Properties

Label 570.2.u.a.481.1
Level $570$
Weight $2$
Character 570.481
Analytic conductor $4.551$
Analytic rank $0$
Dimension $6$
CM no
Inner twists $2$

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) \(=\) \( 570 = 2 \cdot 3 \cdot 5 \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 570.u (of order \(9\), degree \(6\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(4.55147291521\)
Analytic rank: \(0\)
Dimension: \(6\)
Coefficient field: \(\Q(\zeta_{18})\)
Defining polynomial: \(x^{6} - x^{3} + 1\)
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{9}]$

Embedding invariants

Embedding label 481.1
Root \(0.939693 + 0.342020i\) of defining polynomial
Character \(\chi\) \(=\) 570.481
Dual form 570.2.u.a.301.1

$q$-expansion

\(f(q)\) \(=\) \(q+(-0.766044 + 0.642788i) q^{2} +(0.939693 + 0.342020i) q^{3} +(0.173648 - 0.984808i) q^{4} +(-0.173648 - 0.984808i) q^{5} +(-0.939693 + 0.342020i) q^{6} +(-2.35844 + 4.08494i) q^{7} +(0.500000 + 0.866025i) q^{8} +(0.766044 + 0.642788i) q^{9} +O(q^{10})\) \(q+(-0.766044 + 0.642788i) q^{2} +(0.939693 + 0.342020i) q^{3} +(0.173648 - 0.984808i) q^{4} +(-0.173648 - 0.984808i) q^{5} +(-0.939693 + 0.342020i) q^{6} +(-2.35844 + 4.08494i) q^{7} +(0.500000 + 0.866025i) q^{8} +(0.766044 + 0.642788i) q^{9} +(0.766044 + 0.642788i) q^{10} +(0.766044 + 1.32683i) q^{11} +(0.500000 - 0.866025i) q^{12} +(-2.24510 + 0.817150i) q^{13} +(-0.819078 - 4.64522i) q^{14} +(0.173648 - 0.984808i) q^{15} +(-0.939693 - 0.342020i) q^{16} +(-0.184793 + 0.155059i) q^{17} -1.00000 q^{18} +(-2.23396 - 3.74292i) q^{19} -1.00000 q^{20} +(-3.61334 + 3.03195i) q^{21} +(-1.43969 - 0.524005i) q^{22} +(-1.16385 + 6.60051i) q^{23} +(0.173648 + 0.984808i) q^{24} +(-0.939693 + 0.342020i) q^{25} +(1.19459 - 2.06910i) q^{26} +(0.500000 + 0.866025i) q^{27} +(3.61334 + 3.03195i) q^{28} +(1.34730 + 1.13052i) q^{29} +(0.500000 + 0.866025i) q^{30} +(-3.41147 + 5.90885i) q^{31} +(0.939693 - 0.342020i) q^{32} +(0.266044 + 1.50881i) q^{33} +(0.0418891 - 0.237565i) q^{34} +(4.43242 + 1.61327i) q^{35} +(0.766044 - 0.642788i) q^{36} -9.39693 q^{37} +(4.11721 + 1.43128i) q^{38} -2.38919 q^{39} +(0.766044 - 0.642788i) q^{40} +(11.2626 + 4.09927i) q^{41} +(0.819078 - 4.64522i) q^{42} +(1.29086 + 7.32083i) q^{43} +(1.43969 - 0.524005i) q^{44} +(0.500000 - 0.866025i) q^{45} +(-3.35117 - 5.80439i) q^{46} +(4.17752 + 3.50535i) q^{47} +(-0.766044 - 0.642788i) q^{48} +(-7.62449 - 13.2060i) q^{49} +(0.500000 - 0.866025i) q^{50} +(-0.226682 + 0.0825054i) q^{51} +(0.414878 + 2.35289i) q^{52} +(1.04576 - 5.93080i) q^{53} +(-0.939693 - 0.342020i) q^{54} +(1.17365 - 0.984808i) q^{55} -4.71688 q^{56} +(-0.819078 - 4.28125i) q^{57} -1.75877 q^{58} +(-7.24170 + 6.07650i) q^{59} +(-0.939693 - 0.342020i) q^{60} +(0.453363 - 2.57115i) q^{61} +(-1.18479 - 6.71929i) q^{62} +(-4.43242 + 1.61327i) q^{63} +(-0.500000 + 0.866025i) q^{64} +(1.19459 + 2.06910i) q^{65} +(-1.17365 - 0.984808i) q^{66} +(-3.16250 - 2.65366i) q^{67} +(0.120615 + 0.208911i) q^{68} +(-3.35117 + 5.80439i) q^{69} +(-4.43242 + 1.61327i) q^{70} +(-1.26857 - 7.19442i) q^{71} +(-0.173648 + 0.984808i) q^{72} +(4.10607 + 1.49449i) q^{73} +(7.19846 - 6.04023i) q^{74} -1.00000 q^{75} +(-4.07398 + 1.55007i) q^{76} -7.22668 q^{77} +(1.83022 - 1.53574i) q^{78} +(9.06418 + 3.29909i) q^{79} +(-0.173648 + 0.984808i) q^{80} +(0.173648 + 0.984808i) q^{81} +(-11.2626 + 4.09927i) q^{82} +(4.94356 - 8.56250i) q^{83} +(2.35844 + 4.08494i) q^{84} +(0.184793 + 0.155059i) q^{85} +(-5.69459 - 4.77833i) q^{86} +(0.879385 + 1.52314i) q^{87} +(-0.766044 + 1.32683i) q^{88} +(4.75150 - 1.72940i) q^{89} +(0.173648 + 0.984808i) q^{90} +(1.95693 - 11.0983i) q^{91} +(6.29813 + 2.29233i) q^{92} +(-5.22668 + 4.38571i) q^{93} -5.45336 q^{94} +(-3.29813 + 2.84997i) q^{95} +1.00000 q^{96} +(-4.41147 + 3.70167i) q^{97} +(14.3293 + 5.21546i) q^{98} +(-0.266044 + 1.50881i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6q - 6q^{7} + 3q^{8} + O(q^{10}) \) \( 6q - 6q^{7} + 3q^{8} + 3q^{12} - 12q^{13} + 12q^{14} + 6q^{17} - 6q^{18} - 18q^{19} - 6q^{20} - 15q^{21} - 3q^{22} - 3q^{23} + 3q^{26} + 3q^{27} + 15q^{28} + 6q^{29} + 3q^{30} - 3q^{33} - 6q^{34} + 3q^{35} - 6q^{38} - 6q^{39} + 21q^{41} - 12q^{42} - 24q^{43} + 3q^{44} + 3q^{45} + 6q^{46} - 33q^{49} + 3q^{50} + 12q^{51} + 24q^{52} - 24q^{53} + 6q^{55} - 12q^{56} + 12q^{57} + 12q^{58} - 24q^{61} - 3q^{63} - 3q^{64} + 3q^{65} - 6q^{66} - 24q^{67} + 12q^{68} + 6q^{69} - 3q^{70} + 12q^{71} + 15q^{74} - 6q^{75} - 9q^{76} - 30q^{77} - 12q^{78} + 36q^{79} - 21q^{82} + 6q^{84} - 6q^{85} - 30q^{86} - 6q^{87} - 12q^{89} + 24q^{91} + 24q^{92} - 18q^{93} - 6q^{94} - 6q^{95} + 6q^{96} - 6q^{97} + 6q^{98} + 3q^{99} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/570\mathbb{Z}\right)^\times\).

