Properties

Label 570.2.s.a.521.6
Level $570$
Weight $2$
Character 570.521
Analytic conductor $4.551$
Analytic rank $0$
Dimension $24$
CM no
Inner twists $2$

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) \(=\) \( 570 = 2 \cdot 3 \cdot 5 \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 570.s (of order \(6\), degree \(2\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(4.55147291521\)
Analytic rank: \(0\)
Dimension: \(24\)
Relative dimension: \(12\) over \(\Q(\zeta_{6})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 521.6
Character \(\chi\) \(=\) 570.521
Dual form 570.2.s.a.221.6

$q$-expansion

\(f(q)\) \(=\) \(q+(-0.500000 + 0.866025i) q^{2} +(0.0903420 + 1.72969i) q^{3} +(-0.500000 - 0.866025i) q^{4} +(0.866025 + 0.500000i) q^{5} +(-1.54313 - 0.786608i) q^{6} +2.34168 q^{7} +1.00000 q^{8} +(-2.98368 + 0.312528i) q^{9} +O(q^{10})\) \(q+(-0.500000 + 0.866025i) q^{2} +(0.0903420 + 1.72969i) q^{3} +(-0.500000 - 0.866025i) q^{4} +(0.866025 + 0.500000i) q^{5} +(-1.54313 - 0.786608i) q^{6} +2.34168 q^{7} +1.00000 q^{8} +(-2.98368 + 0.312528i) q^{9} +(-0.866025 + 0.500000i) q^{10} +2.39841i q^{11} +(1.45279 - 0.943085i) q^{12} +(-0.414577 + 0.239356i) q^{13} +(-1.17084 + 2.02795i) q^{14} +(-0.786608 + 1.54313i) q^{15} +(-0.500000 + 0.866025i) q^{16} +(2.40013 + 1.38572i) q^{17} +(1.22118 - 2.74020i) q^{18} +(0.994947 + 4.24383i) q^{19} -1.00000i q^{20} +(0.211552 + 4.05038i) q^{21} +(-2.07709 - 1.19921i) q^{22} +(-1.80040 + 1.03946i) q^{23} +(0.0903420 + 1.72969i) q^{24} +(0.500000 + 0.866025i) q^{25} -0.478712i q^{26} +(-0.810128 - 5.13261i) q^{27} +(-1.17084 - 2.02795i) q^{28} +(0.313727 + 0.543392i) q^{29} +(-0.943085 - 1.45279i) q^{30} +2.05113i q^{31} +(-0.500000 - 0.866025i) q^{32} +(-4.14852 + 0.216677i) q^{33} +(-2.40013 + 1.38572i) q^{34} +(2.02795 + 1.17084i) q^{35} +(1.76250 + 2.42768i) q^{36} -5.67577i q^{37} +(-4.17274 - 1.26026i) q^{38} +(-0.451467 - 0.695467i) q^{39} +(0.866025 + 0.500000i) q^{40} +(-1.04624 + 1.81214i) q^{41} +(-3.61351 - 1.84198i) q^{42} +(-3.77271 + 6.53452i) q^{43} +(2.07709 - 1.19921i) q^{44} +(-2.74020 - 1.22118i) q^{45} -2.07892i q^{46} +(-1.94389 + 1.12231i) q^{47} +(-1.54313 - 0.786608i) q^{48} -1.51654 q^{49} -1.00000 q^{50} +(-2.18003 + 4.27668i) q^{51} +(0.414577 + 0.239356i) q^{52} +(-6.64114 - 11.5028i) q^{53} +(4.85004 + 1.86471i) q^{54} +(-1.19921 + 2.07709i) q^{55} +2.34168 q^{56} +(-7.25064 + 2.10435i) q^{57} -0.627455 q^{58} +(3.13769 - 5.43465i) q^{59} +(1.72969 - 0.0903420i) q^{60} +(1.25195 + 2.16845i) q^{61} +(-1.77633 - 1.02556i) q^{62} +(-6.98681 + 0.731839i) q^{63} +1.00000 q^{64} -0.478712 q^{65} +(1.88661 - 3.70106i) q^{66} +(11.3258 - 6.53894i) q^{67} -2.77143i q^{68} +(-1.96060 - 3.02023i) q^{69} +(-2.02795 + 1.17084i) q^{70} +(2.68385 - 4.64856i) q^{71} +(-2.98368 + 0.312528i) q^{72} +(-5.81045 + 10.0640i) q^{73} +(4.91536 + 2.83789i) q^{74} +(-1.45279 + 0.943085i) q^{75} +(3.17779 - 2.98356i) q^{76} +5.61632i q^{77} +(0.828026 - 0.0432478i) q^{78} +(10.1589 + 5.86527i) q^{79} +(-0.866025 + 0.500000i) q^{80} +(8.80465 - 1.86496i) q^{81} +(-1.04624 - 1.81214i) q^{82} -11.3081i q^{83} +(3.40196 - 2.20840i) q^{84} +(1.38572 + 2.40013i) q^{85} +(-3.77271 - 6.53452i) q^{86} +(-0.911558 + 0.591743i) q^{87} +2.39841i q^{88} +(4.97362 + 8.61457i) q^{89} +(2.42768 - 1.76250i) q^{90} +(-0.970806 + 0.560495i) q^{91} +(1.80040 + 1.03946i) q^{92} +(-3.54782 + 0.185303i) q^{93} -2.24461i q^{94} +(-1.26026 + 4.17274i) q^{95} +(1.45279 - 0.943085i) q^{96} +(7.49209 + 4.32556i) q^{97} +(0.758271 - 1.31336i) q^{98} +(-0.749571 - 7.15609i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 24q - 12q^{2} + 4q^{3} - 12q^{4} - 2q^{6} - 12q^{7} + 24q^{8} - 4q^{9} + O(q^{10}) \) \( 24q - 12q^{2} + 4q^{3} - 12q^{4} - 2q^{6} - 12q^{7} + 24q^{8} - 4q^{9} - 2q^{12} + 18q^{13} + 6q^{14} - 12q^{16} + 12q^{17} + 2q^{18} + 6q^{19} - 6q^{21} + 18q^{22} + 4q^{24} + 12q^{25} + 28q^{27} + 6q^{28} - 12q^{32} - 22q^{33} - 12q^{34} + 2q^{36} + 6q^{38} + 40q^{39} + 6q^{41} - 6q^{42} - 22q^{43} - 18q^{44} + 8q^{45} + 12q^{47} - 2q^{48} + 12q^{49} - 24q^{50} - 20q^{51} - 18q^{52} + 8q^{53} + 4q^{54} - 12q^{56} + 26q^{59} + 22q^{61} - 18q^{62} + 6q^{63} + 24q^{64} + 8q^{65} + 8q^{66} - 48q^{67} - 64q^{69} + 24q^{71} - 4q^{72} - 8q^{73} + 30q^{74} + 2q^{75} - 12q^{76} - 38q^{78} + 18q^{79} - 12q^{81} + 6q^{82} + 12q^{84} - 22q^{86} - 24q^{87} + 28q^{89} + 8q^{90} + 18q^{91} + 2q^{93} - 2q^{96} + 6q^{97} - 6q^{98} + 2q^{99} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/570\mathbb{Z}\right)^\times\).

