Properties

Label 570.2.s.b.521.7
Level $570$
Weight $2$
Character 570.521
Analytic conductor $4.551$
Analytic rank $0$
Dimension $24$
CM no
Inner twists $2$

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) \(=\) \( 570 = 2 \cdot 3 \cdot 5 \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 570.s (of order \(6\), degree \(2\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(4.55147291521\)
Analytic rank: \(0\)
Dimension: \(24\)
Relative dimension: \(12\) over \(\Q(\zeta_{6})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 521.7
Character \(\chi\) \(=\) 570.521
Dual form 570.2.s.b.221.7

$q$-expansion

\(f(q)\) \(=\) \(q+(0.500000 - 0.866025i) q^{2} +(0.708367 - 1.58057i) q^{3} +(-0.500000 - 0.866025i) q^{4} +(0.866025 + 0.500000i) q^{5} +(-1.01463 - 1.40375i) q^{6} +2.73284 q^{7} -1.00000 q^{8} +(-1.99643 - 2.23925i) q^{9} +O(q^{10})\) \(q+(0.500000 - 0.866025i) q^{2} +(0.708367 - 1.58057i) q^{3} +(-0.500000 - 0.866025i) q^{4} +(0.866025 + 0.500000i) q^{5} +(-1.01463 - 1.40375i) q^{6} +2.73284 q^{7} -1.00000 q^{8} +(-1.99643 - 2.23925i) q^{9} +(0.866025 - 0.500000i) q^{10} +0.361598i q^{11} +(-1.72300 + 0.176823i) q^{12} +(2.32225 - 1.34075i) q^{13} +(1.36642 - 2.36671i) q^{14} +(1.40375 - 1.01463i) q^{15} +(-0.500000 + 0.866025i) q^{16} +(-1.37205 - 0.792151i) q^{17} +(-2.93747 + 0.609333i) q^{18} +(2.26593 - 3.72365i) q^{19} -1.00000i q^{20} +(1.93585 - 4.31946i) q^{21} +(0.313153 + 0.180799i) q^{22} +(-3.44153 + 1.98697i) q^{23} +(-0.708367 + 1.58057i) q^{24} +(0.500000 + 0.866025i) q^{25} -2.68150i q^{26} +(-4.95352 + 1.56929i) q^{27} +(-1.36642 - 2.36671i) q^{28} +(-1.24989 - 2.16488i) q^{29} +(-0.176823 - 1.72300i) q^{30} +5.44068i q^{31} +(0.500000 + 0.866025i) q^{32} +(0.571532 + 0.256144i) q^{33} +(-1.37205 + 0.792151i) q^{34} +(2.36671 + 1.36642i) q^{35} +(-0.941036 + 2.84859i) q^{36} +7.93595i q^{37} +(-2.09181 - 3.82417i) q^{38} +(-0.474151 - 4.62022i) q^{39} +(-0.866025 - 0.500000i) q^{40} +(2.12250 - 3.67627i) q^{41} +(-2.77283 - 3.83623i) q^{42} +(1.23694 - 2.14245i) q^{43} +(0.313153 - 0.180799i) q^{44} +(-0.609333 - 2.93747i) q^{45} +3.97393i q^{46} +(-6.62319 + 3.82390i) q^{47} +(1.01463 + 1.40375i) q^{48} +0.468410 q^{49} +1.00000 q^{50} +(-2.22397 + 1.60749i) q^{51} +(-2.32225 - 1.34075i) q^{52} +(1.37459 + 2.38085i) q^{53} +(-1.11771 + 5.07452i) q^{54} +(-0.180799 + 0.313153i) q^{55} -2.73284 q^{56} +(-4.28040 - 6.21918i) q^{57} -2.49978 q^{58} +(1.56849 - 2.71671i) q^{59} +(-1.58057 - 0.708367i) q^{60} +(3.73492 + 6.46907i) q^{61} +(4.71176 + 2.72034i) q^{62} +(-5.45593 - 6.11952i) q^{63} +1.00000 q^{64} +2.68150 q^{65} +(0.507593 - 0.366889i) q^{66} +(-0.731797 + 0.422503i) q^{67} +1.58430i q^{68} +(0.702683 + 6.84709i) q^{69} +(2.36671 - 1.36642i) q^{70} +(-4.22259 + 7.31374i) q^{71} +(1.99643 + 2.23925i) q^{72} +(6.07501 - 10.5222i) q^{73} +(6.87273 + 3.96797i) q^{74} +(1.72300 - 0.176823i) q^{75} +(-4.35774 - 0.100523i) q^{76} +0.988188i q^{77} +(-4.23831 - 1.89949i) q^{78} +(3.57112 + 2.06179i) q^{79} +(-0.866025 + 0.500000i) q^{80} +(-1.02852 + 8.94104i) q^{81} +(-2.12250 - 3.67627i) q^{82} -0.651818i q^{83} +(-4.70869 + 0.483229i) q^{84} +(-0.792151 - 1.37205i) q^{85} +(-1.23694 - 2.14245i) q^{86} +(-4.30713 + 0.442019i) q^{87} -0.361598i q^{88} +(5.47514 + 9.48321i) q^{89} +(-2.84859 - 0.941036i) q^{90} +(6.34632 - 3.66405i) q^{91} +(3.44153 + 1.98697i) q^{92} +(8.59939 + 3.85400i) q^{93} +7.64780i q^{94} +(3.82417 - 2.09181i) q^{95} +(1.72300 - 0.176823i) q^{96} +(15.3033 + 8.83538i) q^{97} +(0.234205 - 0.405655i) q^{98} +(0.809709 - 0.721905i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 24q + 12q^{2} + 2q^{3} - 12q^{4} + 4q^{6} - 12q^{7} - 24q^{8} + 2q^{9} + O(q^{10}) \) \( 24q + 12q^{2} + 2q^{3} - 12q^{4} + 4q^{6} - 12q^{7} - 24q^{8} + 2q^{9} + 2q^{12} + 18q^{13} - 6q^{14} - 12q^{16} - 12q^{17} - 2q^{18} + 6q^{19} + 6q^{21} + 18q^{22} - 2q^{24} + 12q^{25} - 28q^{27} + 6q^{28} + 12q^{32} - 8q^{33} - 12q^{34} - 4q^{36} - 6q^{38} + 40q^{39} - 6q^{41} - 6q^{42} - 22q^{43} + 18q^{44} + 8q^{45} - 12q^{47} - 4q^{48} + 12q^{49} + 24q^{50} - 4q^{51} - 18q^{52} - 8q^{53} - 32q^{54} + 12q^{56} - 20q^{57} - 26q^{59} + 22q^{61} + 18q^{62} + 30q^{63} + 24q^{64} - 8q^{65} - 22q^{66} - 48q^{67} + 64q^{69} - 24q^{71} - 2q^{72} - 8q^{73} - 30q^{74} - 2q^{75} - 12q^{76} + 2q^{78} + 18q^{79} - 6q^{81} + 6q^{82} - 12q^{84} + 22q^{86} - 24q^{87} - 28q^{89} + 16q^{90} + 18q^{91} + 14q^{93} - 2q^{96} + 6q^{97} + 6q^{98} - 52q^{99} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/570\mathbb{Z}\right)^\times\).