\(n\) \(191\) \(211\) \(457\)
\(\chi(n)\) \(1\) \(e\left(\frac{7}{9}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.766044 + 0.642788i −0.541675 + 0.454519i
\(3\) 0.939693 + 0.342020i 0.542532 + 0.197465i
\(4\) 0.173648 0.984808i 0.0868241 0.492404i
\(5\) −0.173648 0.984808i −0.0776578 0.440419i
\(6\) −0.939693 + 0.342020i −0.383628 + 0.139629i
\(7\) −2.35844 + 4.08494i −0.891407 + 1.54396i −0.0532172 + 0.998583i \(0.516948\pi\)
−0.838190 + 0.545379i \(0.816386\pi\)
\(8\) 0.500000 + 0.866025i 0.176777 + 0.306186i
\(9\) 0.766044 + 0.642788i 0.255348 + 0.214263i
\(10\) 0.766044 + 0.642788i 0.242245 + 0.203267i
\(11\) 0.766044 + 1.32683i 0.230971 + 0.400054i 0.958094 0.286453i \(-0.0924764\pi\)
−0.727123 + 0.686507i \(0.759143\pi\)
\(12\) 0.500000 0.866025i 0.144338 0.250000i
\(13\) −2.24510 + 0.817150i −0.622679 + 0.226637i −0.634042 0.773299i \(-0.718605\pi\)
0.0113629 + 0.999935i \(0.496383\pi\)
\(14\) −0.819078 4.64522i −0.218908 1.24149i
\(15\) 0.173648 0.984808i 0.0448358 0.254276i
\(16\) −0.939693 0.342020i −0.234923 0.0855050i
\(17\) −0.184793 + 0.155059i −0.0448188 + 0.0376074i −0.664922 0.746913i \(-0.731535\pi\)
0.620103 + 0.784520i \(0.287091\pi\)
\(18\) −1.00000 −0.235702
\(19\) −2.23396 3.74292i −0.512505 0.858685i
\(20\) −1.00000 −0.223607
\(21\) −3.61334 + 3.03195i −0.788496 + 0.661626i
\(22\) −1.43969 0.524005i −0.306943 0.111718i
\(23\) −1.16385 + 6.60051i −0.242679 + 1.37630i 0.583142 + 0.812370i \(0.301823\pi\)
−0.825822 + 0.563932i \(0.809288\pi\)
\(24\) 0.173648 + 0.984808i 0.0354458 + 0.201023i
\(25\) −0.939693 + 0.342020i −0.187939 + 0.0684040i
\(26\) 1.19459 2.06910i 0.234279 0.405783i
\(27\) 0.500000 + 0.866025i 0.0962250 + 0.166667i
\(28\) 3.61334 + 3.03195i 0.682857 + 0.572985i
\(29\) 1.34730 + 1.13052i 0.250187 + 0.209932i 0.759253 0.650796i \(-0.225565\pi\)
−0.509066 + 0.860727i \(0.670009\pi\)
\(30\) 0.500000 + 0.866025i 0.0912871 + 0.158114i
\(31\) −3.41147 + 5.90885i −0.612719 + 1.06126i 0.378061 + 0.925781i \(0.376591\pi\)
−0.990780 + 0.135480i \(0.956742\pi\)
\(32\) 0.939693 0.342020i 0.166116 0.0604612i
\(33\) 0.266044 + 1.50881i 0.0463124 + 0.262651i
\(34\) 0.0418891 0.237565i 0.00718392 0.0407420i
\(35\) 4.43242 + 1.61327i 0.749215 + 0.272692i
\(36\) 0.766044 0.642788i 0.127674 0.107131i
\(37\) −9.39693 −1.54485 −0.772423 0.635109i \(-0.780955\pi\)
−0.772423 + 0.635109i \(0.780955\pi\)
\(38\) 4.11721 + 1.43128i 0.667900 + 0.232185i
\(39\) −2.38919 −0.382576
\(40\) 0.766044 0.642788i 0.121122 0.101634i
\(41\) 11.2626 + 4.09927i 1.75893 + 0.640198i 0.999941 0.0109063i \(-0.00347164\pi\)
0.758988 + 0.651104i \(0.225694\pi\)
\(42\) 0.819078 4.64522i 0.126386 0.716773i
\(43\) 1.29086 + 7.32083i 0.196854 + 1.11642i 0.909753 + 0.415149i \(0.136271\pi\)
−0.712899 + 0.701267i \(0.752618\pi\)
\(44\) 1.43969 0.524005i 0.217042 0.0789968i
\(45\) 0.500000 0.866025i 0.0745356 0.129099i
\(46\) −3.35117 5.80439i −0.494103 0.855811i
\(47\) 4.17752 + 3.50535i 0.609354 + 0.511308i 0.894437 0.447194i \(-0.147577\pi\)
−0.285083 + 0.958503i \(0.592021\pi\)
\(48\) −0.766044 0.642788i −0.110569 0.0927784i
\(49\) −7.62449 13.2060i −1.08921 1.88657i
\(50\) 0.500000 0.866025i 0.0707107 0.122474i
\(51\) −0.226682 + 0.0825054i −0.0317418 + 0.0115531i
\(52\) 0.414878 + 2.35289i 0.0575332 + 0.326287i
\(53\) 1.04576 5.93080i 0.143646 0.814658i −0.824798 0.565427i \(-0.808711\pi\)
0.968444 0.249230i \(-0.0801776\pi\)
\(54\) −0.939693 0.342020i −0.127876 0.0465430i
\(55\) 1.17365 0.984808i 0.158255 0.132791i
\(56\) −4.71688 −0.630320
\(57\) −0.819078 4.28125i −0.108490 0.567066i
\(58\) −1.75877 −0.230938
\(59\) −7.24170 + 6.07650i −0.942789 + 0.791094i −0.978068 0.208284i \(-0.933212\pi\)
0.0352798 + 0.999377i \(0.488768\pi\)
\(60\) −0.939693 0.342020i −0.121314 0.0441546i
\(61\) 0.453363 2.57115i 0.0580472 0.329202i −0.941931 0.335807i \(-0.890991\pi\)
0.999978 + 0.00660445i \(0.00210228\pi\)
\(62\) −1.18479 6.71929i −0.150469 0.853351i
\(63\) −4.43242 + 1.61327i −0.558432 + 0.203253i
\(64\) −0.500000 + 0.866025i −0.0625000 + 0.108253i
\(65\) 1.19459 + 2.06910i 0.148171 + 0.256640i
\(66\) −1.17365 0.984808i −0.144466 0.121221i
\(67\) −3.16250 2.65366i −0.386361 0.324196i 0.428832 0.903384i \(-0.358925\pi\)
−0.815194 + 0.579188i \(0.803370\pi\)
\(68\) 0.120615 + 0.208911i 0.0146267 + 0.0253342i
\(69\) −3.35117 + 5.80439i −0.403433 + 0.698767i
\(70\) −4.43242 + 1.61327i −0.529775 + 0.192822i
\(71\) −1.26857 7.19442i −0.150552 0.853821i −0.962741 0.270426i \(-0.912835\pi\)
0.812189 0.583394i \(-0.198276\pi\)
\(72\) −0.173648 + 0.984808i −0.0204646 + 0.116061i
\(73\) 4.10607 + 1.49449i 0.480579 + 0.174916i 0.570939 0.820993i \(-0.306579\pi\)
−0.0903597 + 0.995909i \(0.528802\pi\)
\(74\) 7.19846 6.04023i 0.836804 0.702162i
\(75\) −1.00000 −0.115470
\(76\) −4.07398 + 1.55007i −0.467317 + 0.177805i
\(77\) −7.22668 −0.823557
\(78\) 1.83022 1.53574i 0.207232 0.173888i
\(79\) 9.06418 + 3.29909i 1.01980 + 0.371177i 0.797188 0.603731i \(-0.206320\pi\)
0.222611 + 0.974907i \(0.428542\pi\)
\(80\) −0.173648 + 0.984808i −0.0194145 + 0.110105i
\(81\) 0.173648 + 0.984808i 0.0192942 + 0.109423i
\(82\) −11.2626 + 4.09927i −1.24375 + 0.452688i
\(83\) 4.94356 8.56250i 0.542627 0.939857i −0.456126 0.889915i \(-0.650763\pi\)
0.998752 0.0499413i \(-0.0159034\pi\)
\(84\) 2.35844 + 4.08494i 0.257327 + 0.445703i
\(85\) 0.184793 + 0.155059i 0.0200436 + 0.0168185i
\(86\) −5.69459 4.77833i −0.614064 0.515261i
\(87\) 0.879385 + 1.52314i 0.0942800 + 0.163298i
\(88\) −0.766044 + 1.32683i −0.0816606 + 0.141440i
\(89\) 4.75150 1.72940i 0.503658 0.183316i −0.0776808 0.996978i \(-0.524751\pi\)
0.581338 + 0.813662i \(0.302529\pi\)
\(90\) 0.173648 + 0.984808i 0.0183041 + 0.103808i
\(91\) 1.95693 11.0983i 0.205142 1.16342i
\(92\) 6.29813 + 2.29233i 0.656626 + 0.238992i
\(93\) −5.22668 + 4.38571i −0.541982 + 0.454777i
\(94\) −5.45336 −0.562471
\(95\) −3.29813 + 2.84997i −0.338381 + 0.292401i
\(96\) 1.00000 0.102062
\(97\) −4.41147 + 3.70167i −0.447917 + 0.375847i −0.838662 0.544652i \(-0.816662\pi\)
0.390745 + 0.920499i \(0.372217\pi\)
\(98\) 14.3293 + 5.21546i 1.44748 + 0.526841i
\(99\) −0.266044 + 1.50881i −0.0267385 + 0.151641i
\(100\) 0.173648 + 0.984808i 0.0173648 + 0.0984808i
\(101\) −9.74422 + 3.54661i −0.969586 + 0.352901i −0.777783 0.628533i \(-0.783656\pi\)
−0.191803 + 0.981433i \(0.561434\pi\)
\(102\) 0.120615 0.208911i 0.0119426 0.0206853i
\(103\) 7.40033 + 12.8177i 0.729176 + 1.26297i 0.957232 + 0.289322i \(0.0934298\pi\)