\(n\) \(191\) \(211\) \(457\)
\(\chi(n)\) \(-1\) \(e\left(\frac{1}{6}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.500000 + 0.866025i −0.353553 + 0.612372i
\(3\) 0.0903420 + 1.72969i 0.0521590 + 0.998639i
\(4\) −0.500000 0.866025i −0.250000 0.433013i
\(5\) 0.866025 + 0.500000i 0.387298 + 0.223607i
\(6\) −1.54313 0.786608i −0.629980 0.321131i
\(7\) 2.34168 0.885071 0.442536 0.896751i \(-0.354079\pi\)
0.442536 + 0.896751i \(0.354079\pi\)
\(8\) 1.00000 0.353553
\(9\) −2.98368 + 0.312528i −0.994559 + 0.104176i
\(10\) −0.866025 + 0.500000i −0.273861 + 0.158114i
\(11\) 2.39841i 0.723149i 0.932343 + 0.361575i \(0.117761\pi\)
−0.932343 + 0.361575i \(0.882239\pi\)
\(12\) 1.45279 0.943085i 0.419384 0.272245i
\(13\) −0.414577 + 0.239356i −0.114983 + 0.0663855i −0.556389 0.830922i \(-0.687813\pi\)
0.441406 + 0.897308i \(0.354480\pi\)
\(14\) −1.17084 + 2.02795i −0.312920 + 0.541993i
\(15\) −0.786608 + 1.54313i −0.203101 + 0.398434i
\(16\) −0.500000 + 0.866025i −0.125000 + 0.216506i
\(17\) 2.40013 + 1.38572i 0.582117 + 0.336086i 0.761974 0.647607i \(-0.224230\pi\)
−0.179857 + 0.983693i \(0.557564\pi\)
\(18\) 1.22118 2.74020i 0.287835 0.645872i
\(19\) 0.994947 + 4.24383i 0.228256 + 0.973601i
\(20\) 1.00000i 0.223607i
\(21\) 0.211552 + 4.05038i 0.0461644 + 0.883866i
\(22\) −2.07709 1.19921i −0.442837 0.255672i
\(23\) −1.80040 + 1.03946i −0.375409 + 0.216743i −0.675819 0.737068i \(-0.736210\pi\)
0.300410 + 0.953810i \(0.402877\pi\)
\(24\) 0.0903420 + 1.72969i 0.0184410 + 0.353072i
\(25\) 0.500000 + 0.866025i 0.100000 + 0.173205i
\(26\) 0.478712i 0.0938832i
\(27\) −0.810128 5.13261i −0.155909 0.987771i
\(28\) −1.17084 2.02795i −0.221268 0.383247i
\(29\) 0.313727 + 0.543392i 0.0582577 + 0.100905i 0.893683 0.448698i \(-0.148112\pi\)
−0.835426 + 0.549603i \(0.814779\pi\)
\(30\) −0.943085 1.45279i −0.172183 0.265241i
\(31\) 2.05113i 0.368394i 0.982889 + 0.184197i \(0.0589684\pi\)
−0.982889 + 0.184197i \(0.941032\pi\)
\(32\) −0.500000 0.866025i −0.0883883 0.153093i
\(33\) −4.14852 + 0.216677i −0.722165 + 0.0377187i
\(34\) −2.40013 + 1.38572i −0.411619 + 0.237648i
\(35\) 2.02795 + 1.17084i 0.342787 + 0.197908i
\(36\) 1.76250 + 2.42768i 0.293749 + 0.404613i
\(37\) 5.67577i 0.933091i −0.884497 0.466546i \(-0.845498\pi\)
0.884497 0.466546i \(-0.154502\pi\)
\(38\) −4.17274 1.26026i −0.676907 0.204442i
\(39\) −0.451467 0.695467i −0.0722925 0.111364i
\(40\) 0.866025 + 0.500000i 0.136931 + 0.0790569i
\(41\) −1.04624 + 1.81214i −0.163395 + 0.283008i −0.936084 0.351776i \(-0.885578\pi\)
0.772689 + 0.634785i \(0.218911\pi\)
\(42\) −3.61351 1.84198i −0.557577 0.284224i
\(43\) −3.77271 + 6.53452i −0.575333 + 0.996506i 0.420673 + 0.907213i \(0.361794\pi\)
−0.996005 + 0.0892931i \(0.971539\pi\)
\(44\) 2.07709 1.19921i 0.313133 0.180787i
\(45\) −2.74020 1.22118i −0.408485 0.182043i
\(46\) 2.07892i 0.306520i
\(47\) −1.94389 + 1.12231i −0.283546 + 0.163705i −0.635028 0.772490i \(-0.719011\pi\)
0.351482 + 0.936195i \(0.385678\pi\)
\(48\) −1.54313 0.786608i −0.222732 0.113537i
\(49\) −1.51654 −0.216649
\(50\) −1.00000 −0.141421
\(51\) −2.18003 + 4.27668i −0.305265 + 0.598855i
\(52\) 0.414577 + 0.239356i 0.0574915 + 0.0331927i
\(53\) −6.64114 11.5028i −0.912231 1.58003i −0.810906 0.585176i \(-0.801025\pi\)
−0.101325 0.994853i \(-0.532308\pi\)
\(54\) 4.85004 + 1.86471i 0.660006 + 0.253755i
\(55\) −1.19921 + 2.07709i −0.161701 + 0.280074i
\(56\) 2.34168 0.312920
\(57\) −7.25064 + 2.10435i −0.960370 + 0.278728i
\(58\) −0.627455 −0.0823889
\(59\) 3.13769 5.43465i 0.408493 0.707531i −0.586228 0.810146i \(-0.699388\pi\)
0.994721 + 0.102615i \(0.0327211\pi\)
\(60\) 1.72969 0.0903420i 0.223302 0.0116631i
\(61\) 1.25195 + 2.16845i 0.160296 + 0.277641i 0.934975 0.354714i \(-0.115422\pi\)
−0.774679 + 0.632355i \(0.782088\pi\)
\(62\) −1.77633 1.02556i −0.225594 0.130247i
\(63\) −6.98681 + 0.731839i −0.880255 + 0.0922031i
\(64\) 1.00000 0.125000
\(65\) −0.478712 −0.0593770
\(66\) 1.88661 3.70106i 0.232226 0.455569i