\(n\) \(191\) \(211\) \(457\)
\(\chi(n)\) \(-1\) \(e\left(\frac{1}{6}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.500000 0.866025i 0.353553 0.612372i
\(3\) 0.708367 1.58057i 0.408976 0.912545i
\(4\) −0.500000 0.866025i −0.250000 0.433013i
\(5\) 0.866025 + 0.500000i 0.387298 + 0.223607i
\(6\) −1.01463 1.40375i −0.414223 0.573079i
\(7\) 2.73284 1.03292 0.516458 0.856312i \(-0.327250\pi\)
0.516458 + 0.856312i \(0.327250\pi\)
\(8\) −1.00000 −0.353553
\(9\) −1.99643 2.23925i −0.665477 0.746418i
\(10\) 0.866025 0.500000i 0.273861 0.158114i
\(11\) 0.361598i 0.109026i 0.998513 + 0.0545129i \(0.0173606\pi\)
−0.998513 + 0.0545129i \(0.982639\pi\)
\(12\) −1.72300 + 0.176823i −0.497388 + 0.0510444i
\(13\) 2.32225 1.34075i 0.644075 0.371857i −0.142108 0.989851i \(-0.545388\pi\)
0.786183 + 0.617994i \(0.212055\pi\)
\(14\) 1.36642 2.36671i 0.365191 0.632529i
\(15\) 1.40375 1.01463i 0.362447 0.261977i
\(16\) −0.500000 + 0.866025i −0.125000 + 0.216506i
\(17\) −1.37205 0.792151i −0.332770 0.192125i 0.324300 0.945954i \(-0.394871\pi\)
−0.657070 + 0.753829i \(0.728205\pi\)
\(18\) −2.93747 + 0.609333i −0.692368 + 0.143621i
\(19\) 2.26593 3.72365i 0.519839 0.854264i
\(20\) 1.00000i 0.223607i
\(21\) 1.93585 4.31946i 0.422438 0.942583i
\(22\) 0.313153 + 0.180799i 0.0667644 + 0.0385464i
\(23\) −3.44153 + 1.98697i −0.717608 + 0.414311i −0.813872 0.581045i \(-0.802644\pi\)
0.0962636 + 0.995356i \(0.469311\pi\)
\(24\) −0.708367 + 1.58057i −0.144595 + 0.322633i
\(25\) 0.500000 + 0.866025i 0.100000 + 0.173205i
\(26\) 2.68150i 0.525885i
\(27\) −4.95352 + 1.56929i −0.953305 + 0.302011i
\(28\) −1.36642 2.36671i −0.258229 0.447266i
\(29\) −1.24989 2.16488i −0.232099 0.402007i 0.726327 0.687350i \(-0.241226\pi\)
−0.958426 + 0.285342i \(0.907893\pi\)
\(30\) −0.176823 1.72300i −0.0322833 0.314576i
\(31\) 5.44068i 0.977174i 0.872515 + 0.488587i \(0.162488\pi\)
−0.872515 + 0.488587i \(0.837512\pi\)
\(32\) 0.500000 + 0.866025i 0.0883883 + 0.153093i
\(33\) 0.571532 + 0.256144i 0.0994909 + 0.0445889i
\(34\) −1.37205 + 0.792151i −0.235304 + 0.135853i
\(35\) 2.36671 + 1.36642i 0.400047 + 0.230967i
\(36\) −0.941036 + 2.84859i −0.156839 + 0.474765i
\(37\) 7.93595i 1.30466i 0.757934 + 0.652331i \(0.226209\pi\)
−0.757934 + 0.652331i \(0.773791\pi\)
\(38\) −2.09181 3.82417i −0.339337 0.620363i
\(39\) −0.474151 4.62022i −0.0759249 0.739828i
\(40\) −0.866025 0.500000i −0.136931 0.0790569i
\(41\) 2.12250 3.67627i 0.331478 0.574137i −0.651324 0.758800i \(-0.725786\pi\)
0.982802 + 0.184663i \(0.0591193\pi\)
\(42\) −2.77283 3.83623i −0.427857 0.591943i
\(43\) 1.23694 2.14245i 0.188632 0.326720i −0.756162 0.654384i \(-0.772928\pi\)
0.944794 + 0.327664i \(0.106261\pi\)
\(44\) 0.313153 0.180799i 0.0472095 0.0272564i
\(45\) −0.609333 2.93747i −0.0908340 0.437892i
\(46\) 3.97393i 0.585925i
\(47\) −6.62319 + 3.82390i −0.966092 + 0.557773i −0.898043 0.439908i \(-0.855011\pi\)
−0.0680494 + 0.997682i \(0.521678\pi\)
\(48\) 1.01463 + 1.40375i 0.146450 + 0.202614i
\(49\) 0.468410 0.0669158
\(50\) 1.00000 0.141421
\(51\) −2.22397 + 1.60749i −0.311417 + 0.225093i
\(52\) −2.32225 1.34075i −0.322037 0.185928i
\(53\) 1.37459 + 2.38085i 0.188814 + 0.327035i 0.944855 0.327489i \(-0.106202\pi\)
−0.756041 + 0.654524i \(0.772869\pi\)
\(54\) −1.11771 + 5.07452i −0.152101 + 0.690554i
\(55\) −0.180799 + 0.313153i −0.0243789 + 0.0422255i
\(56\) −2.73284 −0.365191
\(57\) −4.28040 6.21918i −0.566953 0.823750i
\(58\) −2.49978 −0.328238
\(59\) 1.56849 2.71671i 0.204200 0.353685i −0.745677 0.666307i \(-0.767874\pi\)
0.949878 + 0.312622i \(0.101207\pi\)
\(60\) −1.58057 0.708367i −0.204051 0.0914498i
\(61\) 3.73492 + 6.46907i 0.478208 + 0.828280i 0.999688 0.0249834i \(-0.00795330\pi\)
−0.521480 + 0.853263i \(0.674620\pi\)
\(62\) 4.71176 + 2.72034i 0.598395 + 0.345483i
\(63\) −5.45593 6.11952i −0.687382 0.770987i
\(64\) 1.00000 0.125000
\(65\) 2.68150 0.332599
\(66\) 0.507593 0.366889i 0.0624804 0.0451609i
\(67\) −0.731797 + 0.422503i −0.0894032 + 0.0516170i −0.544035 0.839062i \(-0.683104\pi\)
0.454632 + 0.890679i \(0.349771\pi\)
\(68\) 1.58430i 0.192125i
\(69\) 0.702683 + 6.84709i 0.0845931 + 0.824293i
\(70\) 2.36671 1.36642i 0.282876 0.163318i
\(71\) −4.22259 + 7.31374i −0.501129 + 0.867981i 0.498870 + 0.866677i \(0.333749\pi\)
−0.999999 + 0.00130440i \(0.999585\pi\)
\(72\) 1.99643 + 2.23925i 0.235282 + 0.263899i
\(73\) 6.07501 10.5222i 0.711026 1.23153i −0.253447 0.967349i \(-0.581564\pi\)
0.964472 0.264184i \(-0.0851025\pi\)
\(74\) 6.87273 + 3.96797i 0.798939 + 0.461268i
\(75\) 1.72300 0.176823i 0.198955 0.0204178i
\(76\) −4.35774 0.100523i −0.499867 0.0115308i
\(77\) 0.988188i 0.112614i
\(78\) −4.23831 1.89949i −0.479894 0.215074i
\(79\) 3.57112 + 2.06179i 0.401783 + 0.231969i 0.687253 0.726418i \(-0.258816\pi\)
−0.285470 + 0.958388i \(0.592150\pi\)
\(80\) −0.866025 + 0.500000i −0.0968246 + 0.0559017i
\(81\) −1.02852 + 8.94104i −0.114280 + 0.993449i
\(82\) −2.12250 3.67627i −0.234391 0.405976i
\(83\) 0.651818i 0.0715463i −0.999360 0.0357732i \(-0.988611\pi\)
0.999360 0.0357732i \(-0.0113894\pi\)
\(84\) −4.70869 + 0.483229i −0.513760 + 0.0527246i
\(85\) −0.792151 1.37205i −0.0859208 0.148819i
\(86\) −1.23694 2.14245i −0.133383 0.231026i
\(87\) −4.30713 + 0.442019i −0.461773 + 0.0473895i
\(88\) 0.361598i 0.0385464i
\(89\) 5.47514 + 9.48321i 0.580363 + 1.00522i 0.995436 + 0.0954304i \(0.0304227\pi\)
−0.415073 + 0.909788i \(0.636244\pi\)
\(90\) −2.84859 0.941036i −0.300268 0.0991939i
\(91\) 6.34632 3.66405i 0.665275 0.384097i
\(92\) 3.44153 + 1.98697i 0.358804 + 0.207156i
\(93\) 8.59939 + 3.85400i 0.891716 + 0.399641i
\(94\) 7.64780i 0.788811i
\(95\) 3.82417 2.09181i 0.392352 0.214616i
\(96\) 1.72300 0.176823i 0.175853 0.0180469i
\(97\) 15.3033 + 8.83538i 1.55382 + 0.897097i 0.997826 + 0.0659098i \(0.0209950\pi\)
0.555992 + 0.831187i \(0.312338\pi\)
\(98\) 0.234205 0.405655i 0.0236583 0.0409774i
\(99\) 0.809709 0.721905i 0.0813788 0.0725542i
\(100\) 0.500000 0.866025i 0.0500000 0.0866025i
\(101\) −0.597354 + 0.344883i −0.0594390 + 0.0343171i −0.529425 0.848357i \(-0.677592\pi\)
0.469986 + 0.882674i \(0.344259\pi\)
\(102\) 0.280141 + 2.72975i 0.0277381 + 0.270286i
\(103\) 15.3946i 1.51688i −0.651744 0.758439i \(-0.725962\pi\)
0.651744 0.758439i \(-0.274038\pi\)
\(104\) −2.32225 + 1.34075i −0.227715 + 0.131471i