−0.228056 + 0.973648i \(0.573237\pi\)
\(104\) −1.83022 1.53574i −0.179468 0.150592i
\(105\) 3.61334 + 3.03195i 0.352626 + 0.295888i
\(106\) 3.01114 + 5.21546i 0.292468 + 0.506570i
\(107\) 5.51754 9.55666i 0.533401 0.923877i −0.465838 0.884870i \(-0.654247\pi\)
0.999239 0.0390074i \(-0.0124196\pi\)
\(108\) 0.939693 0.342020i 0.0904220 0.0329109i
\(109\) −1.87939 10.6585i −0.180012 1.02090i −0.932198 0.361950i \(-0.882111\pi\)
0.752185 0.658952i \(-0.229000\pi\)
\(110\) −0.266044 + 1.50881i −0.0253663 + 0.143860i
\(111\) −8.83022 3.21394i −0.838128 0.305053i
\(112\) 3.61334 3.03195i 0.341429 0.286493i
\(113\) 11.7588 1.10617 0.553086 0.833124i \(-0.313450\pi\)
0.553086 + 0.833124i \(0.313450\pi\)
\(114\) 3.37939 + 2.75314i 0.316508 + 0.257855i
\(115\) 6.70233 0.624996
\(116\) 1.34730 1.13052i 0.125093 0.104966i
\(117\) −2.24510 0.817150i −0.207560 0.0755455i
\(118\) 1.64156 9.30975i 0.151118 0.857032i
\(119\) −0.197586 1.12056i −0.0181127 0.102722i
\(120\) 0.939693 0.342020i 0.0857818 0.0312220i
\(121\) 4.32635 7.49346i 0.393305 0.681224i
\(122\) 1.30541 + 2.26103i 0.118186 + 0.204704i
\(123\) 9.18139 + 7.70410i 0.827858 + 0.694655i
\(124\) 5.22668 + 4.38571i 0.469370 + 0.393848i
\(125\) 0.500000 + 0.866025i 0.0447214 + 0.0774597i
\(126\) 2.35844 4.08494i 0.210107 0.363915i
\(127\) 20.5744 7.48849i 1.82569 0.664496i 0.831670 0.555271i \(-0.187385\pi\)
0.994017 0.109225i \(-0.0348369\pi\)
\(128\) −0.173648 0.984808i −0.0153485 0.0870455i
\(129\) −1.29086 + 7.32083i −0.113654 + 0.644563i
\(130\) −2.24510 0.817150i −0.196908 0.0716688i
\(131\) 8.19846 6.87933i 0.716303 0.601050i −0.210057 0.977689i \(-0.567365\pi\)
0.926360 + 0.376640i \(0.122920\pi\)
\(132\) 1.53209 0.133351
\(133\) 20.5582 0.298120i 1.78263 0.0258503i
\(134\) 4.12836 0.356636
\(135\) 0.766044 0.642788i 0.0659306 0.0553223i
\(136\) −0.226682 0.0825054i −0.0194378 0.00707478i
\(137\) −0.248970 + 1.41198i −0.0212710 + 0.120634i −0.993594 0.113005i \(-0.963952\pi\)
0.972323 + 0.233639i \(0.0750634\pi\)
\(138\) −1.16385 6.60051i −0.0990733 0.561873i
\(139\) −14.1468 + 5.14900i −1.19991 + 0.436733i −0.863194 0.504872i \(-0.831540\pi\)
−0.336720 + 0.941605i \(0.609317\pi\)
\(140\) 2.35844 4.08494i 0.199325 0.345240i
\(141\) 2.72668 + 4.72275i 0.229628 + 0.397727i
\(142\) 5.59627 + 4.69583i 0.469628 + 0.394065i
\(143\) −2.80406 2.35289i −0.234488 0.196758i
\(144\) −0.500000 0.866025i −0.0416667 0.0721688i
\(145\) 0.879385 1.52314i 0.0730290 0.126490i
\(146\) −4.10607 + 1.49449i −0.339821 + 0.123685i
\(147\) −2.64796 15.0173i −0.218400 1.23861i
\(148\) −1.63176 + 9.25417i −0.134130 + 0.760688i
\(149\) 12.0915 + 4.40095i 0.990576 + 0.360540i 0.785943 0.618299i \(-0.212178\pi\)
0.204633 + 0.978839i \(0.434400\pi\)
\(150\) 0.766044 0.642788i 0.0625473 0.0524834i
\(151\) −0.241230 −0.0196310 −0.00981549 0.999952i \(-0.503124\pi\)
−0.00981549 + 0.999952i \(0.503124\pi\)
\(152\) 2.12449 3.80612i 0.172319 0.308717i
\(153\) −0.241230 −0.0195023
\(154\) 5.53596 4.64522i 0.446100 0.374323i
\(155\) 6.41147 + 2.33359i 0.514982 + 0.187438i
\(156\) −0.414878 + 2.35289i −0.0332168 + 0.188382i
\(157\) −0.0432332 0.245188i −0.00345039 0.0195681i 0.983034 0.183424i \(-0.0587180\pi\)
−0.986484 + 0.163856i \(0.947607\pi\)
\(158\) −9.06418 + 3.29909i −0.721107 + 0.262462i
\(159\) 3.01114 5.21546i 0.238799 0.413612i
\(160\) −0.500000 0.866025i −0.0395285 0.0684653i
\(161\) −24.2178 20.3212i −1.90863 1.60153i
\(162\) −0.766044 0.642788i −0.0601861 0.0505022i
\(163\) 2.82295 + 4.88949i 0.221110 + 0.382974i 0.955145 0.296137i \(-0.0956986\pi\)
−0.734035 + 0.679112i \(0.762365\pi\)
\(164\) 5.99273 10.3797i 0.467953 0.810519i
\(165\) 1.43969 0.524005i 0.112080 0.0407938i
\(166\) 1.71688 + 9.73692i 0.133256 + 0.755731i
\(167\) 2.23190 12.6577i 0.172709 0.979483i −0.768045 0.640395i \(-0.778771\pi\)
0.940755 0.339088i \(-0.110118\pi\)
\(168\) −4.43242 1.61327i −0.341969 0.124466i
\(169\) −5.58584 + 4.68707i −0.429680 + 0.360544i
\(170\) −0.241230 −0.0185015
\(171\) 0.694593 4.30320i 0.0531168 0.329074i
\(172\) 7.43376 0.566819
\(173\) −9.55097 + 8.01422i −0.726147 + 0.609310i −0.929078 0.369883i \(-0.879398\pi\)
0.202931 + 0.979193i \(0.434953\pi\)
\(174\) −1.65270 0.601535i −0.125291 0.0456022i
\(175\) 0.819078 4.64522i 0.0619165 0.351146i
\(176\) −0.266044 1.50881i −0.0200539 0.113731i
\(177\) −8.88326 + 3.23324i −0.667706 + 0.243025i
\(178\) −2.52822 + 4.37900i −0.189498 + 0.328220i
\(179\) −5.55556 9.62251i −0.415242 0.719220i 0.580212 0.814466i \(-0.302970\pi\)
−0.995454 + 0.0952453i \(0.969636\pi\)
\(180\) −0.766044 0.642788i −0.0570976 0.0479106i
\(181\) 6.79292 + 5.69994i 0.504914 + 0.423673i 0.859335 0.511413i \(-0.170878\pi\)
−0.354421 + 0.935086i \(0.615322\pi\)
\(182\) 5.63475 + 9.75968i 0.417676 + 0.723435i
\(183\) 1.30541 2.26103i 0.0964985 0.167140i
\(184\) −6.29813 + 2.29233i −0.464305 + 0.168993i
\(185\) 1.63176 + 9.25417i 0.119969 + 0.680380i
\(186\) 1.18479 6.71929i 0.0868732 0.492682i
\(187\) −0.347296 0.126406i −0.0253968 0.00924369i
\(188\) 4.17752 3.50535i 0.304677 0.255654i
\(189\) −4.71688 −0.343103
\(190\) 0.694593 4.30320i 0.0503911 0.312187i
\(191\) 11.9709 0.866184 0.433092 0.901350i \(-0.357422\pi\)
0.433092 + 0.901350i \(0.357422\pi\)
\(192\) −0.766044 + 0.642788i −0.0552845 + 0.0463892i
\(193\) 8.21213 + 2.98897i 0.591122 + 0.215151i 0.620223 0.784426i \(-0.287042\pi\)
−0.0291007 + 0.999576i \(0.509264\pi\)
\(194\) 1.00000 5.67128i 0.0717958 0.407174i
\(195\) 0.414878 + 2.35289i 0.0297100 + 0.168494i
\(196\) −14.3293 + 5.21546i −1.02352 + 0.372533i
\(197\) −9.38191 + 16.2499i −0.668434 + 1.15776i 0.309909 + 0.950766i \(0.399702\pi\)
−0.978342 + 0.206994i \(0.933632\pi\)
\(198\) −0.766044 1.32683i −0.0544404 0.0942936i
\(199\) −5.09833 4.27800i −0.361411 0.303260i 0.443942 0.896056i \(-0.353580\pi\)
−0.805353 + 0.592796i \(0.798024\pi\)
\(200\) −0.766044 0.642788i −0.0541675 0.0454519i
\(201\) −2.06418 3.57526i −0.145596 0.252179i
\(202\) 5.18479 8.98032i 0.364801 0.631853i
\(203\) −7.79561 + 2.83737i −0.547144 + 0.199144i
\(204\) 0.0418891 + 0.237565i 0.00293282 + 0.0166329i
\(205\) 2.08125 11.8034i 0.145361 0.824383i
\(206\) −13.9081 5.06212i −0.969021 0.352695i
\(207\) −5.13429 + 4.30818i −0.356857 + 0.299439i
\(208\) 2.38919 0.165660
\(209\) 3.25490 5.83132i 0.225146 0.403361i
\(210\) −4.71688 −0.325496
\(211\) 12.4422 10.4403i 0.856558 0.718737i −0.104666 0.994507i \(-0.533377\pi\)
0.961224 + 0.275770i \(0.0889329\pi\)
\(212\) −5.65910 2.05974i −0.388669 0.141464i