\(67\) 11.3258 6.53894i 1.38366 0.798859i 0.391073 0.920360i \(-0.372104\pi\)
0.992591 + 0.121501i \(0.0387707\pi\)
\(68\) 2.77143i 0.336086i
\(69\) −1.96060 3.02023i −0.236028 0.363593i
\(70\) −2.02795 + 1.17084i −0.242387 + 0.139942i
\(71\) 2.68385 4.64856i 0.318514 0.551682i −0.661664 0.749800i \(-0.730150\pi\)
0.980178 + 0.198118i \(0.0634829\pi\)
\(72\) −2.98368 + 0.312528i −0.351630 + 0.0368317i
\(73\) −5.81045 + 10.0640i −0.680062 + 1.17790i 0.294900 + 0.955528i \(0.404714\pi\)
−0.974962 + 0.222373i \(0.928620\pi\)
\(74\) 4.91536 + 2.83789i 0.571399 + 0.329898i
\(75\) −1.45279 + 0.943085i −0.167753 + 0.108898i
\(76\) 3.17779 2.98356i 0.364517 0.342238i
\(77\) 5.61632i 0.640038i
\(78\) 0.828026 0.0432478i 0.0937554 0.00489685i
\(79\) 10.1589 + 5.86527i 1.14297 + 0.659894i 0.947164 0.320749i \(-0.103934\pi\)
0.195806 + 0.980643i \(0.437268\pi\)
\(80\) −0.866025 + 0.500000i −0.0968246 + 0.0559017i
\(81\) 8.80465 1.86496i 0.978295 0.207218i
\(82\) −1.04624 1.81214i −0.115538 0.200117i
\(83\) 11.3081i 1.24123i −0.784115 0.620615i \(-0.786883\pi\)
0.784115 0.620615i \(-0.213117\pi\)
\(84\) 3.40196 2.20840i 0.371184 0.240956i
\(85\) 1.38572 + 2.40013i 0.150302 + 0.260331i
\(86\) −3.77271 6.53452i −0.406822 0.704636i
\(87\) −0.911558 + 0.591743i −0.0977293 + 0.0634415i
\(88\) 2.39841i 0.255672i
\(89\) 4.97362 + 8.61457i 0.527203 + 0.913142i 0.999497 + 0.0317016i \(0.0100926\pi\)
−0.472294 + 0.881441i \(0.656574\pi\)
\(90\) 2.42768 1.76250i 0.255900 0.185783i
\(91\) −0.970806 + 0.560495i −0.101768 + 0.0587559i
\(92\) 1.80040 + 1.03946i 0.187705 + 0.108371i
\(93\) −3.54782 + 0.185303i −0.367892 + 0.0192150i
\(94\) 2.24461i 0.231514i
\(95\) −1.26026 + 4.17274i −0.129300 + 0.428114i
\(96\) 1.45279 0.943085i 0.148274 0.0962532i
\(97\) 7.49209 + 4.32556i 0.760706 + 0.439194i 0.829549 0.558434i \(-0.188597\pi\)
−0.0688431 + 0.997627i \(0.521931\pi\)
\(98\) 0.758271 1.31336i 0.0765970 0.132670i
\(99\) −0.749571 7.15609i −0.0753347 0.719214i
\(100\) 0.500000 0.866025i 0.0500000 0.0866025i
\(101\) −3.96069 + 2.28671i −0.394103 + 0.227536i −0.683937 0.729542i \(-0.739733\pi\)
0.289833 + 0.957077i \(0.406400\pi\)
\(102\) −2.61370 4.02630i −0.258794 0.398663i
\(103\) 2.29913i 0.226540i −0.993564 0.113270i \(-0.963867\pi\)
0.993564 0.113270i \(-0.0361325\pi\)
\(104\) −0.414577 + 0.239356i −0.0406526 + 0.0234708i
\(105\) −1.84198 + 3.61351i −0.179759 + 0.352643i
\(106\) 13.2823 1.29009
\(107\) 12.1841 1.17788 0.588939 0.808177i \(-0.299546\pi\)
0.588939 + 0.808177i \(0.299546\pi\)
\(108\) −4.03991 + 3.26790i −0.388740 + 0.314454i
\(109\) −0.624429 0.360514i −0.0598095 0.0345310i 0.469797 0.882774i \(-0.344327\pi\)
−0.529607 + 0.848243i \(0.677660\pi\)
\(110\) −1.19921 2.07709i −0.114340 0.198043i
\(111\) 9.81735 0.512760i 0.931821 0.0486691i
\(112\) −1.17084 + 2.02795i −0.110634 + 0.191624i
\(113\) −9.99505 −0.940255 −0.470128 0.882598i \(-0.655792\pi\)
−0.470128 + 0.882598i \(0.655792\pi\)
\(114\) 1.80290 7.33141i 0.168857 0.686649i
\(115\) −2.07892 −0.193860
\(116\) 0.313727 0.543392i 0.0291289 0.0504527i
\(117\) 1.16216 0.843728i 0.107442 0.0780027i
\(118\) 3.13769 + 5.43465i 0.288848 + 0.500300i
\(119\) 5.62033 + 3.24490i 0.515215 + 0.297460i
\(120\) −0.786608 + 1.54313i −0.0718072 + 0.140868i
\(121\) 5.24761 0.477055
\(122\) −2.50391 −0.226693
\(123\) −3.22896 1.64596i −0.291146 0.148411i
\(124\) 1.77633 1.02556i 0.159519 0.0920984i
\(125\) 1.00000i 0.0894427i
\(126\) 2.85961 6.41668i 0.254755 0.571643i
\(127\) 9.58763 5.53542i 0.850764 0.491189i −0.0101444 0.999949i \(-0.503229\pi\)
0.860909 + 0.508760i \(0.169896\pi\)
\(128\) −0.500000 + 0.866025i −0.0441942 + 0.0765466i
\(129\) −11.6436 5.93529i −1.02516 0.522573i
\(130\) 0.239356 0.414577i 0.0209929 0.0363608i
\(131\) 13.3817 + 7.72594i 1.16917 + 0.675018i 0.953484 0.301445i \(-0.0974690\pi\)
0.215683 + 0.976464i \(0.430802\pi\)
\(132\) 2.26191 + 3.48439i 0.196874 + 0.303277i
\(133\) 2.32985 + 9.93768i 0.202023 + 0.861706i
\(134\) 13.0779i 1.12976i