\(105\) 3.83623 2.77283i 0.374377 0.270601i
\(106\) 2.74917 0.267023
\(107\) −0.902808 −0.0872778 −0.0436389 0.999047i \(-0.513895\pi\)
−0.0436389 + 0.999047i \(0.513895\pi\)
\(108\) 3.83581 + 3.50522i 0.369101 + 0.337290i
\(109\) 8.27239 + 4.77607i 0.792351 + 0.457464i 0.840790 0.541362i \(-0.182091\pi\)
−0.0484384 + 0.998826i \(0.515424\pi\)
\(110\) 0.180799 + 0.313153i 0.0172385 + 0.0298579i
\(111\) 12.5434 + 5.62157i 1.19056 + 0.533575i
\(112\) −1.36642 + 2.36671i −0.129115 + 0.223633i
\(113\) −18.0868 −1.70146 −0.850731 0.525602i \(-0.823840\pi\)
−0.850731 + 0.525602i \(0.823840\pi\)
\(114\) −7.52617 + 0.597347i −0.704890 + 0.0559467i
\(115\) −3.97393 −0.370571
\(116\) −1.24989 + 2.16488i −0.116050 + 0.201004i
\(117\) −7.63848 2.52339i −0.706178 0.233287i
\(118\) −1.56849 2.71671i −0.144391 0.250093i
\(119\) −3.74958 2.16482i −0.343723 0.198449i
\(120\) −1.40375 + 1.01463i −0.128144 + 0.0926230i
\(121\) 10.8692 0.988113
\(122\) 7.46984 0.676288
\(123\) −4.30712 5.95892i −0.388360 0.537297i
\(124\) 4.71176 2.72034i 0.423129 0.244294i
\(125\) 1.00000i 0.0894427i
\(126\) −8.02763 + 1.66521i −0.715158 + 0.148349i
\(127\) −3.08394 + 1.78051i −0.273655 + 0.157995i −0.630548 0.776151i \(-0.717170\pi\)
0.356892 + 0.934145i \(0.383836\pi\)
\(128\) 0.500000 0.866025i 0.0441942 0.0765466i
\(129\) −2.51009 3.47272i −0.221001 0.305756i
\(130\) 1.34075 2.32225i 0.117591 0.203674i
\(131\) 4.10014 + 2.36722i 0.358231 + 0.206825i 0.668305 0.743888i \(-0.267020\pi\)
−0.310073 + 0.950713i \(0.600354\pi\)
\(132\) −0.0639388 0.623033i −0.00556516 0.0542281i
\(133\) 6.19241 10.1761i 0.536950 0.882383i
\(134\) 0.845006i 0.0729974i
\(135\) −5.07452 1.11771i −0.436745 0.0961971i
\(136\) 1.37205 + 0.792151i 0.117652 + 0.0679264i
\(137\) 4.07740 2.35409i 0.348356 0.201123i −0.315605 0.948891i \(-0.602207\pi\)
0.663961 + 0.747767i \(0.268874\pi\)
\(138\) 6.28110 + 2.81500i 0.534683 + 0.239629i
\(139\) −7.46724 12.9336i −0.633363 1.09702i −0.986860 0.161581i \(-0.948341\pi\)
0.353497 0.935436i \(-0.384993\pi\)
\(140\) 2.73284i 0.230967i
\(141\) 1.35231 + 13.1772i 0.113885 + 1.10972i
\(142\) 4.22259 + 7.31374i 0.354352 + 0.613755i
\(143\) 0.484812 + 0.839718i 0.0405420 + 0.0702208i
\(144\) 2.93747 0.609333i 0.244789 0.0507777i
\(145\) 2.49978i 0.207596i
\(146\) −6.07501 10.5222i −0.502771 0.870825i
\(147\) 0.331807 0.740357i 0.0273669 0.0610636i
\(148\) 6.87273 3.96797i 0.564935 0.326165i
\(149\) 19.6035 + 11.3181i 1.60598 + 0.927215i 0.990257 + 0.139254i \(0.0444706\pi\)
0.615726 + 0.787960i \(0.288863\pi\)
\(150\) 0.708367 1.58057i 0.0578380 0.129053i
\(151\) 3.63440i 0.295763i 0.989005 + 0.147882i \(0.0472455\pi\)
−0.989005 + 0.147882i \(0.952755\pi\)
\(152\) −2.26593 + 3.72365i −0.183791 + 0.302028i
\(153\) 0.965367 + 4.65383i 0.0780453 + 0.376240i
\(154\) 0.855796 + 0.494094i 0.0689620 + 0.0398152i
\(155\) −2.72034 + 4.71176i −0.218503 + 0.378458i
\(156\) −3.76416 + 2.72074i −0.301374 + 0.217833i
\(157\) −6.76442 + 11.7163i −0.539859 + 0.935064i 0.459052 + 0.888410i \(0.348189\pi\)
−0.998911 + 0.0466542i \(0.985144\pi\)
\(158\) 3.57112 2.06179i 0.284103 0.164027i
\(159\) 4.73683 0.486117i 0.375655 0.0385516i
\(160\) 1.00000i 0.0790569i
\(161\) −9.40514 + 5.43006i −0.741229 + 0.427949i
\(162\) 7.22890 + 5.36125i 0.567956 + 0.421219i
\(163\) −18.9557 −1.48472 −0.742361 0.670000i \(-0.766294\pi\)
−0.742361 + 0.670000i \(0.766294\pi\)
\(164\) −4.24499 −0.331478
\(165\) 0.366889 + 0.507593i 0.0285623 + 0.0395161i
\(166\) −0.564491 0.325909i −0.0438130 0.0252954i
\(167\) 2.66087 + 4.60877i 0.205905 + 0.356637i 0.950421 0.310967i \(-0.100653\pi\)
−0.744516 + 0.667605i \(0.767320\pi\)
\(168\) −1.93585 + 4.31946i −0.149354 + 0.333253i
\(169\) −2.90478 + 5.03123i −0.223445 + 0.387018i
\(170\) −1.58430 −0.121510
\(171\) −12.8620 + 2.36003i −0.983579 + 0.180476i
\(172\) −2.47389 −0.188632
\(173\) 5.01989 8.69470i 0.381655 0.661046i −0.609644 0.792675i \(-0.708688\pi\)
0.991299 + 0.131630i \(0.0420209\pi\)
\(174\) −1.77076 + 3.95109i −0.134241 + 0.299532i
\(175\) 1.36642 + 2.36671i 0.103292 + 0.178906i
\(176\) −0.313153 0.180799i −0.0236048 0.0136282i
\(177\) −3.18289 4.40355i −0.239241 0.330991i
\(178\) 10.9503 0.820757
\(179\) 6.28120 0.469479 0.234739 0.972058i \(-0.424576\pi\)
0.234739 + 0.972058i \(0.424576\pi\)
\(180\) −2.23925 + 1.99643i −0.166904 + 0.148805i
\(181\) −21.3026 + 12.2990i −1.58341 + 0.914180i −0.589049 + 0.808097i \(0.700498\pi\)
−0.994357 + 0.106083i \(0.966169\pi\)
\(182\) 7.32810i 0.543195i
\(183\) 12.8705 1.32084i 0.951418 0.0976394i
\(184\) 3.44153 1.98697i 0.253713 0.146481i
\(185\) −3.96797 + 6.87273i −0.291731 + 0.505293i
\(186\) 7.63736 5.52029i 0.559998 0.404768i
\(187\) 0.286440 0.496128i 0.0209466 0.0362805i
\(188\) 6.62319 + 3.82390i 0.483046 + 0.278887i
\(189\) −13.5372 + 4.28863i −0.984684 + 0.311952i
\(190\) 0.100523 4.35774i 0.00729274 0.316144i
\(191\) 25.6046i 1.85268i 0.376683 + 0.926342i \(0.377065\pi\)
−0.376683 + 0.926342i \(0.622935\pi\)
\(192\) 0.708367 1.58057i 0.0511220 0.114068i
\(193\) 2.59120 + 1.49603i 0.186519 + 0.107687i 0.590352 0.807146i \(-0.298989\pi\)
−0.403833 + 0.914833i \(0.632322\pi\)
\(194\) 15.3033 8.83538i 1.09872 0.634344i
\(195\) 1.89949 4.23831i 0.136025 0.303511i
\(196\) −0.234205 0.405655i −0.0167289 0.0289754i
\(197\) 17.7186i 1.26240i −0.775620 0.631201i \(-0.782562\pi\)
0.775620 0.631201i \(-0.217438\pi\)
\(198\) −0.220333 1.06218i −0.0156584 0.0754859i
\(199\) −10.2862 17.8162i −0.729170 1.26296i −0.957235 0.289313i \(-0.906573\pi\)
0.228065 0.973646i \(-0.426760\pi\)
\(200\) −0.500000 0.866025i −0.0353553 0.0612372i
\(201\) 0.149417 + 1.45595i 0.0105390 + 0.102695i
\(202\) 0.689765i 0.0485317i
\(203\) −3.41575 5.91626i −0.239739 0.415240i
\(204\) 2.50411 + 1.12227i 0.175323 + 0.0785744i
\(205\) 3.67627 2.12250i 0.256762 0.148242i
\(206\) −13.3321 7.69731i −0.928894 0.536297i
\(207\) 11.3201 + 3.73961i 0.786801 + 0.259921i
\(208\) 2.68150i 0.185928i
\(209\) 1.34646 + 0.819353i 0.0931368 + 0.0566758i
\(210\) −0.483229 4.70869i −0.0333460 0.324930i
\(211\) 0.240924 + 0.139098i 0.0165859 + 0.00957587i 0.508270 0.861198i \(-0.330285\pi\)
−0.491684 + 0.870774i \(0.663619\pi\)
\(212\) 1.37459 2.38085i 0.0944069 0.163518i
\(213\) 8.56877 + 11.8549i 0.587122 + 0.812287i