\(213\) 1.26857 7.19442i 0.0869210 0.492954i
\(214\) 1.91622 + 10.8674i 0.130990 + 0.742883i
\(215\) 6.98545 2.54250i 0.476404 0.173397i
\(216\) −0.500000 + 0.866025i −0.0340207 + 0.0589256i
\(217\) −16.0915 27.8713i −1.09236 1.89203i
\(218\) 8.29086 + 6.95686i 0.561528 + 0.471178i
\(219\) 3.34730 + 2.80872i 0.226189 + 0.189795i
\(220\) −0.766044 1.32683i −0.0516467 0.0894547i
\(221\) 0.288171 0.499127i 0.0193845 0.0335749i
\(222\) 8.83022 3.21394i 0.592646 0.215705i
\(223\) 4.77079 + 27.0565i 0.319476 + 1.81184i 0.545947 + 0.837820i \(0.316170\pi\)
−0.226471 + 0.974018i \(0.572719\pi\)
\(224\) −0.819078 + 4.64522i −0.0547269 + 0.310372i
\(225\) −0.939693 0.342020i −0.0626462 0.0228013i
\(226\) −9.00774 + 7.55839i −0.599186 + 0.502777i
\(227\) 0.0290958 0.00193116 0.000965579 1.00000i \(-0.499693\pi\)
0.000965579 1.00000i \(0.499693\pi\)
\(228\) −4.35844 + 0.0632028i −0.288645 + 0.00418571i
\(229\) −20.5371 −1.35713 −0.678566 0.734539i \(-0.737398\pi\)
−0.678566 + 0.734539i \(0.737398\pi\)
\(230\) −5.13429 + 4.30818i −0.338545 + 0.284073i
\(231\) −6.79086 2.47167i −0.446806 0.162624i
\(232\) −0.305407 + 1.73205i −0.0200510 + 0.113715i
\(233\) −1.14796 6.51038i −0.0752051 0.426509i −0.999044 0.0437266i \(-0.986077\pi\)
0.923838 0.382783i \(-0.125034\pi\)
\(234\) 2.24510 0.817150i 0.146767 0.0534187i
\(235\) 2.72668 4.72275i 0.177869 0.308078i
\(236\) 4.72668 + 8.18685i 0.307681 + 0.532919i
\(237\) 7.38919 + 6.20026i 0.479979 + 0.402750i
\(238\) 0.871644 + 0.731397i 0.0565003 + 0.0474094i
\(239\) 7.92127 + 13.7200i 0.512385 + 0.887476i 0.999897 + 0.0143601i \(0.00457111\pi\)
−0.487512 + 0.873116i \(0.662096\pi\)
\(240\) −0.500000 + 0.866025i −0.0322749 + 0.0559017i
\(241\) 6.24510 2.27303i 0.402282 0.146419i −0.132952 0.991122i \(-0.542446\pi\)
0.535234 + 0.844704i \(0.320223\pi\)
\(242\) 1.50253 + 8.52125i 0.0965860 + 0.547767i
\(243\) −0.173648 + 0.984808i −0.0111395 + 0.0631754i
\(244\) −2.45336 0.892951i −0.157060 0.0571653i
\(245\) −11.6814 + 9.80185i −0.746297 + 0.626217i
\(246\) −11.9855 −0.764165
\(247\) 8.07398 + 6.57775i 0.513735 + 0.418532i
\(248\) −6.82295 −0.433258
\(249\) 7.57398 6.35532i 0.479981 0.402752i
\(250\) −0.939693 0.342020i −0.0594314 0.0216313i
\(251\) −5.03074 + 28.5308i −0.317538 + 1.80085i 0.240085 + 0.970752i \(0.422825\pi\)
−0.557623 + 0.830094i \(0.688286\pi\)
\(252\) 0.819078 + 4.64522i 0.0515971 + 0.292621i
\(253\) −9.64930 + 3.51206i −0.606646 + 0.220801i
\(254\) −10.9474 + 18.9615i −0.686903 + 1.18975i
\(255\) 0.120615 + 0.208911i 0.00755319 + 0.0130825i
\(256\) 0.766044 + 0.642788i 0.0478778 + 0.0401742i
\(257\) 9.98545 + 8.37879i 0.622875 + 0.522655i 0.898706 0.438552i \(-0.144508\pi\)
−0.275831 + 0.961206i \(0.588953\pi\)
\(258\) −3.71688 6.43783i −0.231403 0.400802i
\(259\) 22.1621 38.3859i 1.37709 2.38518i
\(260\) 2.24510 0.817150i 0.139235 0.0506775i
\(261\) 0.305407 + 1.73205i 0.0189042 + 0.107211i
\(262\) −1.85844 + 10.5397i −0.114815 + 0.651147i
\(263\) 1.89306 + 0.689016i 0.116731 + 0.0424865i 0.399725 0.916635i \(-0.369106\pi\)
−0.282994 + 0.959122i \(0.591328\pi\)
\(264\) −1.17365 + 0.984808i −0.0722331 + 0.0606107i
\(265\) −6.02229 −0.369946
\(266\) −15.5569 + 13.4430i −0.953855 + 0.824241i
\(267\) 5.05644 0.309449
\(268\) −3.16250 + 2.65366i −0.193181 + 0.162098i
\(269\) 19.5253 + 7.10662i 1.19048 + 0.433298i 0.859891 0.510477i \(-0.170531\pi\)
0.330586 + 0.943776i \(0.392754\pi\)
\(270\) −0.173648 + 0.984808i −0.0105679 + 0.0599335i
\(271\) 4.04694 + 22.9513i 0.245834 + 1.39419i 0.818547 + 0.574439i \(0.194780\pi\)
−0.572713 + 0.819756i \(0.694109\pi\)
\(272\) 0.226682 0.0825054i 0.0137446 0.00500262i
\(273\) 5.63475 9.75968i 0.341031 0.590683i
\(274\) −0.716881 1.24168i −0.0433084 0.0750123i
\(275\) −1.17365 0.984808i −0.0707736 0.0593861i
\(276\) 5.13429 + 4.30818i 0.309048 + 0.259322i
\(277\) −10.3229 17.8799i −0.620246 1.07430i −0.989440 0.144945i \(-0.953700\pi\)
0.369194 0.929352i \(-0.379634\pi\)
\(278\) 7.52734 13.0377i 0.451460 0.781952i
\(279\) −6.41147 + 2.33359i −0.383845 + 0.139708i
\(280\) 0.819078 + 4.64522i 0.0489493 + 0.277605i
\(281\) 2.75759 15.6391i 0.164504 0.932948i −0.785070 0.619406i \(-0.787373\pi\)
0.949574 0.313542i \(-0.101516\pi\)
\(282\) −5.12449 1.86516i −0.305159 0.111069i
\(283\) −11.6040 + 9.73692i −0.689787 + 0.578800i −0.918848 0.394612i \(-0.870879\pi\)
0.229061 + 0.973412i \(0.426434\pi\)
\(284\) −7.30541 −0.433496
\(285\) −4.07398 + 1.55007i −0.241322 + 0.0918180i
\(286\) 3.66044 0.216447
\(287\) −43.3075 + 36.3393i −2.55636 + 2.14504i
\(288\) 0.939693 + 0.342020i 0.0553719 + 0.0201537i
\(289\) −2.94191 + 16.6844i −0.173054 + 0.981437i
\(290\) 0.305407 + 1.73205i 0.0179341 + 0.101710i
\(291\) −5.41147 + 1.96962i −0.317226 + 0.115461i
\(292\) 2.18479 3.78417i 0.127855 0.221452i
\(293\) −13.8564 24.0000i −0.809498 1.40209i −0.913212 0.407485i \(-0.866406\pi\)
0.103713 0.994607i \(-0.466928\pi\)
\(294\) 11.6814 + 9.80185i 0.681272 + 0.571655i
\(295\) 7.24170 + 6.07650i 0.421628 + 0.353788i
\(296\) −4.69846 8.13798i −0.273093 0.473010i
\(297\) −0.766044 + 1.32683i −0.0444504 + 0.0769904i
\(298\) −12.0915 + 4.40095i −0.700443 + 0.254940i
\(299\) −2.78065 15.7698i −0.160809 0.911994i
\(300\) −0.173648 + 0.984808i −0.0100256 + 0.0568579i
\(301\) −32.9495 11.9927i −1.89918 0.691245i
\(302\) 0.184793 0.155059i 0.0106336 0.00892266i
\(303\) −10.3696 −0.595717
\(304\) 0.819078 + 4.28125i 0.0469773 + 0.245547i
\(305\) −2.61081 −0.149495
\(306\) 0.184793 0.155059i 0.0105639 0.00886415i
\(307\) −3.34224 1.21648i −0.190752 0.0694280i 0.244878 0.969554i \(-0.421252\pi\)
−0.435630 + 0.900126i \(0.643474\pi\)
\(308\) −1.25490 + 7.11689i −0.0715046 + 0.405523i
\(309\) 2.57011 + 14.5758i 0.146208 + 0.829189i
\(310\) −6.41147 + 2.33359i −0.364147 + 0.132539i
\(311\) 14.8452 25.7127i 0.841796 1.45803i −0.0465786 0.998915i \(-0.514832\pi\)
0.888375 0.459119i \(-0.151835\pi\)
\(312\) −1.19459 2.06910i −0.0676305 0.117139i
\(313\) −21.6536 18.1696i −1.22394 1.02700i −0.998609 0.0527209i \(-0.983211\pi\)
−0.225327 0.974283i \(-0.572345\pi\)
\(314\) 0.190722 + 0.160035i 0.0107631 + 0.00903130i
\(315\) 2.35844 + 4.08494i 0.132883 + 0.230160i
\(316\) 4.82295 8.35359i 0.271312 0.469926i
\(317\) −25.2062 + 9.17431i −1.41572 + 0.515280i −0.932804 0.360385i \(-0.882645\pi\)
−0.482918 + 0.875666i \(0.660423\pi\)
\(318\) 1.04576 + 5.93080i 0.0586433 + 0.332583i
\(319\) −0.467911 + 2.65366i −0.0261980 + 0.148576i
\(320\) 0.939693 + 0.342020i 0.0525304 + 0.0191195i
