# Properties

 Label 570.2.u.b Level $570$ Weight $2$ Character orbit 570.u Analytic conductor $4.551$ Analytic rank $0$ Dimension $6$ CM no Inner twists $2$

# Related objects

## Newspace parameters

 Level: $$N$$ $$=$$ $$570 = 2 \cdot 3 \cdot 5 \cdot 19$$ Weight: $$k$$ $$=$$ $$2$$ Character orbit: $$[\chi]$$ $$=$$ 570.u (of order $$9$$, degree $$6$$, minimal)

## Newform invariants

 Self dual: no Analytic conductor: $$4.55147291521$$ Analytic rank: $$0$$ Dimension: $$6$$ Coefficient field: $$\Q(\zeta_{18})$$ Defining polynomial: $$x^{6} - x^{3} + 1$$ x^6 - x^3 + 1 Coefficient ring: $$\Z[a_1, a_2]$$ Coefficient ring index: $$1$$ Twist minimal: yes Sato-Tate group: $\mathrm{SU}(2)[C_{9}]$

## $q$-expansion

Coefficients of the $$q$$-expansion are expressed in terms of a primitive root of unity $$\zeta_{18}$$. We also show the integral $$q$$-expansion of the trace form.

 $$f(q)$$ $$=$$ $$q + (\zeta_{18}^{4} - \zeta_{18}) q^{2} - \zeta_{18} q^{3} - \zeta_{18}^{5} q^{4} - \zeta_{18}^{4} q^{5} + ( - \zeta_{18}^{5} + \zeta_{18}^{2}) q^{6} + ( - 2 \zeta_{18}^{5} - 2 \zeta_{18}^{4} + 2 \zeta_{18}^{3} + \zeta_{18}^{2} + \zeta_{18} - 2) q^{7} + \zeta_{18}^{3} q^{8} + \zeta_{18}^{2} q^{9} +O(q^{10})$$ q + (z^4 - z) * q^2 - z * q^3 - z^5 * q^4 - z^4 * q^5 + (-z^5 + z^2) * q^6 + (-2*z^5 - 2*z^4 + 2*z^3 + z^2 + z - 2) * q^7 + z^3 * q^8 + z^2 * q^9 $$q + (\zeta_{18}^{4} - \zeta_{18}) q^{2} - \zeta_{18} q^{3} - \zeta_{18}^{5} q^{4} - \zeta_{18}^{4} q^{5} + ( - \zeta_{18}^{5} + \zeta_{18}^{2}) q^{6} + ( - 2 \zeta_{18}^{5} - 2 \zeta_{18}^{4} + 2 \zeta_{18}^{3} + \zeta_{18}^{2} + \zeta_{18} - 2) q^{7} + \zeta_{18}^{3} q^{8} + \zeta_{18}^{2} q^{9} + \zeta_{18}^{2} q^{10} + (\zeta_{18}^{5} + 4 \zeta_{18}^{3} + \zeta_{18}) q^{11} + (\zeta_{18}^{3} - 1) q^{12} + (5 \zeta_{18}^{5} - 5 \zeta_{18}^{2}) q^{13} + (\zeta_{18}^{5} - 2 \zeta_{18}^{4} + 2 \zeta_{18}^{3} + \zeta_{18}^{2} - 1) q^{14} + \zeta_{18}^{5} q^{15} - \zeta_{18} q^{16} + ( - 2 \zeta_{18}^{5} - 4 \zeta_{18}^{4} - 2 \zeta_{18}^{3} + 2 \zeta_{18}^{2} + 4 \zeta_{18} + 2) q^{17} - q^{18} + ( - 2 \zeta_{18}^{5} - \zeta_{18}^{4} - 2 \zeta_{18}^{3} + 2 \zeta_{18}^{2} - \zeta_{18} - 2) q^{19} - q^{20} + (2 \zeta_{18}^{5} - 2 \zeta_{18}^{4} + \zeta_{18}^{3} - \zeta_{18}^{2} + 2 \zeta_{18} - 2) q^{21} + (\zeta_{18}^{5} - \zeta_{18}^{3} - \zeta_{18}^{2} - 4 \zeta_{18}) q^{22} + ( - 2 \zeta_{18}^{5} - 3 \zeta_{18}^{4} - 3 \zeta_{18}^{3} - 2 \zeta_{18} + 