\(214\) −0.451404 + 0.781855i −0.0308573 + 0.0534465i
\(215\) 2.14245 1.23694i 0.146114 0.0843588i
\(216\) 4.95352 1.56929i 0.337044 0.106777i
\(217\) 14.8685i 1.00934i
\(218\) 8.27239 4.77607i 0.560277 0.323476i
\(219\) −12.3278 17.0556i −0.833037 1.15251i
\(220\) 0.361598 0.0243789
\(221\) −4.24830 −0.285772
\(222\) 11.1401 8.05208i 0.747674 0.540420i
\(223\) 4.55894 + 2.63211i 0.305290 + 0.176259i 0.644817 0.764337i \(-0.276934\pi\)
−0.339527 + 0.940596i \(0.610267\pi\)
\(224\) 1.36642 + 2.36671i 0.0912978 + 0.158132i
\(225\) 0.941036 2.84859i 0.0627357 0.189906i
\(226\) −9.04339 + 15.6636i −0.601557 + 1.04193i
\(227\) −18.1853 −1.20700 −0.603500 0.797363i \(-0.706227\pi\)
−0.603500 + 0.797363i \(0.706227\pi\)
\(228\) −3.24577 + 6.81652i −0.214956 + 0.451435i
\(229\) −0.0923898 −0.00610529 −0.00305265 0.999995i \(-0.500972\pi\)
−0.00305265 + 0.999995i \(0.500972\pi\)
\(230\) −1.98697 + 3.44153i −0.131017 + 0.226928i
\(231\) 1.56190 + 0.700000i 0.102766 + 0.0460566i
\(232\) 1.24989 + 2.16488i 0.0820594 + 0.142131i
\(233\) −12.3845 7.15019i −0.811335 0.468425i 0.0360842 0.999349i \(-0.488512\pi\)
−0.847419 + 0.530924i \(0.821845\pi\)
\(234\) −6.00456 + 5.35343i −0.392530 + 0.349964i
\(235\) −7.64780 −0.498888
\(236\) −3.13699 −0.204200
\(237\) 5.78848 4.18392i 0.376002 0.271775i
\(238\) −3.74958 + 2.16482i −0.243049 + 0.140324i
\(239\) 26.1968i 1.69453i −0.531172 0.847264i \(-0.678248\pi\)
0.531172 0.847264i \(-0.321752\pi\)
\(240\) 0.176823 + 1.72300i 0.0114139 + 0.111219i
\(241\) −16.7185 + 9.65242i −1.07693 + 0.621767i −0.930067 0.367390i \(-0.880251\pi\)
−0.146865 + 0.989157i \(0.546918\pi\)
\(242\) 5.43462 9.41304i 0.349351 0.605093i
\(243\) 13.4034 + 7.95920i 0.859829 + 0.510583i
\(244\) 3.73492 6.46907i 0.239104 0.414140i
\(245\) 0.405655 + 0.234205i 0.0259164 + 0.0149628i
\(246\) −7.31413 + 0.750613i −0.466332 + 0.0478573i
\(247\) 0.269553 11.6853i 0.0171513 0.743516i
\(248\) 5.44068i 0.345483i
\(249\) −1.03025 0.461727i −0.0652892 0.0292607i
\(250\) 0.866025 + 0.500000i 0.0547723 + 0.0316228i
\(251\) 9.65147 5.57228i 0.609195 0.351719i −0.163455 0.986551i \(-0.552264\pi\)
0.772650 + 0.634832i \(0.218931\pi\)
\(252\) −2.57170 + 7.78473i −0.162002 + 0.490392i
\(253\) −0.718482 1.24445i −0.0451706 0.0782378i
\(254\) 3.56102i 0.223438i
\(255\) −2.72975 + 0.280141i −0.170944 + 0.0175431i
\(256\) −0.500000 0.866025i −0.0312500 0.0541266i
\(257\) −3.98490 6.90205i −0.248571 0.430538i 0.714558 0.699576i \(-0.246628\pi\)
−0.963130 + 0.269038i \(0.913294\pi\)
\(258\) −4.26251 + 0.437440i −0.265372 + 0.0272338i
\(259\) 21.6877i 1.34761i
\(260\) −1.34075 2.32225i −0.0831497 0.144020i
\(261\) −2.35238 + 7.12085i −0.145609 + 0.440770i
\(262\) 4.10014 2.36722i 0.253308 0.146247i
\(263\) −14.1470 8.16779i −0.872343 0.503647i −0.00421689 0.999991i \(-0.501342\pi\)
−0.868126 + 0.496344i \(0.834676\pi\)
\(264\) −0.571532 0.256144i −0.0351754 0.0157646i
\(265\) 2.74917i 0.168880i
\(266\) −5.71659 10.4509i −0.350507 0.640783i
\(267\) 18.8673 1.93626i 1.15466 0.118497i
\(268\) 0.731797 + 0.422503i 0.0447016 + 0.0258085i
\(269\) −15.6050 + 27.0287i −0.951456 + 1.64797i −0.209179 + 0.977877i \(0.567079\pi\)
−0.742277 + 0.670093i \(0.766254\pi\)
\(270\) −3.50522 + 3.83581i −0.213321 + 0.233440i
\(271\) 15.8830 27.5101i 0.964823 1.67112i 0.254733 0.967011i \(-0.418012\pi\)
0.710090 0.704111i \(-0.248654\pi\)
\(272\) 1.37205 0.792151i 0.0831925 0.0480312i
\(273\) −1.29578 12.6263i −0.0784241 0.764180i
\(274\) 4.70818i 0.284431i
\(275\) −0.313153 + 0.180799i −0.0188838 + 0.0109026i
\(276\) 5.57841 4.03209i 0.335781 0.242703i
\(277\) −20.8653 −1.25367 −0.626836 0.779151i \(-0.715651\pi\)
−0.626836 + 0.779151i \(0.715651\pi\)
\(278\) −14.9345 −0.895710
\(279\) 12.1831 10.8619i 0.729381 0.650287i
\(280\) −2.36671 1.36642i −0.141438 0.0816592i
\(281\) −0.194045 0.336095i −0.0115757 0.0200498i 0.860180 0.509991i \(-0.170351\pi\)
−0.871755 + 0.489942i \(0.837018\pi\)
\(282\) 12.0879 + 5.41746i 0.719825 + 0.322605i
\(283\) −10.8411 + 18.7773i −0.644434 + 1.11619i 0.339997 + 0.940426i \(0.389574\pi\)
−0.984432 + 0.175767i \(0.943760\pi\)
\(284\) 8.44518 0.501129
\(285\) −0.597347 7.52617i −0.0353838 0.445812i
\(286\) 0.969623 0.0573350
\(287\) 5.80044 10.0467i 0.342389 0.593036i
\(288\) 0.941036 2.84859i 0.0554511 0.167855i
\(289\) −7.24499 12.5487i −0.426176 0.738159i
\(290\) −2.16488 1.24989i −0.127126 0.0733961i
\(291\) 24.8054 17.9294i 1.45412 1.05104i
\(292\) −12.1500 −0.711026
\(293\) 32.2855 1.88614 0.943069 0.332596i \(-0.107924\pi\)
0.943069 + 0.332596i \(0.107924\pi\)
\(294\) −0.475265 0.657532i −0.0277180 0.0383480i
\(295\) 2.71671 1.56849i 0.158173 0.0913212i
\(296\) 7.93595i 0.461268i
\(297\) −0.567453 1.79118i −0.0329269 0.103935i
\(298\) 19.6035 11.3181i 1.13560 0.655640i
\(299\) −5.32805 + 9.22845i −0.308129 + 0.533695i
\(300\) −1.01463 1.40375i −0.0585799 0.0810456i
\(301\) 3.38037 5.85497i 0.194841 0.337475i
\(302\) 3.14748 + 1.81720i 0.181117 + 0.104568i
\(303\) 0.121966 + 1.18847i 0.00700679 + 0.0682756i
\(304\) 2.09181 + 3.82417i 0.119974 + 0.219331i
\(305\) 7.46984i 0.427722i
\(306\) 4.51302 + 1.49088i 0.257992 + 0.0852282i
\(307\) −16.9205 9.76906i −0.965705 0.557550i −0.0677805 0.997700i \(-0.521592\pi\)
−0.897924 + 0.440150i \(0.854925\pi\)
\(308\) 0.855796 0.494094i 0.0487635 0.0281536i
\(309\) −24.3324 10.9051i −1.38422 0.620367i
\(310\) 2.72034 + 4.71176i 0.154505 + 0.267610i
\(311\) 30.7306i 1.74257i −0.490775 0.871287i \(-0.663286\pi\)
0.490775 0.871287i \(-0.336714\pi\)
\(312\) 0.474151 + 4.62022i 0.0268435 + 0.261569i
\(313\) −5.11644 8.86194i −0.289198 0.500906i 0.684420 0.729088i \(-0.260055\pi\)
−0.973619 + 0.228181i \(0.926722\pi\)
\(314\) 6.76442 + 11.7163i 0.381738 + 0.661190i
\(315\) −1.66521 8.02763i −0.0938239 0.452305i
\(316\) 4.12358i 0.231969i
\(317\) −0.252084 0.436622i −0.0141584 0.0245231i 0.858859 0.512211i \(-0.171174\pi\)
−0.873018 + 0.487688i \(0.837840\pi\)
\(318\) 1.94742 4.34527i 0.109206 0.243671i
\(319\) 0.782814 0.451958i 0.0438291 0.0253048i
\(320\) 0.866025 + 0.500000i 0.0484123 + 0.0279508i
\(321\) −0.639520 + 1.42696i −0.0356945 + 0.0796449i
\(322\) 10.8601i 0.605211i
\(323\) −6.05865 + 3.31406i −0.337112 + 0.184399i
\(324\) 8.25743 3.57979i 0.458746 0.198877i