\(321\) 8.45336 7.09321i 0.471821 0.395905i
\(322\) 31.6141 1.76179
\(323\) 0.993193 + 0.345268i 0.0552627 + 0.0192112i
\(324\) 1.00000 0.0555556
\(325\) 1.83022 1.53574i 0.101522 0.0851875i
\(326\) −5.30541 1.93101i −0.293839 0.106949i
\(327\) 1.87939 10.6585i 0.103930 0.589418i
\(328\) 2.08125 + 11.8034i 0.114918 + 0.651732i
\(329\) −24.1716 + 8.79774i −1.33262 + 0.485035i
\(330\) −0.766044 + 1.32683i −0.0421694 + 0.0730395i
\(331\) −3.66385 6.34597i −0.201383 0.348806i 0.747591 0.664159i \(-0.231210\pi\)
−0.948974 + 0.315353i \(0.897877\pi\)
\(332\) −7.57398 6.35532i −0.415676 0.348794i
\(333\) −7.19846 6.04023i −0.394473 0.331002i
\(334\) 6.42649 + 11.1310i 0.351642 + 0.609062i
\(335\) −2.06418 + 3.57526i −0.112778 + 0.195337i
\(336\) 4.43242 1.61327i 0.241808 0.0880110i
\(337\) −0.0814140 0.461722i −0.00443491 0.0251516i 0.982510 0.186210i \(-0.0596204\pi\)
−0.986945 + 0.161058i \(0.948509\pi\)
\(338\) 1.26621 7.18101i 0.0688726 0.390596i
\(339\) 11.0496 + 4.02174i 0.600134 + 0.218431i
\(340\) 0.184793 0.155059i 0.0100218 0.00840927i
\(341\) −10.4534 −0.566081
\(342\) 2.23396 + 3.74292i 0.120798 + 0.202394i
\(343\) 38.9094 2.10091
\(344\) −5.69459 + 4.77833i −0.307032 + 0.257630i
\(345\) 6.29813 + 2.29233i 0.339080 + 0.123415i
\(346\) 2.16503 12.2785i 0.116393 0.660096i
\(347\) 2.32770 + 13.2010i 0.124957 + 0.708668i 0.981333 + 0.192315i \(0.0615996\pi\)
−0.856376 + 0.516353i \(0.827289\pi\)
\(348\) 1.65270 0.601535i 0.0885942 0.0322457i
\(349\) −14.5672 + 25.2311i −0.779763 + 1.35059i 0.152316 + 0.988332i \(0.451327\pi\)
−0.932078 + 0.362257i \(0.882006\pi\)
\(350\) 2.35844 + 4.08494i 0.126064 + 0.218349i
\(351\) −1.83022 1.53574i −0.0976900 0.0819717i
\(352\) 1.17365 + 0.984808i 0.0625557 + 0.0524904i
\(353\) −0.822948 1.42539i −0.0438011 0.0758658i 0.843294 0.537453i \(-0.180613\pi\)
−0.887095 + 0.461587i \(0.847280\pi\)
\(354\) 4.72668 8.18685i 0.251220 0.435126i
\(355\) −6.86484 + 2.49860i −0.364348 + 0.132612i
\(356\) −0.878041 4.97962i −0.0465361 0.263919i
\(357\) 0.197586 1.12056i 0.0104573 0.0593066i
\(358\) 10.4410 + 3.80023i 0.551826 + 0.200848i
\(359\) −23.7743 + 19.9490i −1.25476 + 1.05287i −0.258537 + 0.966001i \(0.583240\pi\)
−0.996220 + 0.0868648i \(0.972315\pi\)
\(360\) 1.00000 0.0527046
\(361\) −9.01889 + 16.7230i −0.474678 + 0.880159i
\(362\) −8.86753 −0.466067
\(363\) 6.62836 5.56185i 0.347898 0.291921i
\(364\) −10.5899 3.85440i −0.555060 0.202025i
\(365\) 0.758770 4.30320i 0.0397159 0.225240i
\(366\) 0.453363 + 2.57115i 0.0236977 + 0.134396i
\(367\) 18.9329 6.89101i 0.988289 0.359708i 0.203231 0.979131i \(-0.434856\pi\)
0.785057 + 0.619423i \(0.212633\pi\)
\(368\) 3.35117 5.80439i 0.174692 0.302575i
\(369\) 5.99273 + 10.3797i 0.311969 + 0.540346i
\(370\) −7.19846 6.04023i −0.374230 0.314016i
\(371\) 21.7606 + 18.2593i 1.12975 + 0.947975i
\(372\) 3.41147 + 5.90885i 0.176877 + 0.306359i
\(373\) 9.56283 16.5633i 0.495145 0.857616i −0.504840 0.863213i \(-0.668448\pi\)
0.999984 + 0.00559731i \(0.00178169\pi\)
\(374\) 0.347296 0.126406i 0.0179583 0.00653627i
\(375\) 0.173648 + 0.984808i 0.00896715 + 0.0508553i
\(376\) −0.946967 + 5.37051i −0.0488361 + 0.276963i
\(377\) −3.94862 1.43718i −0.203364 0.0740185i
\(378\) 3.61334 3.03195i 0.185850 0.155947i
\(379\) 3.66550 0.188284 0.0941420 0.995559i \(-0.469989\pi\)
0.0941420 + 0.995559i \(0.469989\pi\)
\(380\) 2.23396 + 3.74292i 0.114600 + 0.192008i
\(381\) 21.8949 1.12171
\(382\) −9.17024 + 7.69475i −0.469191 + 0.393698i
\(383\) −29.6771 10.8016i −1.51643 0.551935i −0.556176 0.831065i \(-0.687732\pi\)
−0.960253 + 0.279129i \(0.909954\pi\)
\(384\) 0.173648 0.984808i 0.00886145 0.0502558i
\(385\) 1.25490 + 7.11689i 0.0639556 + 0.362710i
\(386\) −8.21213 + 2.98897i −0.417987 + 0.152135i
\(387\) −3.71688 + 6.43783i −0.188940 + 0.327253i
\(388\) 2.87939 + 4.98724i 0.146179 + 0.253189i
\(389\) −4.07604 3.42020i −0.206663 0.173411i 0.533581 0.845749i \(-0.320846\pi\)
−0.740245 + 0.672338i \(0.765290\pi\)
\(390\) −1.83022 1.53574i −0.0926769 0.0777652i
\(391\) −0.808400 1.40019i −0.0408826 0.0708107i
\(392\) 7.62449 13.2060i 0.385095 0.667004i
\(393\) 10.0569 3.66041i 0.507304 0.184643i
\(394\) −3.25830 18.4788i −0.164151 0.930946i
\(395\) 1.67499 9.49935i 0.0842780 0.477964i
\(396\) 1.43969 + 0.524005i 0.0723473 + 0.0263323i
\(397\) 1.37030 1.14982i 0.0687734 0.0577077i −0.607753 0.794126i \(-0.707929\pi\)
0.676526 + 0.736418i \(0.263484\pi\)
\(398\) 6.65539 0.333605
\(399\) 19.4204 + 6.75119i 0.972236 + 0.337982i
\(400\) 1.00000 0.0500000
\(401\) 8.39961 7.04811i 0.419457 0.351966i −0.408500 0.912758i \(-0.633948\pi\)
0.827956 + 0.560792i \(0.189503\pi\)
\(402\) 3.87939 + 1.41198i 0.193486 + 0.0704232i
\(403\) 2.83069 16.0536i 0.141007 0.799689i
\(404\) 1.80066 + 10.2120i 0.0895862 + 0.508068i
\(405\) 0.939693 0.342020i 0.0466937 0.0169951i
\(406\) 4.14796 7.18447i 0.205860 0.356559i
\(407\) −7.19846 12.4681i −0.356815 0.618021i
\(408\) −0.184793 0.155059i −0.00914859 0.00767658i
\(409\) −7.45858 6.25849i −0.368803 0.309462i 0.439485 0.898250i \(-0.355161\pi\)
−0.808288 + 0.588788i \(0.799605\pi\)
\(410\) 5.99273 + 10.3797i 0.295960 + 0.512617i
\(411\) −0.716881 + 1.24168i −0.0353612 + 0.0612473i
\(412\) 13.9081 5.06212i 0.685201 0.249393i
\(413\) −7.74304 43.9130i −0.381010 2.16082i
\(414\) 1.16385 6.60051i 0.0572000 0.324397i
\(415\) −9.29086 3.38160i −0.456070 0.165996i
\(416\) −1.83022 + 1.53574i −0.0897340 + 0.0752958i
\(417\) −15.0547 −0.737231
\(418\) 1.25490 + 6.55926i 0.0613792 + 0.320824i
\(419\) 17.3824 0.849185 0.424592 0.905385i \(-0.360417\pi\)
0.424592 + 0.905385i \(0.360417\pi\)
\(420\) 3.61334 3.03195i 0.176313 0.147944i
\(421\) 36.5749 + 13.3122i 1.78255 + 0.648796i 0.999645 + 0.0266578i \(0.00848644\pi\)
0.782908 + 0.622138i \(0.213736\pi\)
\(422\) −2.82042 + 15.9954i −0.137296 + 0.778644i
\(423\) 0.946967 + 5.37051i 0.0460431 + 0.261123i
\(424\) 5.65910 2.05974i 0.274830 0.100030i
\(425\) 0.120615 0.208911i 0.00585068 0.0101337i
\(426\) 3.65270 + 6.32667i 0.176974 + 0.306528i
\(427\) 9.43376 + 7.91587i 0.456532 + 0.383076i
\(428\) −8.45336 7.09321i −0.408609 0.342863i
\(429\) −1.83022 3.17004i −0.0883640 0.153051i
\(430\) −3.71688 + 6.43783i −0.179244 + 0.310460i
\(431\) 12.2344 4.45297i 0.589311 0.214492i −0.0301151 0.999546i \(-0.509587\pi\)
0.619427 + 0.785055i \(0.287365\pi\)
\(432\) −0.173648 0.984808i −0.00835465 0.0473816i
\(433\) 0.361844 2.05212i 0.0173891 0.0986186i −0.974878 0.222740i \(-0.928500\pi\)