\(135\) 1.86471 4.85004i 0.160489 0.417425i
\(136\) 2.40013 + 1.38572i 0.205810 + 0.118824i
\(137\) 7.57874 4.37559i 0.647496 0.373832i −0.140000 0.990151i \(-0.544710\pi\)
0.787496 + 0.616320i \(0.211377\pi\)
\(138\) 3.59590 0.187814i 0.306103 0.0159878i
\(139\) 3.74921 + 6.49383i 0.318004 + 0.550799i 0.980071 0.198645i \(-0.0636541\pi\)
−0.662067 + 0.749444i \(0.730321\pi\)
\(140\) 2.34168i 0.197908i
\(141\) −2.11686 3.26094i −0.178272 0.274621i
\(142\) 2.68385 + 4.64856i 0.225223 + 0.390098i
\(143\) −0.574075 0.994328i −0.0480066 0.0831499i
\(144\) 1.22118 2.74020i 0.101765 0.228350i
\(145\) 0.627455i 0.0521073i
\(146\) −5.81045 10.0640i −0.480876 0.832902i
\(147\) −0.137007 2.62315i −0.0113002 0.216354i
\(148\) −4.91536 + 2.83789i −0.404040 + 0.233273i
\(149\) −10.5955 6.11734i −0.868020 0.501152i −0.00133030 0.999999i \(-0.500423\pi\)
−0.866690 + 0.498847i \(0.833757\pi\)
\(150\) −0.0903420 1.72969i −0.00737639 0.141229i
\(151\) 16.0545i 1.30650i −0.757143 0.653250i \(-0.773405\pi\)
0.757143 0.653250i \(-0.226595\pi\)
\(152\) 0.994947 + 4.24383i 0.0807009 + 0.344220i
\(153\) −7.59429 3.38442i −0.613962 0.273614i
\(154\) −4.86387 2.80816i −0.391942 0.226288i
\(155\) −1.02556 + 1.77633i −0.0823753 + 0.142678i
\(156\) −0.376559 + 0.738715i −0.0301489 + 0.0591445i
\(157\) −0.836254 + 1.44843i −0.0667404 + 0.115598i −0.897465 0.441086i \(-0.854593\pi\)
0.830724 + 0.556684i \(0.187927\pi\)
\(158\) −10.1589 + 5.86527i −0.808202 + 0.466616i
\(159\) 19.2963 12.5263i 1.53030 0.993402i
\(160\) 1.00000i 0.0790569i
\(161\) −4.21595 + 2.43408i −0.332264 + 0.191833i
\(162\) −2.78722 + 8.55753i −0.218985 + 0.672343i
\(163\) 12.4272 0.973371 0.486686 0.873577i \(-0.338206\pi\)
0.486686 + 0.873577i \(0.338206\pi\)
\(164\) 2.09248 0.163395
\(165\) −3.70106 1.88661i −0.288127 0.146873i
\(166\) 9.79314 + 5.65407i 0.760095 + 0.438841i
\(167\) −0.136815 0.236971i −0.0105871 0.0183374i 0.860683 0.509141i \(-0.170037\pi\)
−0.871270 + 0.490803i \(0.836703\pi\)
\(168\) 0.211552 + 4.05038i 0.0163216 + 0.312494i
\(169\) −6.38542 + 11.0599i −0.491186 + 0.850759i
\(170\) −2.77143 −0.212559
\(171\) −4.29491 12.3513i −0.328440 0.944525i
\(172\) 7.54542 0.575333
\(173\) 12.1946 21.1216i 0.927137 1.60585i 0.139049 0.990286i \(-0.455596\pi\)
0.788088 0.615563i \(-0.211071\pi\)
\(174\) −0.0566855 1.08530i −0.00429732 0.0822767i
\(175\) 1.17084 + 2.02795i 0.0885071 + 0.153299i
\(176\) −2.07709 1.19921i −0.156566 0.0903936i
\(177\) 9.68374 + 4.93627i 0.727874 + 0.371033i
\(178\) −9.94725 −0.745578
\(179\) 20.0769 1.50062 0.750309 0.661087i \(-0.229905\pi\)
0.750309 + 0.661087i \(0.229905\pi\)
\(180\) 0.312528 + 2.98368i 0.0232944 + 0.222390i
\(181\) 10.2054 5.89207i 0.758559 0.437954i −0.0702194 0.997532i \(-0.522370\pi\)
0.828778 + 0.559578i \(0.189037\pi\)
\(182\) 1.12099i 0.0830933i
\(183\) −3.63765 + 2.36140i −0.268902 + 0.174560i
\(184\) −1.80040 + 1.03946i −0.132727 + 0.0766301i
\(185\) 2.83789 4.91536i 0.208646 0.361385i
\(186\) 1.61344 3.16516i 0.118303 0.232081i
\(187\) −3.32352 + 5.75651i −0.243040 + 0.420958i
\(188\) 1.94389 + 1.12231i 0.141773 + 0.0818526i
\(189\) −1.89706 12.0189i −0.137991 0.874248i
\(190\) −2.98356 3.17779i −0.216450 0.230541i
\(191\) 7.36887i 0.533193i 0.963808 + 0.266596i \(0.0858991\pi\)
−0.963808 + 0.266596i \(0.914101\pi\)
\(192\) 0.0903420 + 1.72969i 0.00651987 + 0.124830i
\(193\) −6.47095 3.73601i −0.465789 0.268924i 0.248686 0.968584i \(-0.420001\pi\)
−0.714475 + 0.699661i \(0.753335\pi\)
\(194\) −7.49209 + 4.32556i −0.537900 + 0.310557i
\(195\) −0.0432478 0.828026i −0.00309704 0.0592961i
\(196\) 0.758271 + 1.31336i 0.0541622 + 0.0938118i
\(197\) 20.2370i 1.44183i −0.693025 0.720913i \(-0.743723\pi\)
0.693025 0.720913i \(-0.256277\pi\)
\(198\) 6.57214 + 2.92890i 0.467062 + 0.208148i
\(199\) −5.62306 9.73942i −0.398608 0.690409i 0.594946 0.803765i \(-0.297173\pi\)
−0.993554 + 0.113356i \(0.963840\pi\)
\(200\) 0.500000 + 0.866025i 0.0353553 + 0.0612372i
\(201\) 12.3336 + 18.9994i 0.869942 + 1.34011i