\(325\) 2.32225 + 1.34075i 0.128815 + 0.0743714i
\(326\) −9.47783 + 16.4161i −0.524929 + 0.909203i
\(327\) 13.4088 9.69192i 0.741509 0.535964i
\(328\) −2.12250 + 3.67627i −0.117195 + 0.202988i
\(329\) −18.1001 + 10.4501i −0.997892 + 0.576133i
\(330\) 0.623033 0.0639388i 0.0342968 0.00351972i
\(331\) 16.7161i 0.918800i 0.888229 + 0.459400i \(0.151936\pi\)
−0.888229 + 0.459400i \(0.848064\pi\)
\(332\) −0.564491 + 0.325909i −0.0309805 + 0.0178866i
\(333\) 17.7706 15.8436i 0.973823 0.868223i
\(334\) 5.32175 0.291193
\(335\) −0.845006 −0.0461676
\(336\) 2.77283 + 3.83623i 0.151270 + 0.209283i
\(337\) 5.81314 + 3.35622i 0.316662 + 0.182825i 0.649904 0.760017i \(-0.274809\pi\)
−0.333242 + 0.942841i \(0.608143\pi\)
\(338\) 2.90478 + 5.03123i 0.157999 + 0.273663i
\(339\) −12.8121 + 28.5875i −0.695857 + 1.55266i
\(340\) −0.792151 + 1.37205i −0.0429604 + 0.0744096i
\(341\) −1.96733 −0.106537
\(342\) −4.38714 + 12.3188i −0.237229 + 0.666125i
\(343\) −17.8498 −0.963798
\(344\) −1.23694 + 2.14245i −0.0666915 + 0.115513i
\(345\) −2.81500 + 6.28110i −0.151555 + 0.338163i
\(346\) −5.01989 8.69470i −0.269871 0.467430i
\(347\) −28.1207 16.2355i −1.50960 0.871566i −0.999937 0.0111900i \(-0.996438\pi\)
−0.509660 0.860376i \(-0.670229\pi\)
\(348\) 2.53636 + 3.50907i 0.135963 + 0.188106i
\(349\) 2.90700 0.155608 0.0778040 0.996969i \(-0.475209\pi\)
0.0778040 + 0.996969i \(0.475209\pi\)
\(350\) 2.73284 0.146076
\(351\) −9.39925 + 10.2857i −0.501695 + 0.549010i
\(352\) −0.313153 + 0.180799i −0.0166911 + 0.00963661i
\(353\) 10.7325i 0.571233i −0.958344 0.285616i \(-0.907802\pi\)
0.958344 0.285616i \(-0.0921983\pi\)
\(354\) −5.40503 + 0.554692i −0.287274 + 0.0294815i
\(355\) −7.31374 + 4.22259i −0.388173 + 0.224112i
\(356\) 5.47514 9.48321i 0.290182 0.502609i
\(357\) −6.07774 + 4.39300i −0.321668 + 0.232502i
\(358\) 3.14060 5.43967i 0.165986 0.287496i
\(359\) −1.09849 0.634215i −0.0579762 0.0334726i 0.470732 0.882276i \(-0.343990\pi\)
−0.528708 + 0.848804i \(0.677323\pi\)
\(360\) 0.609333 + 2.93747i 0.0321147 + 0.154818i
\(361\) −8.73116 16.8750i −0.459535 0.888160i
\(362\) 24.5981i 1.29285i
\(363\) 7.69942 17.1797i 0.404115 0.901698i
\(364\) −6.34632 3.66405i −0.332638 0.192048i
\(365\) 10.5222 6.07501i 0.550758 0.317980i
\(366\) 5.29139 11.8066i 0.276586 0.617143i
\(367\) −4.80585 8.32397i −0.250863 0.434508i 0.712900 0.701265i \(-0.247381\pi\)
−0.963764 + 0.266757i \(0.914048\pi\)
\(368\) 3.97393i 0.207156i
\(369\) −12.4695 + 2.58661i −0.649138 + 0.134654i
\(370\) 3.96797 + 6.87273i 0.206285 + 0.357296i
\(371\) 3.75652 + 6.50649i 0.195029 + 0.337800i
\(372\) −0.962037 9.37429i −0.0498793 0.486034i
\(373\) 13.3101i 0.689173i 0.938755 + 0.344586i \(0.111981\pi\)
−0.938755 + 0.344586i \(0.888019\pi\)
\(374\) −0.286440 0.496128i −0.0148114 0.0256542i
\(375\) 1.58057 + 0.708367i 0.0816205 + 0.0365799i
\(376\) 6.62319 3.82390i 0.341565 0.197203i
\(377\) −5.80511 3.35158i −0.298978 0.172615i
\(378\) −3.05452 + 13.8678i −0.157108 + 0.713285i
\(379\) 6.83849i 0.351270i −0.984455 0.175635i \(-0.943802\pi\)
0.984455 0.175635i \(-0.0561978\pi\)
\(380\) −3.72365 2.26593i −0.191019 0.116240i
\(381\) 0.629671 + 6.13565i 0.0322590 + 0.314339i
\(382\) 22.1742 + 12.8023i 1.13453 + 0.655023i
\(383\) −10.2329 + 17.7238i −0.522874 + 0.905645i 0.476771 + 0.879027i \(0.341807\pi\)
−0.999646 + 0.0266177i \(0.991526\pi\)
\(384\) −1.01463 1.40375i −0.0517778 0.0716349i
\(385\) −0.494094 + 0.855796i −0.0251814 + 0.0436154i
\(386\) 2.59120 1.49603i 0.131889 0.0761460i
\(387\) −7.26696 + 1.50742i −0.369400 + 0.0766265i
\(388\) 17.6708i 0.897097i
\(389\) 9.69169 5.59550i 0.491388 0.283703i −0.233762 0.972294i \(-0.575104\pi\)
0.725150 + 0.688591i \(0.241770\pi\)
\(390\) −2.72074 3.76416i −0.137770 0.190605i
\(391\) 6.29591 0.318398
\(392\) −0.468410 −0.0236583
\(393\) 6.64598 4.80372i 0.335245 0.242316i
\(394\) −15.3448 8.85932i −0.773060 0.446326i
\(395\) 2.06179 + 3.57112i 0.103740 + 0.179683i
\(396\) −1.03004 0.340276i −0.0517616 0.0170995i
\(397\) 19.4671 33.7181i 0.977028 1.69226i 0.303953 0.952687i \(-0.401693\pi\)
0.673074 0.739575i \(-0.264973\pi\)
\(398\) −20.5724 −1.03120
\(399\) −11.6976 16.9960i −0.585615 0.850865i
\(400\) −1.00000 −0.0500000
\(401\) 14.6051 25.2968i 0.729345 1.26326i −0.227815 0.973704i \(-0.573158\pi\)
0.957160 0.289559i \(-0.0935085\pi\)
\(402\) 1.33560 + 0.598575i 0.0666134 + 0.0298542i
\(403\) 7.29458 + 12.6346i 0.363369 + 0.629373i
\(404\) 0.597354 + 0.344883i 0.0297195 + 0.0171586i
\(405\) −5.36125 + 7.22890i −0.266402 + 0.359207i
\(406\) −6.83150 −0.339042
\(407\) −2.86962 −0.142242
\(408\) 2.22397 1.60749i 0.110103 0.0795824i
\(409\) −13.1471 + 7.59047i −0.650081 + 0.375325i −0.788487 0.615051i \(-0.789135\pi\)
0.138406 + 0.990376i \(0.455802\pi\)
\(410\) 4.24499i 0.209645i
\(411\) −0.832515 8.11220i −0.0410649 0.400145i
\(412\) −13.3321 + 7.69731i −0.656827 + 0.379219i
\(413\) 4.28644 7.42433i 0.210922 0.365327i
\(414\) 8.89865 7.93369i 0.437345 0.389919i
\(415\) 0.325909 0.564491i 0.0159982 0.0277098i
\(416\) 2.32225 + 1.34075i 0.113857 + 0.0657356i
\(417\) −25.7321 + 2.64076i −1.26011 + 0.129319i
\(418\) 1.38281 0.756395i 0.0676356 0.0369965i
\(419\) 18.6245i 0.909864i 0.890526 + 0.454932i \(0.150337\pi\)
−0.890526 + 0.454932i \(0.849663\pi\)
\(420\) −4.31946 1.93585i −0.210768 0.0944600i
\(421\) 0.995150 + 0.574550i 0.0485006 + 0.0280019i 0.524054 0.851685i \(-0.324419\pi\)
−0.475554 + 0.879687i \(0.657752\pi\)
\(422\) 0.240924 0.139098i 0.0117280 0.00677117i
\(423\) 21.7854 + 7.19686i 1.05924 + 0.349923i
\(424\) −1.37459 2.38085i −0.0667558 0.115624i
\(425\) 1.58430i 0.0768499i
\(426\) 14.5511 1.49330i 0.705001 0.0723508i
\(427\) 10.2069 + 17.6789i 0.493948 + 0.855544i
\(428\) 0.451404 + 0.781855i 0.0218194 + 0.0377924i
\(429\) 1.67066 0.171452i 0.0806603 0.00827777i
\(430\) 2.47389i 0.119301i
\(431\) 0.361329 + 0.625840i 0.0174046 + 0.0301457i 0.874597 0.484851i \(-0.161126\pi\)
−0.857192 + 0.514997i \(0.827793\pi\)
\(432\) 1.11771 5.07452i 0.0537758 0.244148i
\(433\) −20.1778 + 11.6497i −0.969684 + 0.559847i −0.899140 0.437662i \(-0.855807\pi\)
−0.0705439 + 0.997509i \(0.522473\pi\)
\(434\) 12.8765 + 7.43425i 0.618091 + 0.356855i
\(435\) −3.95109 1.77076i −0.189440 0.0849017i
\(436\) 9.55213i 0.457464i