0.992267 + 0.124121i \(0.0396111\pi\)
\(434\) 30.2422 + 11.0072i 1.45167 + 0.528365i
\(435\) 1.34730 1.13052i 0.0645979 0.0542041i
\(436\) −10.8229 −0.518325
\(437\) 27.3052 10.3891i 1.30618 0.496976i
\(438\) −4.36959 −0.208787
\(439\) 10.8229 9.08153i 0.516551 0.433438i −0.346876 0.937911i \(-0.612758\pi\)
0.863427 + 0.504473i \(0.168313\pi\)
\(440\) 1.43969 + 0.524005i 0.0686347 + 0.0249810i
\(441\) 2.64796 15.0173i 0.126093 0.715110i
\(442\) 0.100081 + 0.567586i 0.00476036 + 0.0269973i
\(443\) −13.5398 + 4.92809i −0.643297 + 0.234141i −0.643008 0.765859i \(-0.722314\pi\)
−0.000288293 1.00000i \(0.500092\pi\)
\(444\) −4.69846 + 8.13798i −0.222979 + 0.386211i
\(445\) −2.52822 4.37900i −0.119849 0.207585i
\(446\) −21.0462 17.6599i −0.996568 0.836220i
\(447\) 9.85710 + 8.27109i 0.466225 + 0.391209i
\(448\) −2.35844 4.08494i −0.111426 0.192995i
\(449\) −3.75150 + 6.49778i −0.177044 + 0.306649i −0.940867 0.338777i \(-0.889987\pi\)
0.763823 + 0.645426i \(0.223320\pi\)
\(450\) 0.939693 0.342020i 0.0442975 0.0161230i
\(451\) 3.18866 + 18.0838i 0.150148 + 0.851533i
\(452\) 2.04189 11.5801i 0.0960424 0.544683i
\(453\) −0.226682 0.0825054i −0.0106504 0.00387644i
\(454\) −0.0222887 + 0.0187024i −0.00104606 + 0.000877749i
\(455\) −11.2695 −0.528323
\(456\) 3.29813 2.84997i 0.154449 0.133462i
\(457\) −12.0101 −0.561809 −0.280905 0.959736i \(-0.590634\pi\)
−0.280905 + 0.959736i \(0.590634\pi\)
\(458\) 15.7324 13.2010i 0.735125 0.616843i
\(459\) −0.226682 0.0825054i −0.0105806 0.00385102i
\(460\) 1.16385 6.60051i 0.0542647 0.307750i
\(461\) 5.95636 + 33.7802i 0.277415 + 1.57330i 0.731184 + 0.682180i \(0.238968\pi\)
−0.453769 + 0.891119i \(0.649921\pi\)
\(462\) 6.79086 2.47167i 0.315939 0.114993i
\(463\) 5.29813 9.17664i 0.246225 0.426474i −0.716250 0.697844i \(-0.754143\pi\)
0.962475 + 0.271369i \(0.0874764\pi\)
\(464\) −0.879385 1.52314i −0.0408244 0.0707100i
\(465\) 5.22668 + 4.38571i 0.242382 + 0.203382i
\(466\) 5.06418 + 4.24935i 0.234594 + 0.196847i
\(467\) −7.77332 13.4638i −0.359706 0.623030i 0.628205 0.778048i \(-0.283790\pi\)
−0.987912 + 0.155018i \(0.950456\pi\)
\(468\) −1.19459 + 2.06910i −0.0552201 + 0.0956440i
\(469\) 18.2986 6.66015i 0.844951 0.307537i
\(470\) 0.946967 + 5.37051i 0.0436803 + 0.247723i
\(471\) 0.0432332 0.245188i 0.00199208 0.0112977i
\(472\) −8.88326 3.23324i −0.408885 0.148822i
\(473\) −8.72462 + 7.32083i −0.401159 + 0.336612i
\(474\) −9.64590 −0.443051
\(475\) 3.37939 + 2.75314i 0.155057 + 0.126323i
\(476\) −1.13785 −0.0521533
\(477\) 4.61334 3.87105i 0.211230 0.177243i
\(478\) −14.8871 5.41847i −0.680921 0.247835i
\(479\) −3.12567 + 17.7265i −0.142815 + 0.809946i 0.826280 + 0.563260i \(0.190453\pi\)
−0.969095 + 0.246687i \(0.920658\pi\)
\(480\) −0.173648 0.984808i −0.00792592 0.0449501i
\(481\) 21.0970 7.67869i 0.961942 0.350118i
\(482\) −3.32295 + 5.75552i −0.151356 + 0.262157i
\(483\) −15.8071 27.3786i −0.719246 1.24577i
\(484\) −6.62836 5.56185i −0.301289 0.252811i
\(485\) 4.41147 + 3.70167i 0.200315 + 0.168084i
\(486\) −0.500000 0.866025i −0.0226805 0.0392837i
\(487\) −2.31386 + 4.00773i −0.104851 + 0.181608i −0.913677 0.406440i \(-0.866770\pi\)
0.808826 + 0.588048i \(0.200103\pi\)
\(488\) 2.45336 0.892951i 0.111059 0.0404220i
\(489\) 0.980400 + 5.56012i 0.0443352 + 0.251437i
\(490\) 2.64796 15.0173i 0.119622 0.678413i
\(491\) 32.6095 + 11.8689i 1.47165 + 0.535636i 0.948547 0.316635i \(-0.102553\pi\)
0.523100 + 0.852271i \(0.324775\pi\)
\(492\) 9.18139 7.70410i 0.413929 0.347328i
\(493\) −0.424267 −0.0191080
\(494\) −10.4131 + 0.151003i −0.468509 + 0.00679395i
\(495\) 1.53209 0.0688623
\(496\) 5.22668 4.38571i 0.234685 0.196924i
\(497\) 32.3806 + 11.7856i 1.45247 + 0.528656i
\(498\) −1.71688 + 9.73692i −0.0769353 + 0.436322i
\(499\) −4.96105 28.1355i −0.222087 1.25952i −0.868176 0.496256i \(-0.834708\pi\)
0.646089 0.763262i \(-0.276403\pi\)
\(500\) 0.939693 0.342020i 0.0420243 0.0152956i
\(501\) 6.42649 11.1310i 0.287114 0.497297i
\(502\) −14.4855 25.0895i −0.646517 1.11980i
\(503\) 6.14724 + 5.15815i 0.274092 + 0.229990i 0.769464 0.638691i \(-0.220524\pi\)
−0.495372 + 0.868681i \(0.664968\pi\)
\(504\) −3.61334 3.03195i −0.160951 0.135054i
\(505\) 5.18479 + 8.98032i 0.230720 + 0.399619i
\(506\) 5.13429 8.89284i 0.228247 0.395335i
\(507\) −6.85204 + 2.49394i −0.304310 + 0.110760i
\(508\) −3.80200 21.5622i −0.168687 0.956669i
\(509\) 1.18748 6.73454i 0.0526342 0.298503i −0.947115 0.320894i \(-0.896017\pi\)
0.999749 + 0.0223908i \(0.00712780\pi\)
\(510\) −0.226682 0.0825054i −0.0100376 0.00365340i
\(511\) −15.7888 + 13.2484i −0.698455 + 0.586074i
\(512\) −1.00000 −0.0441942
\(513\) 2.12449 3.80612i 0.0937983 0.168044i
\(514\) −13.0351 −0.574953
\(515\) 11.3380 9.51368i 0.499610 0.419223i
\(516\) 6.98545 + 2.54250i 0.307517 + 0.111927i
\(517\) −1.45084 + 8.22811i −0.0638077 + 0.361872i
\(518\) 7.69681 + 43.6508i 0.338179 + 1.91791i
\(519\) −11.7160 + 4.26428i −0.514275 + 0.187181i
\(520\) −1.19459 + 2.06910i −0.0523864 + 0.0907358i
\(521\) −0.147956 0.256267i −0.00648207 0.0112273i 0.862766 0.505603i \(-0.168730\pi\)
−0.869248 + 0.494376i \(0.835397\pi\)
\(522\) −1.34730 1.13052i −0.0589696 0.0494813i
\(523\) 21.3628 + 17.9255i 0.934129 + 0.783827i 0.976554 0.215272i \(-0.0690639\pi\)
−0.0424250 + 0.999100i \(0.513508\pi\)
\(524\) −5.35117 9.26849i −0.233767 0.404896i
\(525\) 2.35844 4.08494i 0.102931 0.178281i
\(526\) −1.89306 + 0.689016i −0.0825412 + 0.0300425i
\(527\) −0.285807 1.62089i −0.0124499 0.0706071i
\(528\) 0.266044 1.50881i 0.0115781 0.0656627i
\(529\) −20.5993 7.49752i −0.895620 0.325979i
\(530\) 4.61334 3.87105i 0.200391 0.168148i
\(531\) −9.45336 −0.410241
\(532\) 3.27631 20.2977i 0.142046 0.880016i
\(533\) −28.6355 −1.24034
\(534\) −3.87346 + 3.25022i −0.167621 + 0.140651i
\(535\) −10.3696 3.77422i −0.448316 0.163174i
\(536\) 0.716881 4.06564i 0.0309646 0.175609i
\(537\) −1.92943 10.9423i −0.0832609 0.472196i
\(538\) −19.5253 + 7.10662i −0.841795 + 0.306388i
\(539\) 11.6814 20.2328i 0.503153 0.871487i
\(540\) −0.500000 0.866025i −0.0215166 0.0372678i
\(541\) 12.9813 + 10.8926i 0.558111 + 0.468311i 0.877677 0.479253i \(-0.159092\pi\)
−0.319565 + 0.947564i \(0.603537\pi\)
\(542\) −17.8530 14.9804i −0.766851 0.643464i
\(543\) 4.43376 + 7.67950i 0.190271 + 0.329559i
\(544\) −0.120615 + 0.208911i −0.00517132 + 0.00895698i
\(545\) −10.1702 + 3.70167i −0.435645 + 0.158562i
\(546\) 1.95693 + 11.0983i 0.0837488 + 0.474963i
\(547\) −5.22399 + 29.6267i −0.223362 + 1.26675i 0.642430 + 0.766344i \(0.277926\pi\)