\(202\) 4.57341i 0.321784i
\(203\) 0.734649 + 1.27245i 0.0515622 + 0.0893084i
\(204\) 4.79373 0.250377i 0.335628 0.0175299i
\(205\) −1.81214 + 1.04624i −0.126565 + 0.0730725i
\(206\) 1.99110 + 1.14956i 0.138727 + 0.0800940i
\(207\) 5.04695 3.66409i 0.350787 0.254672i
\(208\) 0.478712i 0.0331927i
\(209\) −10.1785 + 2.38630i −0.704059 + 0.165063i
\(210\) −2.20840 3.40196i −0.152394 0.234758i
\(211\) −22.9716 13.2627i −1.58143 0.913040i −0.994651 0.103295i \(-0.967061\pi\)
−0.586781 0.809745i \(-0.699605\pi\)
\(212\) −6.64114 + 11.5028i −0.456115 + 0.790015i
\(213\) 8.28304 + 4.22227i 0.567545 + 0.289305i
\(214\) −6.09204 + 10.5517i −0.416443 + 0.721301i
\(215\) −6.53452 + 3.77271i −0.445651 + 0.257297i
\(216\) −0.810128 5.13261i −0.0551222 0.349230i
\(217\) 4.80309i 0.326055i
\(218\) 0.624429 0.360514i 0.0422917 0.0244171i
\(219\) −17.9325 9.14109i −1.21177 0.617698i
\(220\) 2.39841 0.161701
\(221\) −1.32672 −0.0892448
\(222\) −4.46461 + 8.75845i −0.299645 + 0.587829i
\(223\) −13.2112 7.62747i −0.884685 0.510773i −0.0124845 0.999922i \(-0.503974\pi\)
−0.872200 + 0.489149i \(0.837307\pi\)
\(224\) −1.17084 2.02795i −0.0782300 0.135498i
\(225\) −1.76250 2.42768i −0.117500 0.161845i
\(226\) 4.99753 8.65597i 0.332430 0.575786i
\(227\) −1.74109 −0.115560 −0.0577800 0.998329i \(-0.518402\pi\)
−0.0577800 + 0.998329i \(0.518402\pi\)
\(228\) 5.44774 + 5.22706i 0.360785 + 0.346171i
\(229\) −16.6454 −1.09996 −0.549979 0.835179i \(-0.685364\pi\)
−0.549979 + 0.835179i \(0.685364\pi\)
\(230\) 1.03946 1.80040i 0.0685400 0.118715i
\(231\) −9.71450 + 0.507389i −0.639167 + 0.0333837i
\(232\) 0.313727 + 0.543392i 0.0205972 + 0.0356754i
\(233\) −7.51278 4.33751i −0.492179 0.284160i 0.233299 0.972405i \(-0.425048\pi\)
−0.725478 + 0.688245i \(0.758381\pi\)
\(234\) 0.149611 + 1.42832i 0.00978037 + 0.0933724i
\(235\) −2.24461 −0.146422
\(236\) −6.27539 −0.408493
\(237\) −9.22733 + 18.1017i −0.599380 + 1.17583i
\(238\) −5.62033 + 3.24490i −0.364312 + 0.210336i
\(239\) 19.1483i 1.23860i 0.785153 + 0.619302i \(0.212584\pi\)
−0.785153 + 0.619302i \(0.787416\pi\)
\(240\) −0.943085 1.45279i −0.0608759 0.0937770i
\(241\) −16.6382 + 9.60606i −1.07176 + 0.618781i −0.928662 0.370928i \(-0.879040\pi\)
−0.143098 + 0.989709i \(0.545706\pi\)
\(242\) −2.62380 + 4.54456i −0.168665 + 0.292135i
\(243\) 4.02124 + 15.0609i 0.257963 + 0.966155i
\(244\) 1.25195 2.16845i 0.0801481 0.138821i
\(245\) −1.31336 0.758271i −0.0839078 0.0484442i
\(246\) 3.03992 1.97338i 0.193818 0.125818i
\(247\) −1.42827 1.52125i −0.0908786 0.0967947i
\(248\) 2.05113i 0.130247i
\(249\) 19.5596 1.02160i 1.23954 0.0647413i
\(250\) −0.866025 0.500000i −0.0547723 0.0316228i
\(251\) 10.8299 6.25262i 0.683574 0.394662i −0.117626 0.993058i \(-0.537528\pi\)
0.801200 + 0.598396i \(0.204195\pi\)
\(252\) 4.12720 + 5.68484i 0.259989 + 0.358111i
\(253\) −2.49306 4.31810i −0.156737 0.271477i
\(254\) 11.0708i 0.694646i
\(255\) −4.02630 + 2.61370i −0.252137 + 0.163676i
\(256\) −0.500000 0.866025i −0.0312500 0.0541266i
\(257\) 0.733753 + 1.27090i 0.0457702 + 0.0792764i 0.888003 0.459838i \(-0.152092\pi\)
−0.842233 + 0.539114i \(0.818759\pi\)
\(258\) 10.9619 7.11597i 0.682457 0.443021i
\(259\) 13.2908i 0.825852i
\(260\) 0.239356 + 0.414577i 0.0148442 + 0.0257110i
\(261\) −1.10589 1.52326i −0.0684526 0.0942873i
\(262\) −13.3817 + 7.72594i −0.826725 + 0.477310i
\(263\) 12.2015 + 7.04453i 0.752376 + 0.434384i 0.826552 0.562861i \(-0.190299\pi\)
−0.0741759 + 0.997245i \(0.523633\pi\)
\(264\) −4.14852 + 0.216677i −0.255324 + 0.0133356i
\(265\) 13.2823i 0.815924i
\(266\) −9.77121 2.95113i −0.599111 0.180946i
\(267\) −14.4512 + 9.38110i −0.884401 + 0.574114i
\(268\) −11.3258 6.53894i −0.691832 0.399429i
\(269\) −9.48574 + 16.4298i −0.578356 + 1.00174i 0.417312 + 0.908763i \(0.362972\pi\)
−0.995668 + 0.0929788i \(0.970361\pi\)
\(270\) 3.26790 + 4.03991i 0.198878 + 0.245861i
\(271\) 12.6913 21.9819i 0.770940 1.33531i −0.166108 0.986108i \(-0.553120\pi\)
0.937048 0.349200i \(-0.113547\pi\)