\(437\) −0.399474 + 17.3174i −0.0191094 + 0.828402i
\(438\) −20.9345 + 2.14840i −1.00029 + 0.102655i
\(439\) 4.96102 + 2.86425i 0.236776 + 0.136703i 0.613694 0.789544i \(-0.289683\pi\)
−0.376918 + 0.926247i \(0.623016\pi\)
\(440\) 0.180799 0.313153i 0.00861924 0.0149290i
\(441\) −0.935149 1.04889i −0.0445309 0.0499471i
\(442\) −2.12415 + 3.67914i −0.101036 + 0.174999i
\(443\) 20.0773 11.5917i 0.953903 0.550736i 0.0596116 0.998222i \(-0.481014\pi\)
0.894291 + 0.447486i \(0.147680\pi\)
\(444\) −1.40326 13.6736i −0.0665957 0.648923i
\(445\) 10.9503i 0.519093i
\(446\) 4.55894 2.63211i 0.215872 0.124634i
\(447\) 31.7756 22.9675i 1.50293 1.08632i
\(448\) 2.73284 0.129115
\(449\) 12.0455 0.568464 0.284232 0.958755i \(-0.408261\pi\)
0.284232 + 0.958755i \(0.408261\pi\)
\(450\) −1.99643 2.23925i −0.0941127 0.105559i
\(451\) 1.32933 + 0.767490i 0.0625958 + 0.0361397i
\(452\) 9.04339 + 15.6636i 0.425365 + 0.736754i
\(453\) 5.74444 + 2.57449i 0.269897 + 0.120960i
\(454\) −9.09264 + 15.7489i −0.426739 + 0.739133i
\(455\) 7.32810 0.343547
\(456\) 4.28040 + 6.21918i 0.200448 + 0.291240i
\(457\) 30.1464 1.41019 0.705094 0.709113i \(-0.250905\pi\)
0.705094 + 0.709113i \(0.250905\pi\)
\(458\) −0.0461949 + 0.0800119i −0.00215855 + 0.00373871i
\(459\) 8.03957 + 1.77079i 0.375255 + 0.0826534i
\(460\) 1.98697 + 3.44153i 0.0926428 + 0.160462i
\(461\) 34.0561 + 19.6623i 1.58615 + 0.915765i 0.993933 + 0.109987i \(0.0350811\pi\)
0.592218 + 0.805778i \(0.298252\pi\)
\(462\) 1.38717 1.00265i 0.0645370 0.0466475i
\(463\) −16.6034 −0.771624 −0.385812 0.922577i \(-0.626079\pi\)
−0.385812 + 0.922577i \(0.626079\pi\)
\(464\) 2.49978 0.116050
\(465\) 5.52029 + 7.63736i 0.255998 + 0.354174i
\(466\) −12.3845 + 7.15019i −0.573701 + 0.331226i
\(467\) 17.0263i 0.787884i 0.919135 + 0.393942i \(0.128889\pi\)
−0.919135 + 0.393942i \(0.871111\pi\)
\(468\) 1.63393 + 7.87681i 0.0755282 + 0.364106i
\(469\) −1.99988 + 1.15463i −0.0923460 + 0.0533160i
\(470\) −3.82390 + 6.62319i −0.176383 + 0.305505i
\(471\) 13.7268 + 18.9911i 0.632498 + 0.875065i
\(472\) −1.56849 + 2.71671i −0.0721957 + 0.125047i
\(473\) 0.774704 + 0.447276i 0.0356209 + 0.0205658i
\(474\) −0.729144 7.10493i −0.0334907 0.326340i
\(475\) 4.35774 + 0.100523i 0.199947 + 0.00461233i
\(476\) 4.32964i 0.198449i
\(477\) 2.58707 7.83126i 0.118454 0.358569i
\(478\) −22.6871 13.0984i −1.03768 0.599106i
\(479\) 10.9769 6.33750i 0.501546 0.289568i −0.227806 0.973707i \(-0.573155\pi\)
0.729352 + 0.684139i \(0.239822\pi\)
\(480\) 1.58057 + 0.708367i 0.0721430 + 0.0323324i
\(481\) 10.6401 + 18.4292i 0.485147 + 0.840300i
\(482\) 19.3048i 0.879311i
\(483\) 1.92032 + 18.7120i 0.0873776 + 0.851426i
\(484\) −5.43462 9.41304i −0.247028 0.427866i
\(485\) 8.83538 + 15.3033i 0.401194 + 0.694889i
\(486\) 13.5946 7.62809i 0.616662 0.346017i
\(487\) 32.6229i 1.47829i −0.673549 0.739143i \(-0.735231\pi\)
0.673549 0.739143i \(-0.264769\pi\)
\(488\) −3.73492 6.46907i −0.169072 0.292841i
\(489\) −13.4276 + 29.9608i −0.607216 + 1.35488i
\(490\) 0.405655 0.234205i 0.0183256 0.0105803i
\(491\) −6.27240 3.62137i −0.283070 0.163430i 0.351743 0.936097i \(-0.385589\pi\)
−0.634812 + 0.772666i \(0.718923\pi\)
\(492\) −3.00702 + 6.70953i −0.135567 + 0.302489i
\(493\) 3.96041i 0.178368i
\(494\) −9.98496 6.07608i −0.449245 0.273376i
\(495\) 1.06218 0.220333i 0.0477415 0.00990325i
\(496\) −4.71176 2.72034i −0.211564 0.122147i
\(497\) −11.5397 + 19.9873i −0.517624 + 0.896552i
\(498\) −0.914990 + 0.661357i −0.0410017 + 0.0296361i
\(499\) 8.51878 14.7550i 0.381353 0.660522i −0.609903 0.792476i \(-0.708792\pi\)
0.991256 + 0.131954i \(0.0421250\pi\)
\(500\) 0.866025 0.500000i 0.0387298 0.0223607i
\(501\) 9.16938 0.941008i 0.409658 0.0420412i
\(502\) 11.1446i 0.497406i
\(503\) −24.2478 + 13.9995i −1.08115 + 0.624205i −0.931208 0.364489i \(-0.881244\pi\)
−0.149947 + 0.988694i \(0.547910\pi\)
\(504\) 5.45593 + 6.11952i 0.243026 + 0.272585i
\(505\) −0.689765 −0.0306942
\(506\) −1.43696 −0.0638809
\(507\) 5.89459 + 8.15519i 0.261788 + 0.362185i
\(508\) 3.08394 + 1.78051i 0.136828 + 0.0789974i
\(509\) 16.1465 + 27.9666i 0.715683 + 1.23960i 0.962695 + 0.270587i \(0.0872178\pi\)
−0.247012 + 0.969012i \(0.579449\pi\)
\(510\) −1.12227 + 2.50411i −0.0496948 + 0.110884i
\(511\) 16.6020 28.7555i 0.734430 1.27207i
\(512\) −1.00000 −0.0441942
\(513\) −5.38080 + 22.0011i −0.237568 + 0.971371i
\(514\) −7.96980 −0.351533
\(515\) 7.69731 13.3321i 0.339184 0.587484i
\(516\) −1.75242 + 3.91016i −0.0771460 + 0.172135i
\(517\) −1.38271 2.39493i −0.0608117 0.105329i
\(518\) 18.7821 + 10.8438i 0.825237 + 0.476451i
\(519\) −10.1867 14.0933i −0.447146 0.618629i
\(520\) −2.68150 −0.117591
\(521\) 32.0134 1.40253 0.701266 0.712900i \(-0.252619\pi\)
0.701266 + 0.712900i \(0.252619\pi\)
\(522\) 4.99064 + 5.59765i 0.218435 + 0.245002i
\(523\) −15.0870 + 8.71046i −0.659707 + 0.380882i −0.792165 0.610307i \(-0.791046\pi\)
0.132458 + 0.991189i \(0.457713\pi\)
\(524\) 4.73444i 0.206825i
\(525\) 4.70869 0.483229i 0.205504 0.0210899i
\(526\) −14.1470 + 8.16779i −0.616840 + 0.356133i
\(527\) 4.30984 7.46485i 0.187739 0.325174i
\(528\) −0.507593 + 0.366889i −0.0220902 + 0.0159668i
\(529\) −3.60393 + 6.24218i −0.156692 + 0.271399i
\(530\) 2.38085 + 1.37459i 0.103418 + 0.0597082i
\(531\) −9.21479 + 1.91147i −0.399888 + 0.0829507i
\(532\) −11.9090 0.274714i −0.516321 0.0119104i
\(533\) 11.3829i 0.493050i
\(534\) 7.75681 17.3077i 0.335670 0.748978i
\(535\) −0.781855 0.451404i −0.0338025 0.0195159i
\(536\) 0.731797 0.422503i 0.0316088 0.0182494i
\(537\) 4.44939 9.92790i 0.192006 0.428420i
\(538\) 15.6050 + 27.0287i 0.672781 + 1.16529i
\(539\) 0.169376i 0.00729554i
\(540\) 1.56929 + 4.95352i 0.0675316 + 0.213165i
\(541\) −14.8276 25.6821i −0.637487 1.10416i −0.985982 0.166850i \(-0.946641\pi\)
0.348495 0.937311i \(-0.386693\pi\)
\(542\) −15.8830 27.5101i −0.682233 1.18166i
\(543\) 4.34951 + 42.3825i 0.186655 + 1.81881i
\(544\) 1.58430i 0.0679264i
\(545\) 4.77607 + 8.27239i 0.204584 + 0.354350i
\(546\) −11.5826 5.19099i −0.495690 0.222154i
\(547\) −20.9812 + 12.1135i −0.897093 + 0.517937i −0.876256 0.481846i \(-0.839967\pi\)
−0.0208373 + 0.999783i \(0.506633\pi\)
\(548\) −4.07740 2.35409i −0.174178 0.100562i
\(549\) 7.02939 21.2785i 0.300007 0.908144i
\(550\) 0.361598i 0.0154186i
\(551\) −10.8934 0.251287i −0.464075 0.0107052i