5) q^{23} - \zeta_{18}^{4} q^{24} + (\zeta_{18}^{5} - \zeta_{18}^{2}) q^{25} + ( - 5 \zeta_{18}^{3} + 5) q^{26} - \zeta_{18}^{3} q^{27} + ( - \zeta_{18}^{4} - \zeta_{18}^{3} + 2 \zeta_{18}^{2} - \zeta_{18} - 1) q^{28} + (2 \zeta_{18}^{3} - 2 \zeta_{18}^{2} + 2 \zeta_{18}) q^{29} - \zeta_{18}^{3} q^{30} + ( - 4 \zeta_{18}^{5} - 4 \zeta_{18}^{4} + 6 \zeta_{18}^{2} - 2 \zeta_{18}) q^{31} + ( - \zeta_{18}^{5} + \zeta_{18}^{2}) q^{32} + ( - 4 \zeta_{18}^{4} - \zeta_{18}^{3} - \zeta_{18}^{2} + 1) q^{33} + (4 \zeta_{18}^{5} + 2 \zeta_{18}^{4} + 2 \zeta_{18}^{3} - 2) q^{34} + (\zeta_{18}^{5} - \zeta_{18}^{3} - 2 \zeta_{18}^{2} + 2 \zeta_{18} - 1) q^{35} + ( - \zeta_{18}^{4} + \zeta_{18}) q^{36} + ( - 3 \zeta_{18}^{5} + 4 \zeta_{18}^{4} - \zeta_{18}^{2} - \zeta_{18} + 4) q^{37} + ( - \zeta_{18}^{5} - 2 \zeta_{18}^{4} + 2 \zeta_{18}^{3} + 2 \zeta_{18}^{2} + 4 \zeta_{18} - 2) q^{38} + 5 q^{39} + ( - \zeta_{18}^{4} + \zeta_{18}) q^{40} + ( - 7 \zeta_{18}^{5} + 7 \zeta_{18}^{3} + 3 \zeta_{18}^{2} + 2 \zeta_{18} - 4) q^{41} + (2 \zeta_{18}^{5} - 2 \zeta_{18}^{4} - 2 \zeta_{18}^{3} + \zeta_{18} + 1) q^{42} + ( - 2 \zeta_{18}^{5} + 2 \zeta_{18}^{4} - 4 \zeta_{18}^{3} - 2 \zeta_{18}^{2} + 2) q^{43} + ( - 4 \zeta_{18}^{5} - \zeta_{18}^{3} + 4 \zeta_{18}^{2} + \zeta_{18} + 1) q^{44} + ( - \zeta_{18}^{3} + 1) q^{45} + ( - 2 \zeta_{18}^{5} + 5 \zeta_{18}^{4} + 2 \zeta_{18}^{3} + 5 \zeta_{18}^{2} - 2 \zeta_{18}) q^{46} + (6 \zeta_{18}^{4} - 4 \zeta_{18}^{3} + \zeta_{18}^{2} - 4 \zeta_{18} + 6) q^{47} + \zeta_{18}^{2} q^{48} + (4 \zeta_{18}^{5} + \zeta_{18}^{4} - 3 \zeta_{18}^{3} + \zeta_{18}^{2} + 4 \zeta_{18}) q^{49} + ( - \zeta_{18}^{3} + 1) q^{50} + (4 \zeta_{18}^{5} + 2 \zeta_{18}^{4} - 4 \zeta_{18}^{2} - 2 \zeta_{18} - 2) q^{51} + 5 \zeta_{18}^{4} q^{52} + ( - 4 \zeta_{18}^{5} - 2 \zeta_{18}^{4} - 2 \zeta_{18}^{3} - 3 \zeta_{18} + 5) q^{53} + \zeta_{18} q^{54} + ( - \zeta_{18}^{5} - 4 \zeta_{18}^{4} + 4 \zeta_{18} + 1) q^{55} + ( - \zeta_{18}^{5} - \zeta_{18}^{4} + 2 \zeta_{18}^{2} + 2 \zeta_{18} - 2) q^{56} + (\zeta_{18}^{5} + 2 \zeta_{18}^{4} + \zeta_{18}^{2} + 2 \zeta_{18} - 2) q^{57} + (2 \zeta_{18}^{5} - 2 \zeta_{18}^{2} - 2 \zeta_{18} + 2) q^{58} + (2 \zeta_{18}^{5} + \zeta_{18}^{4} + 8 \zeta_{18}^{3} - 8 \zeta_{18}^{2} - \zeta_{18} - 2) q^{59} + \zeta_{18} q^{60} + (4 \zeta_{18}^{5} - 8 \zeta_{18}^{4} - 8 \zeta_{18}^{3} + 4 \zeta_{18} + 4) q^{61} + ( - 2 \zeta_{18}^{5} + 4 \zeta_{18}^{3} + 6 \zeta_{18}^{2} - 