 0.860683 0.313263i 0.126295 0.991993i \(-0.459691\pi\)
0.734388 + 0.678730i \(0.237469\pi\)
\(758\) −1.40167 1.17614i −0.0509111 0.0427195i
\(759\) −21.6973 −0.787561
\(760\) 3.93969 + 1.86516i 0.142908 + 0.0676565i
\(761\) −39.0164 −1.41434 −0.707172 0.707042i \(-0.750029\pi\)
−0.707172 + 0.707042i \(0.750029\pi\)
\(762\) 1.88532 + 1.58197i 0.0682978 + 0.0573086i
\(763\) −5.68866 + 2.07050i −0.205943 + 0.0749573i
\(764\) 1.06758 + 6.05455i 0.0386237 + 0.219046i
\(765\) 0.141559 0.802823i 0.00511809 0.0290261i
\(766\) 28.3653 +