Properties

Label 570.2.s.b
Level $570$
Weight $2$
Character orbit 570.s
Analytic conductor $4.551$
Analytic rank $0$
Dimension $24$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 570 = 2 \cdot 3 \cdot 5 \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 570.s (of order \(6\), degree \(2\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(4.55147291521\)
Analytic rank: \(0\)
Dimension: \(24\)
Relative dimension: \(12\) over \(\Q(\zeta_{6})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

$q$-expansion

The dimension is sufficiently large that we do not compute an algebraic \(q\)-expansion, but we have computed the trace expansion.

\(\operatorname{Tr}(f)(q) = \) \( 24 q + 12 q^{2} + 2 q^{3} - 12 q^{4} + 4 q^{6} - 12 q^{7} - 24 q^{8} + 2 q^{9}+O(q^{10}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q) = \) \( 24 q + 12 q^{2} + 2 q^{3} - 12 q^{4} + 4 q^{6} - 12 q^{7} - 24 q^{8} + 2 q^{9} + 2 q^{12} + 18 q^{13} - 6 q^{14} - 12 q^{16} - 12 q^{17} - 2 q^{18} + 6 q^{19} + 6 q^{21} + 18 q^{22} - 2 q^{24} + 12 q^{25} - 28 q^{27} + 6 q^{28} + 12 q^{32} - 8 q^{33} - 12 q^{34} - 4 q^{36} - 6 q^{38} + 40 q^{39} - 6 q^{41} - 6 q^{42} - 22 q^{43} + 18 q^{44} + 8 q^{45} - 12 q^{47} - 4 q^{48} + 12 q^{49} + 24 q^{50} - 4 q^{51} - 18 q^{52} - 8 q^{53} - 32 q^{54} + 12 q^{56} - 20 q^{57} - 26 q^{59} + 22 q^{61} + 18 q^{62} + 30 q^{63} + 24 q^{64} - 8 q^{65} - 22 q^{66} - 48 q^{67} + 64 q^{69} - 24 q^{71} - 2 q^{72} - 8 q^{73} - 30 q^{74} - 2 q^{75} - 12 q^{76} + 2 q^{78} + 18 q^{79} - 6 q^{81} + 6 q^{82} - 12 q^{84} + 22 q^{86} - 24 q^{87} - 28 q^{89} + 16 q^{90} + 18 q^{91} + 14 q^{93} - 2 q^{96} + 6 q^{97} + 6 q^{98} - 52 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
221.1 0.500000 + 0.866025i −1.71401 0.249340i −0.500000 + 0.866025i 0.866025 0.500000i −0.641070 1.60905i −2.43208 −1.00000 2.87566 + 0.854742i 0.866025 + 0.500000i
221.2 0.500000 + 0.866025i −1.67336 + 0.447064i −0.500000 + 0.866025i 0.866025 0.500000i −1.22385 1.22564i 3.20940 −1.00000 2.60027 1.49620i 0.866025 + 0.500000i
221.3 0.500000 + 0.866025i −1.33656 + 1.10164i −0.500000 + 0.866025i −0.866025 + 0.500000i −1.62233 0.606673i −1.76552 −1.00000 0.572776 2.94481i −0.866025 0.500000i
221.4 0.500000 + 0.866025i −1.28548 1.16083i −0.500000 + 0.866025i −0.866025 + 0.500000i 0.362568 1.69368i −0.535070 −1.00000 0.304938 + 2.98446i −0.866025 0.500000i
221.5 0.500000 + 0.866025i −0.224845 1.71739i −0.500000 + 0.866025i −0.866025 + 0.500000i 1.37489 1.05342i −1.74360 −1.00000 −2.89889 + 0.772294i −0.866025 0.500000i
221.6 0.500000 + 0.866025i 0.130029 1.72716i −0.500000 + 0.866025i 0.866025 0.500000i 1.56078 0.750973i −4.16200 −1.00000 −2.96618 0.449163i 0.866025 + 0.500000i
221.7 0.500000 + 0.866025i 0.708367 + 1.58057i −0.500000 + 0.866025i 0.866025 0.500000i −1.01463 + 1.40375i 2.73284 −1.00000 −1.99643 + 2.23925i 0.866025 + 0.500000i