6) q^{62} + (2 \zeta_{18}^{5} - \zeta_{18}^{4} - \zeta_{18}^{3} - 2 \zeta_{18}^{2} + 2 \zeta_{18} + 2) q^{63} + (\zeta_{18}^{3} - 1) q^{64} + 5 \zeta_{18}^{3} q^{65} + (\zeta_{18}^{4} + 4 \zeta_{18}^{2} + 1) q^{66} + (4 \zeta_{18}^{4} - 8 \zeta_{18}^{3} + 2 \zeta_{18}^{2} - 8 \zeta_{18} + 4) q^{67} + ( - 2 \zeta_{18}^{4} - 4 \zeta_{18}^{3} - 2 \zeta_{18}^{2}) q^{68} + (3 \zeta_{18}^{5} + 3 \zeta_{18}^{4} + 2 \zeta_{18}^{3} + 2 \zeta_{18}^{2} - 5 \zeta_{18} - 2) q^{69} + (2 \zeta_{18}^{5} - \zeta_{18}^{4} - \zeta_{18}^{3} - 2 \zeta_{18}^{2} + 2 \zeta_{18} + 2) q^{70} + ( - 6 \zeta_{18}^{5} + 6 \zeta_{18}^{2} - 6) q^{71} + \zeta_{18}^{5} q^{72} + (4 \zeta_{18}^{5} - 4 \zeta_{18}^{3} + 2 \zeta_{18}^{2} - 6 \zeta_{18} + 6) q^{73} + ( - \zeta_{18}^{5} + 4 \zeta_{18}^{4} + 3 \zeta_{18}^{3} - 3 \zeta_{18}^{2} - 4 \zeta_{18} + 1) q^{74} + q^{75} + (4 \zeta_{18}^{5} - 2 \zeta_{18}^{4} + \zeta_{18}^{3} - 2 \zeta_{18}^{2} - 2) q^{76} + ( - 6 \zeta_{18}^{5} - \zeta_{18}^{4} + 7 \zeta_{18}^{2} + 7 \zeta_{18} - 5) q^{77} + (5 \zeta_{18}^{4} - 5 \zeta_{18}) q^{78} + (4 \zeta_{18}^{5} - 4 \zeta_{18}^{3} - 8 \zeta_{18}^{2} + 4 \zeta_{18} - 4) q^{79} + \zeta_{18}^{5} q^{80} + \zeta_{18}^{4} q^{81} + (2 \zeta_{18}^{5} - 4 \zeta_{18}^{4} + 7 \zeta_{18}^{3} - 2 \zeta_{18}^{2} - 3 \zeta_{18} - 3) q^{82} + (2 \zeta_{18}^{5} + 2 \zeta_{18}^{4} - 4 \zeta_{18}^{2} + 2 \zeta_{18}) q^{83} + (\zeta_{18}^{5} + \zeta_{18}^{4} - 2 \zeta_{18}^{3} + \zeta_{18}^{2} + \zeta_{18}) q^{84} + ( - 2 \zeta_{18}^{3} - 4 \zeta_{18}^{2} - 2 \zeta_{18}) q^{85} + (2 \zeta_{18}^{4} + 2 \zeta_{18}^{3} - 2 \zeta_{18}^{2} + 2 \zeta_{18} + 2) q^{86} + ( - 2 \zeta_{18}^{4} + 2 \zeta_{18}^{3} - 2 \zeta_{18}^{2}) q^{87} + (\zeta_{18}^{5} + \zeta_{18}^{4} + 4 \zeta_{18}^{3} - \zeta_{18}^{2} - 4) q^{88} + (2 \zeta_{18}^{5} - 7 \zeta_{18}^{4} - 2 \zeta_{18}^{3} - 2 \zeta_{18}^{2} + 9 \zeta_{18} + 9) q^{89} + \zeta_{18}^{4} q^{90} + ( - 10 \zeta_{18}^{5} + 10 \zeta_{18}^{4} + 10 \zeta_{18}^{3} - 5 \zeta_{18} - 5) q^{91} + ( - 2 \zeta_{18}^{5} + 2 \zeta_{18}^{3} - 3 \zeta_{18}^{2} - 2 \zeta_{18} - 5) q^{92} + (4 \zeta_{18}^{5} - 2 \zeta_{18}^{3} + 2 \zeta_{18}^{2} - 4) q^{93} + ( - 4 \zeta_{18}^{5} + 6 \zeta_{18}^{4} - 2 \zeta_{18}^{2} - 2 \zeta_{18} - 1) q^{94} + (2 \zeta_{18}^{5} + 4 \zeta_{18}^{4} - 2 \zeta_{18}^{3} - \zeta_{18}^{2} - 2 \zeta_{18}) q^{95} - q^{96} + ( - 6 \zeta_{18}^{5} - 6 \zeta_{18}^{4} + 2 \zeta_{18}^{3} - 2 \zeta_{18}^{2} + 6 \zeta_{18} + 6) q^{97} + (4 \zeta_{18}^{5} - 4 \zeta_{18}^{3} - 5 \zeta_{18}^{2} + 3 \zeta_{18} - 1) q^{98} + (4 \zeta_{18}^{5} + \zeta_{18}^{4} + \zeta_{18}^{3} - \zeta_{18}) q^{99} +O(q^{100})$$ q + (z^4 - z) * q^2 - z * q^3 - z^5 * q^4 - z^4 * q^5 + (-z^5 + z^2) * q^6 + (-2*z^5 - 2*z^4 + 2*z^3 + z^2 + z - 2) * q^7 + z^3 * q^8 + z^2 * q^9 + z^2 * q^10 + (z^5 + 4*z^3 + z) * q^11 + (z^3 - 1) * q^12 + (5*z^5 - 5*z^2) * q^13 + (z^5 - 2*z^4 + 2*z^3 + z^2 - 1) * q^14 + z^5 * q^15 - z * q^16 + (-2*z^5 - 4*z^4 - 2*z^3 + 2*z^2 + 4*z + 2) * q^17 - q^18 + (-2*z^5 - z^4 - 2*z^3 + 2*z^2 - z - 2) * q^19 - q^20 + (2*z^5 - 2*z^4 + z^3 - z^2 + 2*z - 2) * q^21 + (z^5 - z^3 - z^2 - 4*z) * q^22 + (-2*z^5 - 3*z^4 - 3*z^3 - 2*z + 5) * q^23 - z^4 * q^24 + (z^5 - z^2) * q^25 + (-5*z^3 + 5) * q^26 - z^3 * q^27 + (-z^4 - z^3 + 2*z^2 - z - 1) * q^28 + (2*z^3 - 2*z^2 + 2*z) * q^29 - z^3 * q^30 + (-4*z^5 - 4*z^4 + 6*z^2 - 2*z) * q^31 + (-z^5 + z^2) * q^32 + (-4*z^4 - z^3 - z^2 + 1) * q^33 + (4*z^5 + 2*z^4 + 2*z^3 - 2) * q^34 + (z^5 - z^3 - 2*z^2 + 2*z - 1) * q^35 + (-z^4 + z) * q^36 + (-3*z^5 + 4*z^4 - z^2 - z + 4) * q^37 + (-z^5 - 2*z^4 + 2*z^3 + 2*z^2 + 4*z - 2) * q^38 + 5 * q^39 + (-z^4 + z) * q^40 + (-7*z^5 + 7*z^3 + 3*z^2 + 2*z - 4) * q^41 + (2*z^5 - 2*z^4 - 2*z^3 + z + 1) * q^42 + (-2*z^5 + 2*z^4 - 4*z^3 - 2*z^2 + 2) * q^43 + (-4*z^5 - z^3 + 4*z^2 + z + 1) * q^44 + (-z^3 + 1) * q^45 + (-2*z^5 + 5*z^4 + 2*z^3 + 5*z^2 - 2*z) * q^46 + (6*z^4 - 4*z^3 + z^2 - 4*z + 6) * q^47 + z^2 * q^48 + (4*z^5 + z^4 - 3*z^3 + z^2 + 4*z) * q^49 + (-z^3 + 1) * q^50 + (4*z^5 + 2*z^4 - 4*z^2 - 2*z - 2) * q^51 + 5*z^4 * q^52 + (-4*z^5 - 2*z^4 - 2*z^3 - 3*z + 5) * q^53 + z * q^54 + (-z^5 - 4*z^4 + 4*z + 1) * q^55 + (-z^5 - z^4 + 2*z^2 + 2*z - 2) * q^56 + (z^5 + 2*z^4 + z^2 + 2*z - 2) * q^57 + (2*z^5 - 2*z^2 - 2*z + 2) * q^58 + (2*z^5 + z^4 + 8*z^3 - 8*z^2 - z - 2) * q^59 + z * q^60 + (4*z^5 - 8*z^4 - 8*z^3 + 4*z + 4) * q^61 + (-2*z^5 + 4*z^3 + 6*z^2 - 6) * q^62 + (2*z^5 - z^4 - z^3 - 2*z^2 + 2*z + 2) * q^63 + (z^3 - 1) * q^64 + 5*z^3 * q^65 + (z^4 + 4*z^2 + 1) * q^66 + (4*z^4 - 8*z^3 + 2*z^2 - 8*z + 4) * q^67 + (-2*z^4 - 4*z^3 - 2*z^2) * q^68 + (3*z^5 + 3*z^4 + 2*z^3 + 2*z^2 - 5*z - 2) * q^69 + (2*z^5 - z^4 - z^3 - 2*z^2 + 2*z + 2) * q^70 + (-6*z^5 + 6*z^2 - 6) * q^71 + z^5 * q^72 + (4*z^5 - 4*z^3 + 2*z^2 - 6*z + 6) * q^73 + (-z^5 + 4*z^4 + 3*z^3 - 3*z^2 - 4*z + 1) * q^74 + q^75 + (4*z^5 - 2*z^4 + z^3 - 2*z^2 - 2) * q^76 + (-6*z^5 - z^4 + 