\(272\) −2.40013 + 1.38572i −0.145529 + 0.0840214i
\(273\) −1.05719 1.62856i −0.0639840 0.0985650i
\(274\) 8.75118i 0.528678i
\(275\) −2.07709 + 1.19921i −0.125253 + 0.0723149i
\(276\) −1.63530 + 3.20804i −0.0984333 + 0.193102i
\(277\) 8.10858 0.487198 0.243599 0.969876i \(-0.421672\pi\)
0.243599 + 0.969876i \(0.421672\pi\)
\(278\) −7.49842 −0.449726
\(279\) −0.641035 6.11991i −0.0383778 0.366389i
\(280\) 2.02795 + 1.17084i 0.121193 + 0.0699710i
\(281\) 12.6467 + 21.9047i 0.754438 + 1.30672i 0.945653 + 0.325176i \(0.105424\pi\)
−0.191216 + 0.981548i \(0.561243\pi\)
\(282\) 3.88249 0.202783i 0.231199 0.0120755i
\(283\) 0.496185 0.859418i 0.0294952 0.0510871i −0.850901 0.525326i \(-0.823943\pi\)
0.880396 + 0.474239i \(0.157277\pi\)
\(284\) −5.36769 −0.318514
\(285\) −7.33141 1.80290i −0.434275 0.106794i
\(286\) 1.14815 0.0678916
\(287\) −2.44995 + 4.24344i −0.144616 + 0.250483i
\(288\) 1.76250 + 2.42768i 0.103856 + 0.143052i
\(289\) −4.65958 8.07063i −0.274093 0.474743i
\(290\) −0.543392 0.313727i −0.0319091 0.0184227i
\(291\) −6.80504 + 13.3498i −0.398918 + 0.782578i
\(292\) 11.6209 0.680062
\(293\) 23.3348 1.36323 0.681617 0.731709i \(-0.261277\pi\)
0.681617 + 0.731709i \(0.261277\pi\)
\(294\) 2.34022 + 1.19293i 0.136485 + 0.0695728i
\(295\) 5.43465 3.13769i 0.316417 0.182684i
\(296\) 5.67577i 0.329898i
\(297\) 12.3101 1.94302i 0.714306 0.112746i
\(298\) 10.5955 6.11734i 0.613783 0.354368i
\(299\) 0.497603 0.861873i 0.0287771 0.0498434i
\(300\) 1.54313 + 0.786608i 0.0890926 + 0.0454148i
\(301\) −8.83447 + 15.3018i −0.509210 + 0.881978i
\(302\) 13.9036 + 8.02727i 0.800064 + 0.461917i
\(303\) −4.31311 6.64419i −0.247782 0.381699i
\(304\) −4.17274 1.26026i −0.239323 0.0722811i
\(305\) 2.50391i 0.143373i
\(306\) 6.72814 4.88464i 0.384622 0.279236i
\(307\) −21.4512 12.3849i −1.22429 0.706842i −0.258458 0.966023i \(-0.583214\pi\)
−0.965829 + 0.259180i \(0.916548\pi\)
\(308\) 4.86387 2.80816i 0.277145 0.160010i
\(309\) 3.97679 0.207708i 0.226232 0.0118161i
\(310\) −1.02556 1.77633i −0.0582482 0.100889i
\(311\) 11.2512i 0.637999i 0.947755 + 0.318999i \(0.103347\pi\)
−0.947755 + 0.318999i \(0.896653\pi\)
\(312\) −0.451467 0.695467i −0.0255593 0.0393731i
\(313\) 5.46644 + 9.46816i 0.308982 + 0.535172i 0.978140 0.207948i \(-0.0666785\pi\)
−0.669158 + 0.743120i \(0.733345\pi\)
\(314\) −0.836254 1.44843i −0.0471926 0.0817399i
\(315\) −6.41668 2.85961i −0.361539 0.161121i
\(316\) 11.7305i 0.659894i
\(317\) −8.95027 15.5023i −0.502697 0.870697i −0.999995 0.00311703i \(-0.999008\pi\)
0.497298 0.867580i \(-0.334326\pi\)
\(318\) 1.19995 + 22.9743i 0.0672897 + 1.28833i
\(319\) −1.30328 + 0.752448i −0.0729696 + 0.0421290i
\(320\) 0.866025 + 0.500000i 0.0484123 + 0.0279508i
\(321\) 1.10073 + 21.0747i 0.0614369 + 1.17628i
\(322\) 4.86817i 0.271292i
\(323\) −3.49274 + 11.5645i −0.194341 + 0.643464i
\(324\) −6.01743 6.69257i −0.334302 0.371810i
\(325\) −0.414577 0.239356i −0.0229966 0.0132771i
\(326\) −6.21359 + 10.7622i −0.344139 + 0.596066i
\(327\) 0.567167 1.11264i 0.0313644 0.0615291i
\(328\) −1.04624 + 1.81214i −0.0577688 + 0.100059i
\(329\) −4.55197 + 2.62808i −0.250958 + 0.144891i
\(330\) 3.48439 2.26191i 0.191809 0.124514i
\(331\) 10.3625i 0.569572i 0.958591 + 0.284786i \(0.0919226\pi\)
−0.958591 + 0.284786i \(0.908077\pi\)
\(332\) −9.79314 + 5.65407i −0.537468 + 0.310308i
\(333\) 1.77384 + 16.9347i 0.0972056 + 0.928014i
\(334\) 0.273631 0.0149724
\(335\) 13.0779 0.714521
\(336\) −3.61351 1.84198i −0.197133 0.100488i
\(337\) −23.7499 13.7120i −1.29374 0.746939i −0.314422 0.949283i \(-0.601811\pi\)
−0.979315 + 0.202344i \(0.935144\pi\)
\(338\) −6.38542 11.0599i −0.347321 0.601577i
\(339\) −0.902972 17.2884i −0.0490427 0.938975i
\(340\) 1.38572 2.40013i 0.0751510 0.130165i
\(341\) −4.91946 −0.266404
\(342\) 12.8440 + 2.45613i 0.694522 + 0.132812i
\(343\) −19.9430 −1.07682
\(344\) −3.77271 + 6.53452i −0.203411 + 0.352318i
\(345\) −0.187814 3.59590i −0.0101116 0.193597i
\(346\) 12.1946 + 21.1216i 0.655585 + 1.13551i