−0.865792 + 0.500404i \(0.833185\pi\)
\(548\) 1.34730 + 0.490376i 0.0575536 + 0.0209478i
\(549\) 2.00000 1.67820i 0.0853579 0.0716238i
\(550\) 1.53209 0.0653285
\(551\) 1.22163 7.56834i 0.0520432 0.322422i
\(552\) −6.70233 −0.285270
\(553\) −34.8539 + 29.2459i −1.48214 + 1.24366i
\(554\) 19.4008 + 7.06131i 0.824261 + 0.300006i
\(555\) −1.63176 + 9.25417i −0.0692643 + 0.392817i
\(556\) 2.61422 + 14.8260i 0.110868 + 0.628761i
\(557\) 24.1570 8.79244i 1.02357 0.372548i 0.224939 0.974373i \(-0.427782\pi\)
0.798628 + 0.601825i \(0.205560\pi\)
\(558\) 3.41147 5.90885i 0.144419 0.250141i
\(559\) −8.88032 15.3812i −0.375597 0.650554i
\(560\) −3.61334 3.03195i −0.152692 0.128123i
\(561\) −0.283119 0.237565i −0.0119533 0.0100300i
\(562\) 7.94016 + 13.7528i 0.334935 + 0.580125i
\(563\) −6.56717 + 11.3747i −0.276773 + 0.479385i −0.970581 0.240775i \(-0.922598\pi\)
0.693808 + 0.720160i \(0.255932\pi\)
\(564\) 5.12449 1.86516i 0.215780 0.0785374i
\(565\) −2.04189 11.5801i −0.0859029 0.487180i
\(566\) 2.63041 14.9178i 0.110565 0.627043i
\(567\) −4.43242 1.61327i −0.186144 0.0677509i
\(568\) 5.59627 4.69583i 0.234814 0.197032i
\(569\) 14.4020 0.603762 0.301881 0.953346i \(-0.402385\pi\)
0.301881 + 0.953346i \(0.402385\pi\)
\(570\) 2.12449 3.80612i 0.0889849 0.159421i
\(571\) 12.5722 0.526131 0.263066 0.964778i \(-0.415266\pi\)
0.263066 + 0.964778i \(0.415266\pi\)
\(572\) −2.80406 + 2.35289i −0.117244 + 0.0983792i
\(573\) 11.2490 + 4.09429i 0.469932 + 0.171041i
\(574\) 9.81702 55.6751i 0.409754 2.32383i
\(575\) −1.16385 6.60051i −0.0485358 0.275260i
\(576\) −0.939693 + 0.342020i −0.0391539 + 0.0142508i
\(577\) −13.9067 + 24.0872i −0.578945 + 1.00276i 0.416656 + 0.909064i \(0.363202\pi\)
−0.995601 + 0.0936973i \(0.970131\pi\)
\(578\) −8.47090 14.6720i −0.352343 0.610276i
\(579\) 6.69459 + 5.61743i 0.278218 + 0.233452i
\(580\) −1.34730 1.13052i −0.0559434 0.0469421i
\(581\) 23.3182 + 40.3883i 0.967402 + 1.67559i
\(582\) 2.87939 4.98724i 0.119354 0.206728i
\(583\) 8.67024 3.15571i 0.359085 0.130696i
\(584\) 0.758770 + 4.30320i 0.0313981 + 0.178068i
\(585\) −0.414878 + 2.35289i −0.0171531 + 0.0972800i
\(586\) 26.0415 + 9.47832i 1.07576 + 0.391546i
\(587\) 10.4875 8.80007i 0.432866 0.363218i −0.400166 0.916443i \(-0.631047\pi\)
0.833032 + 0.553225i \(0.186603\pi\)
\(588\) −15.2490 −0.628857
\(589\) 29.7374 0.431229i 1.22531 0.0177685i
\(590\) −9.45336 −0.389189
\(591\) −14.3739 + 12.0612i −0.591264 + 0.496130i
\(592\) 8.83022 + 3.21394i 0.362920 + 0.132092i
\(593\) −4.68180 + 26.5518i −0.192258 + 1.09035i 0.724011 + 0.689789i \(0.242297\pi\)
−0.916269 + 0.400563i \(0.868815\pi\)
\(594\) −0.266044 1.50881i −0.0109159 0.0619073i
\(595\) −1.06923 + 0.389168i −0.0438342 + 0.0159543i
\(596\) 6.43376 11.1436i 0.263537 0.456460i
\(597\) −3.32770 5.76374i −0.136194 0.235894i
\(598\) 12.2668 + 10.2930i 0.501625 + 0.420913i
\(599\) −19.0496 15.9845i −0.778347 0.653110i 0.164485 0.986380i \(-0.447404\pi\)
−0.942832 + 0.333269i \(0.891848\pi\)
\(600\) −0.500000 0.866025i −0.0204124 0.0353553i
\(601\) 17.1356 29.6798i 0.698977 1.21066i −0.269845 0.962904i \(-0.586972\pi\)
0.968822 0.247760i \(-0.0796943\pi\)
\(602\) 32.9495 11.9927i 1.34292 0.488784i
\(603\) −0.716881 4.06564i −0.0291937 0.165566i
\(604\) −0.0418891 + 0.237565i −0.00170444 + 0.00966637i
\(605\) −8.13088 2.95940i −0.330567 0.120317i
\(606\) 7.94356 6.66544i 0.322685 0.270765i
\(607\) −42.3492 −1.71890 −0.859450 0.511220i \(-0.829194\pi\)
−0.859450 + 0.511220i \(0.829194\pi\)
\(608\) −3.37939 2.75314i −0.137052 0.111654i
\(609\) −8.29591 −0.336167
\(610\) 2.00000 1.67820i 0.0809776 0.0679483i
\(611\) −12.2433 4.45621i −0.495313 0.180279i
\(612\) −0.0418891 + 0.237565i −0.00169327 + 0.00960298i
\(613\) −2.02987 11.5119i −0.0819856 0.464963i −0.997966 0.0637414i \(-0.979697\pi\)
0.915981 0.401222i \(-0.131414\pi\)
\(614\) 3.34224 1.21648i 0.134882 0.0490930i
\(615\) 5.99273 10.3797i 0.241650 0.418550i
\(616\) −3.61334 6.25849i −0.145586 0.252162i
\(617\) 19.0155 + 15.9559i 0.765534 + 0.642360i 0.939561 0.342381i \(-0.111233\pi\)
−0.174027 + 0.984741i \(0.555678\pi\)
\(618\) −11.3380 9.51368i −0.456080 0.382696i
\(619\) 2.05572 + 3.56061i 0.0826264 + 0.143113i 0.904377 0.426734i \(-0.140336\pi\)
−0.821751 + 0.569847i \(0.807003\pi\)
\(620\) 3.41147 5.90885i 0.137008 0.237305i
\(621\) −6.29813 + 2.29233i −0.252735 + 0.0919882i
\(622\) 5.15570 + 29.2394i 0.206725 + 1.17239i
\(623\) −4.14162 + 23.4883i −0.165930 + 0.941038i
\(624\) 2.24510 + 0.817150i 0.0898759 + 0.0327122i
\(625\) 0.766044 0.642788i 0.0306418 0.0257115i
\(626\) 28.2668 1.12977
\(627\) 5.05303 4.36640i 0.201799 0.174377i
\(628\) −0.248970 −0.00993500
\(629\) 1.73648 1.45708i 0.0692381 0.0580976i
\(630\) −4.43242 1.61327i −0.176592 0.0642742i
\(631\) −8.61587 + 48.8630i −0.342992 + 1.94521i −0.0169322 + 0.999857i \(0.505390\pi\)
−0.326060 + 0.945349i \(0.605721\pi\)
\(632\) 1.67499 + 9.49935i 0.0666276 + 0.377864i
\(633\) 15.2626 5.55515i 0.606636 0.220797i
\(634\) 13.4119 23.2302i 0.532656 0.922588i
\(635\) −10.9474 18.9615i −0.434436 0.752465i
\(636\) −4.61334 3.87105i −0.182931 0.153497i
\(637\) 27.9090 + 23.4184i 1.10580 + 0.927872i
\(638\) −1.34730 2.33359i −0.0533400 0.0923875i
\(639\) 3.65270 6.32667i 0.144499 0.250279i
\(640\) −0.939693 + 0.342020i −0.0371446 + 0.0135195i
\(641\) 5.16179 + 29.2740i 0.203878 + 1.15625i 0.899195 + 0.437548i \(0.144153\pi\)
−0.695317 + 0.718704i \(0.744736\pi\)
\(642\) −1.91622 + 10.8674i −0.0756272 + 0.428903i
\(643\) −46.0506 16.7610i −1.81606 0.660991i −0.996066 0.0886141i \(-0.971756\pi\)
−0.819991 0.572377i \(-0.806022\pi\)
\(644\) −24.2178 + 20.3212i −0.954316 + 0.800766i
\(645\) 7.43376 0.292704
\(646\) −0.982764 + 0.373922i −0.0386663 + 0.0147117i
\(647\) −42.9590 −1.68889 −0.844447 0.535639i \(-0.820071\pi\)
−0.844447 + 0.535639i \(0.820071\pi\)
\(648\) −0.766044 + 0.642788i −0.0300931 + 0.0252511i
\(649\) −13.6099 4.95361i −0.534237 0.194446i
\(650\) −0.414878 + 2.35289i −0.0162728 + 0.0922879i
\(651\) −5.58853 31.6941i −0.219032 1.24219i
\(652\) 5.30541 1.93101i 0.207776 0.0756242i
\(653\) 5.12402 8.87506i 0.200518 0.347308i −0.748177 0.663499i \(-0.769071\pi\)
0.948696 + 0.316191i \(0.102404\pi\)
\(654\) 5.41147 + 9.37295i 0.211605 + 0.366511i
\(655\) −8.19846 6.87933i −0.320340 0.268798i
\(656\) −9.18139 7.70410i −0.358473 0.300795i
\(657\) 2.18479 + 3.78417i 0.0852369 + 0.147635i
\(658\) 12.8614 22.2767i 0.501391 0.868434i
\(659\) 10.9572 3.98811i 0.426833 0.155355i −0.119666 0.992814i \(-0.538182\pi\)