7*z^2 + 7*z - 5) * q^77 + (5*z^4 - 5*z) * q^78 + (4*z^5 - 4*z^3 - 8*z^2 + 4*z - 4) * q^79 + z^5 * q^80 + z^4 * q^81 + (2*z^5 - 4*z^4 + 7*z^3 - 2*z^2 - 3*z - 3) * q^82 + (2*z^5 + 2*z^4 - 4*z^2 + 2*z) * q^83 + (z^5 + z^4 - 2*z^3 + z^2 + z) * q^84 + (-2*z^3 - 4*z^2 - 2*z) * q^85 + (2*z^4 + 2*z^3 - 2*z^2 + 2*z + 2) * q^86 + (-2*z^4 + 2*z^3 - 2*z^2) * q^87 + (z^5 + z^4 + 4*z^3 - z^2 - 4) * q^88 + (2*z^5 - 7*z^4 - 2*z^3 - 2*z^2 + 9*z + 9) * q^89 + z^4 * q^90 + (-10*z^5 + 10*z^4 + 10*z^3 - 5*z - 5) * q^91 + (-2*z^5 + 2*z^3 - 3*z^2 - 2*z - 5) * q^92 + (4*z^5 - 2*z^3 + 2*z^2 - 4) * q^93 + (-4*z^5 + 6*z^4 - 2*z^2 - 2*z - 1) * q^94 + (2*z^5 + 4*z^4 - 2*z^3 - z^2 - 2*z) * q^95 - q^96 + (-6*z^5 - 6*z^4 + 2*z^3 - 2*z^2 + 6*z + 6) * q^97 + (4*z^5 - 4*z^3 - 5*z^2 + 3*z - 1) * q^98 + (4*z^5 + z^4 + z^3 - z) * q^99 $$\operatorname{Tr}(f)(q)$$ $$=$$ $$6 q - 6 q^{7} + 3 q^{8}+O(q^{10})$$ 6 * q - 6 * q^7 + 3 * q^8 $$6 q - 6 q^{7} + 3 q^{8} + 12 q^{11} - 3 q^{12} + 6 q^{17} - 6 q^{18} - 18 q^{19} - 6 q^{20} - 9 q^{21} - 3 q^{22} + 21 q^{23} + 15 q^{26} - 3 q^{27} - 9 q^{28} + 6 q^{29} - 3 q^{30} + 3 q^{33} - 6 q^{34} - 9 q^{35} + 24 q^{37} - 6 q^{38} + 30 q^{39} - 3 q^{41} + 3 q^{44} + 3 q^{45} + 6 q^{46} + 24 q^{47} - 9 q^{49} + 3 q^{50} - 12 q^{51} + 24 q^{53} + 6 q^{55} - 12 q^{56} - 12 q^{57} + 12 q^{58} + 12 q^{59} - 24 q^{62} + 9 q^{63} - 3 q^{64} + 15 q^{65} + 6 q^{66} - 12 q^{68} - 6 q^{69} + 9 q^{70} - 36 q^{71} + 24 q^{73} + 15 q^{74} + 6 q^{75} - 9 q^{76} - 30 q^{77} - 36 q^{79} + 3 q^{82} - 6 q^{84} - 6 q^{85} + 18 q^{86} + 6 q^{87} - 12 q^{88} + 48 q^{89} - 24 q^{92} - 30 q^{93} - 6 q^{94} - 6 q^{95} - 6 q^{96} + 42 q^{97} - 18 q^{98} + 3 q^{99}+O(q^{100})$$ 6 * q - 6 * q^7 + 3 * q^8 + 12 * q^11 - 3 * q^12 + 6 * q^17 - 6 * q^18 - 18 * q^19 - 6 * q^20 - 9 * q^21 - 3 * q^22 + 21 * q^23 + 15 * q^26 - 3 * q^27 - 9 * q^28 + 6 * q^29 - 3 * q^30 + 3 * q^33 - 6 * q^34 - 9 * q^35 + 24 * q^37 - 6 * q^38 + 30 * q^39 - 3 * q^41 + 3 * q^44 + 3 * q^45 + 6 * q^46 + 24 * q^47 - 9 * q^49 + 3 * q^50 - 12 * q^51 + 24 * q^53 + 6 * q^55 - 12 * q^56 - 12 * q^57 + 12 * q^58 + 12 * q^59 - 24 * q^62 + 9 * q^63 - 3 * q^64 + 15 * q^65 + 6 * q^66 - 12 * q^68 - 6 * q^69 + 9 * q^70 - 36 * q^71 + 24 * q^73 + 15 * q^74 + 6 * q^75 - 9 * q^76 - 30 * q^77 - 36 * q^79 + 3 * q^82 - 6 * q^84 - 6 * q^85 + 18 * q^86 + 6 * q^87 - 12 * q^88 + 48 * q^89 - 24 * q^92 - 30 * q^93 - 6 * q^94 - 6 * q^95 - 6 * q^96 + 42 * q^97 - 18 * q^98 + 3 * q^99