\(552\) −0.702683 6.84709i −0.0299082 0.291432i
\(553\) 9.75931 + 5.63454i 0.415008 + 0.239605i
\(554\) −10.4326 + 18.0699i −0.443240 + 0.767715i
\(555\) 8.05208 + 11.1401i 0.341792 + 0.472871i
\(556\) −7.46724 + 12.9336i −0.316681 + 0.548508i
\(557\) −16.2011 + 9.35371i −0.686463 + 0.396329i −0.802285 0.596941i \(-0.796383\pi\)
0.115823 + 0.993270i \(0.463049\pi\)
\(558\) −3.31518 15.9818i −0.140343 0.676564i
\(559\) 6.63372i 0.280577i
\(560\) −2.36671 + 1.36642i −0.100012 + 0.0577418i
\(561\) −0.581263 0.804180i −0.0245409 0.0339525i
\(562\) −0.388089 −0.0163706
\(563\) −37.5624 −1.58307 −0.791534 0.611125i \(-0.790717\pi\)
−0.791534 + 0.611125i \(0.790717\pi\)
\(564\) 10.7356 7.75972i 0.452051 0.326743i
\(565\) −15.6636 9.04339i −0.658973 0.380458i
\(566\) 10.8411 + 18.7773i 0.455684 + 0.789268i
\(567\) −2.81079 + 24.4344i −0.118042 + 1.02615i
\(568\) 4.22259 7.31374i 0.177176 0.306878i
\(569\) 21.0817 0.883790 0.441895 0.897067i \(-0.354306\pi\)
0.441895 + 0.897067i \(0.354306\pi\)
\(570\) −6.81652 3.24577i −0.285513 0.135950i
\(571\) 23.5374 0.985009 0.492505 0.870310i \(-0.336082\pi\)
0.492505 + 0.870310i \(0.336082\pi\)
\(572\) 0.484812 0.839718i 0.0202710 0.0351104i
\(573\) 40.4700 + 18.1375i 1.69066 + 0.757704i
\(574\) −5.80044 10.0467i −0.242106 0.419340i
\(575\) −3.44153 1.98697i −0.143522 0.0828622i
\(576\) −1.99643 2.23925i −0.0831846 0.0933023i
\(577\) −7.74252 −0.322325 −0.161163 0.986928i \(-0.551524\pi\)
−0.161163 + 0.986928i \(0.551524\pi\)
\(578\) −14.4900 −0.602704
\(579\) 4.20011 3.03585i 0.174551 0.126166i
\(580\) −2.16488 + 1.24989i −0.0898916 + 0.0518989i
\(581\) 1.78131i 0.0739014i
\(582\) −3.12460 30.4468i −0.129519 1.26206i
\(583\) −0.860910 + 0.497047i −0.0356553 + 0.0205856i
\(584\) −6.07501 + 10.5222i −0.251386 + 0.435413i
\(585\) −5.35343 6.00456i −0.221337 0.248258i
\(586\) 16.1427 27.9601i 0.666851 1.15502i
\(587\) 33.6896 + 19.4507i 1.39052 + 0.802816i 0.993373 0.114939i \(-0.0366674\pi\)
0.397146 + 0.917755i \(0.370001\pi\)
\(588\) −0.807072 + 0.0828258i −0.0332831 + 0.00341568i
\(589\) 20.2592 + 12.3282i 0.834765 + 0.507973i
\(590\) 3.13699i 0.129148i
\(591\) −28.0056 12.5513i −1.15200 0.516292i
\(592\) −6.87273 3.96797i −0.282468 0.163083i
\(593\) −7.33331 + 4.23389i −0.301143 + 0.173865i −0.642956 0.765903i \(-0.722292\pi\)
0.341813 + 0.939768i \(0.388959\pi\)
\(594\) −1.83493 0.404161i −0.0752882 0.0165829i
\(595\) −2.16482 3.74958i −0.0887490 0.153718i
\(596\) 22.6362i 0.927215i
\(597\) −35.4463 + 3.63768i −1.45072 + 0.148880i
\(598\) 5.32805 + 9.22845i 0.217880 + 0.377379i
\(599\) −18.3405 31.7667i −0.749372 1.29795i −0.948124 0.317901i \(-0.897022\pi\)
0.198752 0.980050i \(-0.436311\pi\)
\(600\) −1.72300 + 0.176823i −0.0703412 + 0.00721877i
\(601\) 9.79356i 0.399488i −0.979848 0.199744i \(-0.935989\pi\)
0.979848 0.199744i \(-0.0640110\pi\)
\(602\) −3.38037 5.85497i −0.137773 0.238631i
\(603\) 2.40707 + 0.795181i 0.0980236 + 0.0323823i
\(604\) 3.14748 1.81720i 0.128069 0.0739408i
\(605\) 9.41304 + 5.43462i 0.382695 + 0.220949i
\(606\) 1.09023 + 0.488607i 0.0442874 + 0.0198483i
\(607\) 12.9985i 0.527593i −0.964578 0.263796i \(-0.915025\pi\)
0.964578 0.263796i \(-0.0849747\pi\)
\(608\) 4.35774 + 0.100523i 0.176730 + 0.00407676i
\(609\) −11.7707 + 1.20797i −0.476972 + 0.0489493i
\(610\) 6.46907 + 3.73492i 0.261925 + 0.151223i
\(611\) −10.2538 + 17.7601i −0.414824 + 0.718496i
\(612\) 3.54765 3.16295i 0.143405 0.127855i
\(613\) −14.8471 + 25.7160i −0.599669 + 1.03866i 0.393200 + 0.919453i \(0.371368\pi\)
−0.992870 + 0.119205i \(0.961965\pi\)
\(614\) −16.9205 + 9.76906i −0.682856 + 0.394247i
\(615\) −0.750613 7.31413i −0.0302676 0.294934i
\(616\) 0.988188i 0.0398152i
\(617\) 11.7412 6.77878i 0.472683 0.272904i −0.244679 0.969604i \(-0.578683\pi\)
0.717362 + 0.696700i \(0.245349\pi\)
\(618\) −21.6102 + 15.6199i −0.869291 + 0.628325i
\(619\) 11.0205 0.442953 0.221476 0.975166i \(-0.428912\pi\)
0.221476 + 0.975166i \(0.428912\pi\)
\(620\) 5.44068 0.218503
\(621\) 13.9295 15.2432i 0.558973 0.611690i
\(622\) −26.6135 15.3653i −1.06710 0.616093i
\(623\) 14.9627 + 25.9161i 0.599466 + 1.03831i
\(624\) 4.23831 + 1.89949i 0.169668 + 0.0760403i
\(625\) −0.500000 + 0.866025i −0.0200000 + 0.0346410i
\(626\) −10.2329 −0.408988
\(627\) 2.24884 1.54778i 0.0898100 0.0618125i
\(628\) 13.5288 0.539859
\(629\) 6.28647 10.8885i 0.250658 0.434152i
\(630\) −7.78473 2.57170i −0.310151 0.102459i
\(631\) 4.03125 + 6.98234i 0.160482 + 0.277962i 0.935042 0.354538i \(-0.115362\pi\)
−0.774560 + 0.632501i \(0.782029\pi\)
\(632\) −3.57112 2.06179i −0.142052 0.0820136i
\(633\) 0.390517 0.282266i 0.0155217 0.0112191i
\(634\) −0.504167 −0.0200230
\(635\) −3.56102 −0.141315
\(636\) −2.78940 3.85915i −0.110607 0.153025i
\(637\) 1.08776 0.628021i 0.0430988 0.0248831i
\(638\) 0.903915i 0.0357864i
\(639\) 24.8074 5.14593i 0.981367 0.203570i
\(640\) 0.866025 0.500000i 0.0342327 0.0197642i
\(641\) −2.77035 + 4.79838i −0.109422 + 0.189525i −0.915536 0.402235i \(-0.868233\pi\)
0.806114 + 0.591760i \(0.201567\pi\)
\(642\) 0.916020 + 1.26732i 0.0361524 + 0.0500171i
\(643\) −20.2446 + 35.0647i −0.798369 + 1.38282i 0.122308 + 0.992492i \(0.460970\pi\)
−0.920678 + 0.390324i \(0.872363\pi\)
\(644\) 9.40514 + 5.43006i 0.370614 + 0.213974i
\(645\) −0.437440 4.26251i −0.0172242 0.167836i
\(646\) −0.159259 + 6.90397i −0.00626598 + 0.271633i
\(647\) 13.7403i 0.540185i −0.962834 0.270093i \(-0.912946\pi\)
0.962834 0.270093i \(-0.0870543\pi\)
\(648\) 1.02852 8.94104i 0.0404042 0.351237i
\(649\) 0.982355 + 0.567163i 0.0385608 + 0.0222631i
\(650\) 2.32225 1.34075i 0.0910860 0.0525885i
\(651\) 23.5008 + 10.5324i 0.921067 + 0.412795i
\(652\) 9.47783 + 16.4161i 0.371181 + 0.642904i
\(653\) 16.0733i 0.628997i −0.949258 0.314498i \(-0.898164\pi\)
0.949258 0.314498i \(-0.101836\pi\)
\(654\) −1.68904 16.4583i −0.0660466 0.643572i
\(655\) 2.36722 + 4.10014i 0.0924949 + 0.160206i
\(656\) 2.12250 + 3.67627i 0.0828696 + 0.143534i
\(657\) −35.6903 + 7.40340i −1.39241 + 0.288834i
\(658\) 20.9002i 0.814775i
\(659\) 0.00725277 + 0.0125622i 0.000282528 + 0.000489352i 0.866167 0.499755i \(-0.166577\pi\)
−0.865884 + 0.500245i \(0.833243\pi\)
\(660\) 0.256144 0.571532i 0.00997039 0.0222468i