\(347\) −22.5112 12.9969i −1.20847 0.697709i −0.246042 0.969259i \(-0.579130\pi\)
−0.962424 + 0.271551i \(0.912464\pi\)
\(348\) 0.968244 + 0.493561i 0.0519033 + 0.0264577i
\(349\) 8.16697 0.437168 0.218584 0.975818i \(-0.429856\pi\)
0.218584 + 0.975818i \(0.429856\pi\)
\(350\) −2.34168 −0.125168
\(351\) 1.56438 + 1.93395i 0.0835006 + 0.103227i
\(352\) 2.07709 1.19921i 0.110709 0.0639180i
\(353\) 23.1015i 1.22957i −0.788696 0.614783i \(-0.789243\pi\)
0.788696 0.614783i \(-0.210757\pi\)
\(354\) −9.11681 + 5.91823i −0.484553 + 0.314550i
\(355\) 4.64856 2.68385i 0.246720 0.142444i
\(356\) 4.97362 8.61457i 0.263602 0.456571i
\(357\) −5.10493 + 10.0146i −0.270182 + 0.530029i
\(358\) −10.0385 + 17.3871i −0.530549 + 0.918937i
\(359\) 17.3948 + 10.0429i 0.918063 + 0.530044i 0.883017 0.469342i \(-0.155509\pi\)
0.0350462 + 0.999386i \(0.488842\pi\)
\(360\) −2.74020 1.22118i −0.144421 0.0643619i
\(361\) −17.0202 + 8.44477i −0.895798 + 0.444462i
\(362\) 11.7841i 0.619361i
\(363\) 0.474079 + 9.07675i 0.0248827 + 0.476406i
\(364\) 0.970806 + 0.560495i 0.0508841 + 0.0293779i
\(365\) −10.0640 + 5.81045i −0.526773 + 0.304133i
\(366\) −0.226208 4.33099i −0.0118241 0.226385i
\(367\) 4.83084 + 8.36726i 0.252168 + 0.436768i 0.964122 0.265458i \(-0.0855231\pi\)
−0.711955 + 0.702226i \(0.752190\pi\)
\(368\) 2.07892i 0.108371i
\(369\) 2.55529 5.73381i 0.133023 0.298490i
\(370\) 2.83789 + 4.91536i 0.147535 + 0.255538i
\(371\) −15.5514 26.9358i −0.807389 1.39844i
\(372\) 1.93439 + 2.97985i 0.100293 + 0.154498i
\(373\) 16.8317i 0.871515i 0.900064 + 0.435757i \(0.143519\pi\)
−0.900064 + 0.435757i \(0.856481\pi\)
\(374\) −3.32352 5.75651i −0.171855 0.297662i
\(375\) −1.72969 + 0.0903420i −0.0893210 + 0.00466524i
\(376\) −1.94389 + 1.12231i −0.100249 + 0.0578785i
\(377\) −0.260128 0.150185i −0.0133973 0.00773493i
\(378\) 11.3572 + 4.36656i 0.584152 + 0.224592i
\(379\) 31.6110i 1.62375i −0.583834 0.811873i \(-0.698448\pi\)
0.583834 0.811873i \(-0.301552\pi\)
\(380\) 4.24383 0.994947i 0.217704 0.0510397i
\(381\) 10.4407 + 16.0836i 0.534895 + 0.823986i
\(382\) −6.38163 3.68444i −0.326513 0.188512i
\(383\) −14.8637 + 25.7447i −0.759500 + 1.31549i 0.183605 + 0.983000i \(0.441223\pi\)
−0.943106 + 0.332493i \(0.892110\pi\)
\(384\) −1.54313 0.786608i −0.0787475 0.0401414i
\(385\) −2.80816 + 4.86387i −0.143117 + 0.247886i
\(386\) 6.47095 3.73601i 0.329363 0.190158i
\(387\) 9.21432 20.6760i 0.468390 1.05102i
\(388\) 8.65112i 0.439194i
\(389\) −6.06103 + 3.49934i −0.307307 + 0.177424i −0.645721 0.763574i \(-0.723443\pi\)
0.338414 + 0.940997i \(0.390110\pi\)
\(390\) 0.738715 + 0.376559i 0.0374063 + 0.0190678i
\(391\) −5.76159 −0.291376
\(392\) −1.51654 −0.0765970
\(393\) −12.1546 + 23.8442i −0.613117 + 1.20278i
\(394\) 17.5258 + 10.1185i 0.882935 + 0.509763i
\(395\) 5.86527 + 10.1589i 0.295114 + 0.511152i
\(396\) −5.82257 + 4.22719i −0.292595 + 0.212425i
\(397\) 14.8564 25.7320i 0.745621 1.29145i −0.204283 0.978912i \(-0.565486\pi\)
0.949904 0.312542i \(-0.101180\pi\)
\(398\) 11.2461 0.563717
\(399\) −16.9787 + 4.92771i −0.849996 + 0.246694i
\(400\) −1.00000 −0.0500000
\(401\) 14.8000 25.6344i 0.739079 1.28012i −0.213831 0.976871i \(-0.568594\pi\)
0.952910 0.303252i \(-0.0980724\pi\)
\(402\) −22.6207 + 1.18148i −1.12822 + 0.0589270i
\(403\) −0.490951 0.850351i −0.0244560 0.0423590i
\(404\) 3.96069 + 2.28671i 0.197052 + 0.113768i
\(405\) 8.55753 + 2.78722i 0.425227 + 0.138498i
\(406\) −1.46930 −0.0729200
\(407\) 13.6129 0.674764
\(408\) −2.18003 + 4.27668i −0.107928 + 0.211727i
\(409\) −1.05270 + 0.607777i −0.0520527 + 0.0300526i −0.525800 0.850608i \(-0.676234\pi\)
0.473748 + 0.880661i \(0.342901\pi\)
\(410\) 2.09248i 0.103340i
\(411\) 8.25310 + 12.7136i 0.407096 + 0.627116i
\(412\) −1.99110 + 1.14956i −0.0980947 + 0.0566350i
\(413\) 7.34747 12.7262i 0.361545 0.626215i
\(414\) 0.649721 + 6.20283i 0.0319320 + 0.304852i
\(415\) 5.65407 9.79314i 0.277547 0.480726i
\(416\) 0.414577 + 0.239356i 0.0203263 + 0.0117354i