## Character values

We give the values of $$\chi$$ on generators for $$\left(\mathbb{Z}/570\mathbb{Z}\right)^\times$$.

 $$n$$ $$191$$ $$211$$ $$457$$ $$\chi(n)$$ $$1$$ $$-\zeta_{18}^{5}$$ $$1$$

## Embeddings

For each embedding $$\iota_m$$ of the coefficient field, the values $$\iota_m(a_n)$$ are shown below.

For more information on an embedded modular form you can click on its label.

Label $$\iota_m(\nu)$$ $$a_{2}$$ $$a_{3}$$ $$a_{4}$$ $$a_{5}$$ $$a_{6}$$ $$a_{7}$$ $$a_{8}$$ $$a_{9}$$ $$a_{10}$$
61.1
 −0.173648 − 0.984808i −0.173648 + 0.984808i 0.939693 − 0.342020i 0.939693 + 0.342020i −0.766044 − 0.642788i −0.766044 + 0.642788i
0.939693 + 0.342020i 0.173648 + 0.984808i 0.766044 + 0.642788i −0.766044 + 0.642788i −0.173648 + 0.984808i −2.11334 + 3.66041i 0.500000 + 0.866025i −0.939693 + 0.342020i −0.939693 + 0.342020i
271.1 0.939693 0.342020i 0.173648 0.984808i 0.766044 0.642788i −0.766044 0.642788i −0.173648 0.984808i −2.11334 3.66041i 0.500000 0.866025i −0.939693 0.342020i −0.939693 0.342020i
301.1 −0.766044 0.642788i −0.939693 + 0.342020i 0.173648 + 0.984808i −0.173648 + 0.984808i 0.939693 + 0.342020i 0.705737 + 1.22237i 0.500000 0.866025i 0.766044 0.642788i 0.766044 0.642788i
481.1 −0.766044 + 0.642788i −0.939693 0.342020i 0.173648 0.984808i −0.173648 0.984808i 0.939693 0.342020i 0.705737 1.22237i 0.500000 + 0.866025i 0.766044 + 0.642788i 0.766044 + 0.642788i
511.1 −0.173648 + 0.984808i 0.766044 + 0.642788i −0.939693 0.342020i 0.939693 0.342020i −0.766044 + 0.642788i −1.59240 2.75811i 0.500000 0.866025i 0.173648 + 0.984808i 0.173648 + 0.984808i
541.1 −0.173648 0.984808i 0.766044 0.642788i −0.939693 + 0.342020i 0.939693 + 0.342020i −0.766044 0.642788i −1.59240 + 2.75811i 0.500000 + 0.866025i 0.173648 0.984808i 0.173648 0.984808i
 $$n$$: e.g. 2-40 or 990-1000 Embeddings: e.g. 1-3 or 541.1 Significant digits: Format: Complex embeddings Normalized embeddings Satake parameters Satake angles

## Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
19.e even 9 1 inner

## Twists

By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 570.2.u.b 6
19.e even 9 1 inner 570.2.u.b 6

By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
570.2.u.b 6 1.a even 1 1 trivial
570.2.u.b 6 19.e even 9 1 inner

## Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on $$S_{2}^{\mathrm{new}}(570, [\chi])$$:

 $$T_{7}^{6} + 6T_{7}^{5} + 33T_{7}^{4} + 56T_{7}^{3} + 123T_{7}^{2} - 57T_{7} + 361$$ T7^6 + 6*T7^5 + 33*T7^4 + 56*T7^3 + 123*T7^2 - 57*T7 + 361 $$T_{11}^{6} - 12T_{11}^{5} + 99T_{11}^{4} - 438T_{11}^{3} + 1413T_{11}^{2} - 2295T_{11} + 2601$$ T11^6 - 12*T11^5 + 99*T11^4 - 438*T11^3 + 1413*T11^2 - 2295*T11 + 2601

## Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ $$T^{6} - T^{3} + 1$$
$3$ $$T^{6} + T^{3} + 1$$
$5$ $$T^{6} - T^{3} + 1$$
$7$ $$T^{6} + 6 T^{5} + 33 T^{4} + 56 T^{3} + \cdots + 361$$
$11$ $$T^{6} - 12 T^{5} + 99 T^{4} + \cdots + 2601$$
$13$ $$T^{6} + 125 T^{3} + 15625$$
$17$ $$T^{6} - 6 T^{5} + 240 T^{3} + \cdots + 576$$
$19$ $$T^{6} + 18 T^{5} + 162 T^{4} + \cdots + 6859$$
$23$ $$T^{6} - 21 T^{5} + 252 T^{4} + \cdots + 45369$$
$29$ $$T^{6} - 6 T^{5} + 36 T^{4} - 192 T^{3} + \cdots + 576$$
$31$ $$T^{6} + 84 T^{4} - 592 T^{3} + \cdots + 87616$$
$37$ $$(T^{3} - 12 T^{2} + 9 T + 73)^{2}$$
$41$ $$T^{6} + 3 T^{5} + 54 T^{4} + \cdots + 288369$$
$43$ $$T^{6} + 80 T^{3} + 576 T^{2} + \cdots + 18496$$
$47$ $$T^{6} - 24 T^{5} + 306 T^{4} + \cdots + 47961$$
$53$ $$T^{6} - 24 T^{5} + 333 T^{4} + \cdots + 106929$$
$59$ $$T^{6} - 12 T^{5} + 162 T^{4} + \cdots + 751689$$
$61$ $$T^{6} - 640 T^{3} + 9216 T^{2} + \cdots + 1183744$$
$67$ $$T^{6} + 216 T^{4} + 1160 T^{3} + \cdots + 87616$$
$71$ $$T^{6} + 36 T^{5} + 540 T^{4} + \cdots + 46656$$
$73$ $$T^{6} - 24 T^{5} + 240 T^{4} + \cdots + 64$$
$79$ $$T^{6} + 36 T^{5} + 720 T^{4} + \cdots + 1183744$$
$83$ $$T^{6} + 36 T^{4} + 144 T^{3} + \cdots + 5184$$
$89$ $$T^{6} - 48 T^{5} + 1035 T^{4} + \cdots + 1962801$$
$97$ $$T^{6} - 42 T^{5} + 924 T^{4} + \cdots + 2050624$$