0.546499 + 0.837460i \(0.315960\pi\)
\(660\) −0.266044 1.50881i −0.0103558 0.0587305i
\(661\) −6.39693 + 36.2788i −0.248812 + 1.41108i 0.562660 + 0.826689i \(0.309778\pi\)
−0.811471 + 0.584392i \(0.801333\pi\)
\(662\) 6.88578 + 2.50622i 0.267624 + 0.0974070i
\(663\) 0.441504 0.370466i 0.0171466 0.0143877i
\(664\) 9.88713 0.383695
\(665\) −3.86349 20.1942i −0.149820 0.783096i
\(666\) 9.39693 0.364123
\(667\) −9.03003 + 7.57709i −0.349644 + 0.293386i
\(668\) −12.0778 4.39598i −0.467306 0.170085i
\(669\) −4.77079 + 27.0565i −0.184449 + 1.04606i
\(670\) −0.716881 4.06564i −0.0276955 0.157069i
\(671\) 3.75877 1.36808i 0.145106 0.0528142i
\(672\) −2.35844 + 4.08494i −0.0909788 + 0.157580i
\(673\) 5.39187 + 9.33900i 0.207841 + 0.359992i 0.951034 0.309085i \(-0.100023\pi\)
−0.743193 + 0.669077i \(0.766690\pi\)
\(674\) 0.359156 + 0.301368i 0.0138342 + 0.0116082i
\(675\) −0.766044 0.642788i −0.0294851 0.0247409i
\(676\) 3.64590 + 6.31488i 0.140227 + 0.242880i
\(677\) 6.28699 10.8894i 0.241629 0.418513i −0.719550 0.694441i \(-0.755652\pi\)
0.961178 + 0.275928i \(0.0889851\pi\)
\(678\) −11.0496 + 4.02174i −0.424358 + 0.154454i
\(679\) −4.71688 26.7508i −0.181017 1.02660i
\(680\) −0.0418891 + 0.237565i −0.00160637 + 0.00911019i
\(681\) 0.0273411 + 0.00995136i 0.00104771 + 0.000381337i
\(682\) 8.00774 6.71929i 0.306632 0.257295i
\(683\) −14.5217 −0.555656 −0.277828 0.960631i \(-0.589615\pi\)
−0.277828 + 0.960631i \(0.589615\pi\)
\(684\) −4.11721 1.43128i −0.157426 0.0547265i
\(685\) 1.43376 0.0547813
\(686\) −29.8063 + 25.0105i −1.13801 + 0.954905i
\(687\) −19.2986 7.02412i −0.736288 0.267987i
\(688\) 1.29086 7.32083i 0.0492136 0.279104i
\(689\) 2.49851 + 14.1698i 0.0951858 + 0.539825i
\(690\) −6.29813 + 2.29233i −0.239766 + 0.0872676i
\(691\) 17.4085 30.1525i 0.662252 1.14705i −0.317771 0.948168i \(-0.602934\pi\)
0.980023 0.198886i \(-0.0637325\pi\)
\(692\) 6.23396 + 10.7975i 0.236979 + 0.410460i
\(693\) −5.53596 4.64522i −0.210294 0.176457i
\(694\) −10.2686 8.61635i −0.389790 0.327072i
\(695\) 7.52734 + 13.0377i 0.285528 + 0.494550i
\(696\) −0.879385 + 1.52314i −0.0333330 + 0.0577345i
\(697\) −2.71688 + 0.988864i −0.102909 + 0.0374559i
\(698\) −5.05913 28.6917i −0.191491 1.08600i
\(699\) 1.14796 6.51038i 0.0434197 0.246245i
\(700\) −4.43242 1.61327i −0.167530 0.0609758i
\(701\) 16.7365 14.0436i 0.632128 0.530419i −0.269461 0.963011i \(-0.586846\pi\)
0.901589 + 0.432593i \(0.142401\pi\)
\(702\) 2.38919 0.0901740
\(703\) 20.9923 + 35.1719i 0.791740 + 1.32653i
\(704\) −1.53209 −0.0577428
\(705\) 4.17752 3.50535i 0.157334 0.132019i
\(706\) 1.54664 + 0.562930i 0.0582084 + 0.0211861i
\(707\) 8.49350 48.1690i 0.319431 1.81158i
\(708\) 1.64156 + 9.30975i 0.0616936 + 0.349882i
\(709\) −3.35679 + 1.22177i −0.126067 + 0.0458846i −0.404283 0.914634i \(-0.632479\pi\)
0.278216 + 0.960518i \(0.410257\pi\)
\(710\) 3.65270 6.32667i 0.137084 0.237436i
\(711\) 4.82295 + 8.35359i 0.180875 + 0.313284i
\(712\) 3.87346 + 3.25022i 0.145164 + 0.121807i
\(713\) −35.0310 29.3945i −1.31192 1.10083i
\(714\) 0.568926 + 0.985408i 0.0212915 + 0.0368780i
\(715\) −1.83022 + 3.17004i −0.0684464 + 0.118553i
\(716\) −10.4410 + 3.80023i −0.390200 + 0.142021i
\(717\) 2.75103 + 15.6019i 0.102739 + 0.582662i
\(718\) 5.38919 30.5636i 0.201123 1.14062i
\(719\) −6.59627 2.40084i −0.245999 0.0895364i 0.216078 0.976376i \(-0.430673\pi\)
−0.462077 + 0.886840i \(0.652896\pi\)
\(720\) −0.766044 + 0.642788i −0.0285488 + 0.0239553i
\(721\) −69.8130 −2.59997
\(722\) −3.84049 18.6078i −0.142928 0.692511i
\(723\) 6.64590 0.247164
\(724\) 6.79292 5.69994i 0.252457 0.211836i
\(725\) −1.65270 0.601535i −0.0613799 0.0223404i
\(726\) −1.50253 + 8.52125i −0.0557640 + 0.316253i
\(727\) 6.85204 + 38.8599i 0.254128 + 1.44123i 0.798300 + 0.602259i \(0.205733\pi\)
−0.544172 + 0.838974i \(0.683156\pi\)
\(728\) 10.5899 3.85440i 0.392487 0.142853i
\(729\) −0.500000 + 0.866025i −0.0185185 + 0.0320750i
\(730\) 2.18479 + 3.78417i 0.0808628 + 0.140058i
\(731\) −1.37370 1.15267i −0.0508083 0.0426332i
\(732\) −2.00000 1.67820i −0.0739221 0.0620280i
\(733\) −8.73989 15.1379i −0.322815 0.559132i 0.658253 0.752797i \(-0.271296\pi\)
−0.981068 + 0.193665i \(0.937963\pi\)
\(734\) −10.0740 + 17.4486i −0.371837 + 0.644041i
\(735\) −14.3293 + 5.21546i −0.528546 + 0.192375i
\(736\) 1.16385 + 6.60051i 0.0429000 + 0.243298i
\(737\) 1.09833 6.22892i 0.0404574 0.229445i
\(738\) −11.2626 4.09927i −0.414584 0.150896i
\(739\) −4.17886 + 3.50648i −0.153722 + 0.128988i −0.716405 0.697685i \(-0.754214\pi\)
0.562683 + 0.826673i \(0.309769\pi\)
\(740\) 9.39693 0.345438
\(741\) 5.33733 + 8.94253i 0.196072 + 0.328512i
\(742\) −28.4064 −1.04283
\(743\) −11.4440 + 9.60268i −0.419841 + 0.352288i −0.828103 0.560577i \(-0.810580\pi\)
0.408262 + 0.912865i \(0.366135\pi\)
\(744\) −6.41147 2.33359i −0.235056 0.0855534i
\(745\) 2.23442 12.6720i 0.0818629 0.464268i
\(746\) 3.32114 + 18.8351i 0.121595 + 0.689602i
\(747\) 9.29086 3.38160i 0.339935 0.123726i
\(748\) −0.184793 + 0.320070i −0.00675668 + 0.0117029i
\(749\) 26.0256 + 45.0776i 0.950954 + 1.64710i
\(750\) −0.766044 0.642788i −0.0279720 0.0234713i
\(751\) −1.25671 1.05451i −0.0458580 0.0384795i 0.619571 0.784941i \(-0.287307\pi\)
−0.665429 + 0.746461i \(0.731751\pi\)
\(752\) −2.72668 4.72275i −0.0994318 0.172221i
\(753\) −14.4855 + 25.0895i −0.527879 + 0.914314i
\(754\) 3.94862 1.43718i 0.143800 0.0523390i
\(755\) 0.0418891 + 0.237565i 0.00152450 + 0.00864586i
\(756\) −0.819078 + 4.64522i −0.0297896 + 0.168945i
\(757\) 7.14203 + 2.59948i 0.259581 + 0.0944799i 0.468533 0.883446i \(-0.344783\pi\)
−0.208951 + 0.977926i \(0.567005\pi\)
\(758\) −2.80793 + 2.35614i −0.101989 + 0.0855787i
\(759\) −10.2686 −0.372726
\(760\) −4.11721 1.43128i −0.149347 0.0519181i
\(761\) −12.0145 −0.435527 −0.217764 0.976002i \(-0.569876\pi\)
−0.217764 + 0.976002i \(0.569876\pi\)
\(762\) −16.7724 + 14.0737i −0.607601 + 0.509838i
\(763\) 47.9718 + 17.4603i 1.73670 + 0.632106i
\(764\) 2.07873 11.7890i 0.0752057 0.426512i
\(765\) 0.0418891 + 0.237565i 0.00151450 + 0.00858917i
\(766\) 29.6771 10.8016i 1.07228 0.390277i
\(767\) 11.2929 19.5599i 0.407764 0.706267i
\(768\) 0.500000 + 0.866025i 0.0180422 + 0.0312500i
\(769\) −18.7815 15.7596i −0.677279 0.568305i 0.237931 0.971282i \(-0.423531\pi\)
−0.915210 + 0.402977i \(0.867975\pi\)
\(770\) −5.53596 4.64522i −0.199502 0.167402i
\(771\) 6.51754 + 11.2887i 0.234724 + 0.406553i
\(772\) 4.36959 7.56834i 0.157265 0.272391i