\(661\) 1.46214 0.844167i 0.0568706 0.0328343i −0.471295 0.881976i \(-0.656213\pi\)
0.528166 + 0.849141i \(0.322880\pi\)
\(662\) 14.4766 + 8.35805i 0.562648 + 0.324845i
\(663\) −3.00936 + 6.71476i −0.116874 + 0.260780i
\(664\) 0.651818i 0.0252954i
\(665\) 10.4509 5.71659i 0.405267 0.221680i
\(666\) −4.83563 23.3116i −0.187377 0.903306i
\(667\) 8.60307 + 4.96699i 0.333112 + 0.192322i
\(668\) 2.66087 4.60877i 0.102952 0.178319i
\(669\) 7.38965 5.34125i 0.285700 0.206505i
\(670\) −0.422503 + 0.731797i −0.0163227 + 0.0282718i
\(671\) −2.33920 + 1.35054i −0.0903039 + 0.0521370i
\(672\) 4.70869 0.483229i 0.181641 0.0186410i
\(673\) 23.2047i 0.894476i 0.894415 + 0.447238i \(0.147592\pi\)
−0.894415 + 0.447238i \(0.852408\pi\)
\(674\) 5.81314 3.35622i 0.223914 0.129277i
\(675\) −3.83581 3.50522i −0.147640 0.134916i
\(676\) 5.80957 0.223445
\(677\) 41.7346 1.60399 0.801995 0.597330i \(-0.203772\pi\)
0.801995 + 0.597330i \(0.203772\pi\)
\(678\) 18.3515 + 25.3893i 0.704784 + 0.975072i
\(679\) 41.8215 + 24.1457i 1.60496 + 0.926626i
\(680\) 0.792151 + 1.37205i 0.0303776 + 0.0526155i
\(681\) −12.8819 + 28.7432i −0.493634 + 1.10144i
\(682\) −0.983667 + 1.70376i −0.0376666 + 0.0652404i
\(683\) −38.4483 −1.47118 −0.735592 0.677424i \(-0.763096\pi\)
−0.735592 + 0.677424i \(0.763096\pi\)
\(684\) 8.47483 + 9.95878i 0.324043 + 0.380783i
\(685\) 4.70818 0.179890
\(686\) −8.92489 + 15.4584i −0.340754 + 0.590203i
\(687\) −0.0654459 + 0.146029i −0.00249692 + 0.00557135i
\(688\) 1.23694 + 2.14245i 0.0471580 + 0.0816801i
\(689\) 6.38425 + 3.68595i 0.243221 + 0.140423i
\(690\) 4.03209 + 5.57841i 0.153499 + 0.212367i
\(691\) −6.15004 −0.233958 −0.116979 0.993134i \(-0.537321\pi\)
−0.116979 + 0.993134i \(0.537321\pi\)
\(692\) −10.0398 −0.381655
\(693\) 2.21280 1.97285i 0.0840575 0.0749424i
\(694\) −28.1207 + 16.2355i −1.06745 + 0.616290i
\(695\) 14.9345i 0.566497i
\(696\) 4.30713 0.442019i 0.163261 0.0167547i
\(697\) −5.82432 + 3.36268i −0.220612 + 0.127370i
\(698\) 1.45350 2.51753i 0.0550157 0.0952900i
\(699\) −20.0742 + 14.5097i −0.759275 + 0.548805i
\(700\) 1.36642 2.36671i 0.0516458 0.0894532i
\(701\) −11.7642 6.79204i −0.444326 0.256532i 0.261105 0.965310i \(-0.415913\pi\)
−0.705431 + 0.708779i \(0.749247\pi\)
\(702\) 4.20806 + 13.2828i 0.158823 + 0.501329i
\(703\) 29.5507 + 17.9823i 1.11453 + 0.678214i
\(704\) 0.361598i 0.0136282i
\(705\) −5.41746 + 12.0879i −0.204033 + 0.455258i
\(706\) −9.29461 5.36625i −0.349807 0.201961i
\(707\) −1.63247 + 0.942509i −0.0613955 + 0.0354467i
\(708\) −2.22214 + 4.95824i −0.0835131 + 0.186342i
\(709\) 6.74259 + 11.6785i 0.253223 + 0.438596i 0.964411 0.264406i \(-0.0851759\pi\)
−0.711188 + 0.703002i \(0.751843\pi\)
\(710\) 8.44518i 0.316942i
\(711\) −2.51263 12.1129i −0.0942311 0.454268i
\(712\) −5.47514 9.48321i −0.205189 0.355398i
\(713\) −10.8104 18.7242i −0.404854 0.701228i
\(714\) 0.765581 + 7.45998i 0.0286511 + 0.279183i
\(715\) 0.969623i 0.0362618i
\(716\) −3.14060 5.43967i −0.117370 0.203290i
\(717\) −41.4059 18.5569i −1.54633 0.693022i
\(718\) −1.09849 + 0.634215i −0.0409954 + 0.0236687i
\(719\) 33.3719 + 19.2672i 1.24456 + 0.718547i 0.970019 0.243028i \(-0.0781408\pi\)
0.274541 + 0.961575i \(0.411474\pi\)
\(720\) 2.84859 + 0.941036i 0.106161 + 0.0350703i
\(721\) 42.0710i 1.56681i
\(722\) −18.9798 0.876110i −0.706355 0.0326054i
\(723\) 3.41354 + 33.2622i 0.126951 + 1.23704i
\(724\) 21.3026 + 12.2990i 0.791703 + 0.457090i
\(725\) 1.24989 2.16488i 0.0464198 0.0804015i
\(726\) −11.0283 15.2577i −0.409299 0.566267i
\(727\) −0.428190 + 0.741646i −0.0158807 + 0.0275061i −0.873857 0.486184i \(-0.838389\pi\)
0.857976 + 0.513690i \(0.171722\pi\)
\(728\) −6.34632 + 3.66405i −0.235210 + 0.135799i
\(729\) 22.0746 15.5470i 0.817579 0.575816i
\(730\) 12.1500i 0.449692i
\(731\) −3.39428 + 1.95969i −0.125542 + 0.0724818i
\(732\) −7.57916 10.4858i −0.280134 0.387566i
\(733\) 4.85312 0.179254 0.0896270 0.995975i \(-0.471432\pi\)
0.0896270 + 0.995975i \(0.471432\pi\)
\(734\) −9.61170 −0.354774
\(735\) 0.657532 0.475265i 0.0242534 0.0175304i
\(736\) −3.44153 1.98697i −0.126856 0.0732406i
\(737\) −0.152776 0.264616i −0.00562758 0.00974725i
\(738\) −3.99469 + 12.0922i −0.147047 + 0.445121i
\(739\) −6.25405 + 10.8323i −0.230059 + 0.398474i −0.957825 0.287352i \(-0.907225\pi\)
0.727766 + 0.685825i \(0.240559\pi\)
\(740\) 7.93595 0.291731
\(741\) −18.2785 8.70351i −0.671477 0.319732i
\(742\) 7.51304 0.275813
\(743\) 8.87174 15.3663i 0.325473 0.563735i −0.656135 0.754643i \(-0.727810\pi\)
0.981608 + 0.190908i \(0.0611433\pi\)
\(744\) −8.59939 3.85400i −0.315269 0.141294i
\(745\) 11.3181 + 19.6035i 0.414663 + 0.718217i
\(746\) 11.5269 + 6.65507i 0.422030 + 0.243659i
\(747\) −1.45959 + 1.30131i −0.0534035 + 0.0476124i
\(748\) −0.572880 −0.0209466
\(749\) −2.46723 −0.0901506
\(750\) 1.40375 1.01463i 0.0512578 0.0370492i
\(751\) 14.7151 8.49577i 0.536962 0.310015i −0.206885 0.978365i \(-0.566333\pi\)
0.743847 + 0.668350i \(0.232999\pi\)
\(752\) 7.64780i 0.278887i
\(753\) −1.97062 19.2021i −0.0718132 0.699763i
\(754\) −5.80511 + 3.35158i −0.211410 + 0.122057i
\(755\) −1.81720 + 3.14748i −0.0661347 + 0.114549i
\(756\) 10.4826 + 9.57921i 0.381250 + 0.348393i
\(757\) 27.1732 47.0654i 0.987628 1.71062i 0.358008 0.933719i \(-0.383456\pi\)
0.629620 0.776903i \(-0.283211\pi\)
\(758\) −5.92231 3.41925i −0.215108 0.124193i
\(759\) −2.47589 + 0.254089i −0.0898692 + 0.00922283i
\(760\) −3.82417 + 2.09181i −0.138717 + 0.0758781i
\(761\) 14.7061i 0.533095i −0.963822 0.266547i \(-0.914117\pi\)
0.963822 0.266547i \(-0.0858829\pi\)
\(762\) 5.62846 + 2.52251i 0.203898 + 0.0913810i
\(763\) 22.6071 + 13.0522i 0.818432 + 0.472522i
\(764\) 22.1742 12.8023i 0.802236 0.463171i
\(765\) −1.49088 + 4.51302i −0.0539030 + 0.163169i
\(766\) 10.2329 + 17.7238i 0.369728 + 0.640388i
\(767\) 8.41182i 0.303733i
\(768\) −1.72300 + 0.176823i −0.0621735 + 0.00638056i
\(769\) −16.8290 29.1487i −0.606869 1.05113i −0.991753 0.128164i \(-0.959092\pi\)
0.384884 0.922965i \(-0.374242\pi\)
\(770\) 0.494094 + 0.855796i 0.0178059 + 0.0308407i
\(771\) −13.7320 + 1.40924i −0.494545 + 0.0507527i
\(772\) 2.99206i 0.107687i
\(773\) −21.1817 36.6877i −0.761851 1.31957i −0.941895 0.335907i \(-0.890957\pi\)
0.180044 0.983659i \(-0.442376\pi\)
\(774\) −2.32802 + 7.04708i −0.0836788 + 0.253302i
\(775\) −4.71176 + 2.72034i