221.8 0.500000 + 0.866025i 0.800591 + 1.53592i −0.500000 + 0.866025i −0.866025 + 0.500000i −0.929852 + 1.46129i −4.66317 −1.00000 −1.71811 + 2.45929i −0.866025 0.500000i
221.9 0.500000 + 0.866025i 1.00317 1.41197i −0.500000 + 0.866025i −0.866025 + 0.500000i 1.72438 + 0.162784i 3.36569 −1.00000 −0.987311 2.83288i −0.866025 0.500000i
221.10 0.500000 + 0.866025i 1.32792 1.11204i −0.500000 + 0.866025i 0.866025 0.500000i 1.62701 + 0.593994i −0.387589 −1.00000 0.526745 2.95339i 0.866025 + 0.500000i
221.11 0.500000 + 0.866025i 1.54313 + 0.786608i −0.500000 + 0.866025i −0.866025 + 0.500000i 0.0903420 + 1.72969i 2.34168 −1.00000 1.76250 + 2.42768i −0.866025 0.500000i
221.12 0.500000 + 0.866025i 1.72105 + 0.194877i −0.500000 + 0.866025i 0.866025 0.500000i 0.691758 + 1.58791i −1.96058 −1.00000 2.92405 + 0.670786i 0.866025 + 0.500000i
521.1 0.500000 0.866025i −1.71401 + 0.249340i −0.500000 0.866025i 0.866025 + 0.500000i −0.641070 + 1.60905i −2.43208 −1.00000 2.87566 0.854742i 0.866025 0.500000i
521.2 0.500000 0.866025i −1.67336 0.447064i −0.500000 0.866025i 0.866025 + 0.500000i −1.22385 + 1.22564i 3.20940 −1.00000 2.60027 + 1.49620i 0.866025 0.500000i
521.3 0.500000 0.866025i −1.33656 1.10164i −0.500000 0.866025i −0.866025 0.500000i −1.62233 + 0.606673i −1.76552 −1.00000 0.572776 + 2.94481i −0.866025 + 0.500000i
521.4 0.500000 0.866025i −1.28548 + 1.16083i −0.500000 0.866025i −0.866025 0.500000i 0.362568 + 1.69368i −0.535070 −1.00000 0.304938 2.98446i −0.866025 + 0.500000i
521.5 0.500000 0.866025i −0.224845 + 1.71739i −0.500000 0.866025i −0.866025 0.500000i 1.37489 + 1.05342i −1.74360 −1.00000 −2.89889 0.772294i −0.866025 + 0.500000i
521.6 0.500000 0.866025i 0.130029 + 1.72716i −0.500000 0.866025i 0.866025 + 0.500000i 1.56078 + 0.750973i −4.16200 −1.00000 −2.96618 + 0.449163i 0.866025 0.500000i
521.7 0.500000 0.866025i 0.708367 1.58057i −0.500000 0.866025i 0.866025 + 0.500000i −1.01463 1.40375i 2.73284 −1.00000 −1.99643 2.23925i 0.866025 0.500000i
521.8 0.500000 0.866025i 0.800591 1.53592i −0.500000 0.866025i −0.866025 0.500000i −0.929852 1.46129i −4.66317 −1.00000 −1.71811 2.45929i −0.866025 + 0.500000i
See all 24 embeddings
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 521.12
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
57.f even 6 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 570.2.s.b yes 24
3.b odd 2 1 570.2.s.a 24
19.d odd 6 1 570.2.s.a 24
57.f even 6 1 inner 570.2.s.b yes 24
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
570.2.s.a 24 3.b odd 2 1
570.2.s.a 24 19.d odd 6 1
570.2.s.b yes 24 1.a even 1 1 trivial
570.2.s.b yes 24 57.f even 6 1 inner

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{17}^{24} + 12 T_{17}^{23} - 40 T_{17}^{22} - 1056 T_{17}^{21} + 812 T_{17}^{20} + 66120 T_{17}^{19} + 147584 T_{17}^{18} - 1931112 T_{17}^{17} - 7089220 T_{17}^{16} + 40050480 T_{17}^{15} + 217155696 T_{17}^{14} + \cdots + 18547561529344 \) acting on \(S_{2}^{\mathrm{new}}(570, [\chi])\). Copy content Toggle raw display