\(417\) −10.8936 + 7.07165i −0.533463 + 0.346300i
\(418\) 3.02264 10.0080i 0.147842 0.489505i
\(419\) 3.26405i 0.159459i −0.996817 0.0797297i \(-0.974594\pi\)
0.996817 0.0797297i \(-0.0254057\pi\)
\(420\) 4.05038 0.211552i 0.197639 0.0103227i
\(421\) −18.4508 10.6526i −0.899236 0.519174i −0.0222837 0.999752i \(-0.507094\pi\)
−0.876952 + 0.480578i \(0.840427\pi\)
\(422\) 22.9716 13.2627i 1.11824 0.645617i
\(423\) 5.44919 3.95612i 0.264949 0.192353i
\(424\) −6.64114 11.5028i −0.322522 0.558625i
\(425\) 2.77143i 0.134434i
\(426\) −7.79812 + 5.06219i −0.377820 + 0.245264i
\(427\) 2.93167 + 5.07781i 0.141874 + 0.245732i
\(428\) −6.09204 10.5517i −0.294470 0.510037i
\(429\) 1.66802 1.08280i 0.0805327 0.0522783i
\(430\) 7.54542i 0.363872i
\(431\) 2.14280 + 3.71143i 0.103215 + 0.178774i 0.913007 0.407943i \(-0.133754\pi\)
−0.809793 + 0.586716i \(0.800420\pi\)
\(432\) 4.85004 + 1.86471i 0.233347 + 0.0897161i
\(433\) 18.0367 10.4135i 0.866789 0.500441i 0.000509428 1.00000i \(-0.499838\pi\)
0.866280 + 0.499559i \(0.166505\pi\)
\(434\) −4.15959 2.40154i −0.199667 0.115278i
\(435\) −1.08530 + 0.0566855i −0.0520364 + 0.00271786i
\(436\) 0.721029i 0.0345310i
\(437\) −6.20259 6.60638i −0.296710 0.316026i
\(438\) 16.8827 10.9595i 0.806686 0.523665i
\(439\) 14.9323 + 8.62117i 0.712680 + 0.411466i 0.812052 0.583584i \(-0.198350\pi\)
−0.0993728 + 0.995050i \(0.531684\pi\)
\(440\) −1.19921 + 2.07709i −0.0571700 + 0.0990213i
\(441\) 4.52487 0.473962i 0.215470 0.0225696i
\(442\) 0.663360 1.14897i 0.0315528 0.0546510i
\(443\) −19.6711 + 11.3571i −0.934602 + 0.539592i −0.888264 0.459333i \(-0.848088\pi\)
−0.0463376 + 0.998926i \(0.514755\pi\)
\(444\) −5.35274 8.24569i −0.254030 0.391323i
\(445\) 9.94725i 0.471545i
\(446\) 13.2112 7.62747i 0.625566 0.361171i
\(447\) 9.62389 18.8797i 0.455194 0.892978i
\(448\) 2.34168 0.110634
\(449\) −24.4007 −1.15154 −0.575770 0.817612i \(-0.695298\pi\)
−0.575770 + 0.817612i \(0.695298\pi\)
\(450\) 2.98368 0.312528i 0.140652 0.0147327i
\(451\) −4.34626 2.50931i −0.204657 0.118159i
\(452\) 4.99753 + 8.65597i 0.235064 + 0.407142i
\(453\) 27.7694 1.45040i 1.30472 0.0681456i
\(454\) 0.870543 1.50782i 0.0408566 0.0707657i
\(455\) −1.12099 −0.0525528
\(456\) −7.25064 + 2.10435i −0.339542 + 0.0985452i
\(457\) 5.57921 0.260984 0.130492 0.991449i \(-0.458344\pi\)
0.130492 + 0.991449i \(0.458344\pi\)
\(458\) 8.32269 14.4153i 0.388894 0.673584i
\(459\) 5.16793 13.4415i 0.241218 0.627398i
\(460\) 1.03946 + 1.80040i 0.0484651 + 0.0839440i
\(461\) −13.2971 7.67711i −0.619310 0.357559i 0.157291 0.987552i \(-0.449724\pi\)
−0.776600 + 0.629994i \(0.783057\pi\)
\(462\) 4.41784 8.66670i 0.205536 0.403211i
\(463\) 29.0927 1.35205 0.676027 0.736877i \(-0.263700\pi\)
0.676027 + 0.736877i \(0.263700\pi\)
\(464\) −0.627455 −0.0291289
\(465\) −3.16516 1.61344i −0.146781 0.0748213i
\(466\) 7.51278 4.33751i 0.348023 0.200931i
\(467\) 30.7109i 1.42113i −0.703630 0.710567i \(-0.748439\pi\)
0.703630 0.710567i \(-0.251561\pi\)
\(468\) −1.31177 0.584595i −0.0606366 0.0270229i
\(469\) 26.5213 15.3121i 1.22464 0.707047i
\(470\) 1.12231 1.94389i 0.0517681 0.0896650i
\(471\) −2.58090 1.31561i −0.118921 0.0606201i
\(472\) 3.13769 5.43465i 0.144424 0.250150i
\(473\) −15.6725 9.04852i −0.720622 0.416051i
\(474\) −11.0629 17.0420i −0.508135 0.782764i
\(475\) −3.17779 + 2.98356i −0.145807 + 0.136895i
\(476\) 6.48980i 0.297460i
\(477\) 23.4100 + 32.2451i 1.07187 + 1.47640i
\(478\) −16.5830 9.57417i −0.758487 0.437912i
\(479\) 22.3097 12.8805i 1.01935 0.588525i 0.105438 0.994426i \(-0.466376\pi\)
0.913917 + 0.405901i \(0.133042\pi\)
\(480\) 1.72969 0.0903420i 0.0789493 0.00412353i
\(481\) 1.35853 + 2.35305i 0.0619437 + 0.107290i
\(482\) 19.2121i 0.875088i
\(483\) −4.59109 7.07241i −0.208902 0.321806i
\(484\) −2.62380 4.54456i −0.119264 0.206571i
\(485\) 4.32556 + 7.49209i 0.196413 + 0.340198i
\(486\) −15.0537 4.04793i −0.682850 0.183618i
\(487\) 19.2342i 0.871583i −0.900048 0.435791i \(-0.856469\pi\)
0.900048 0.435791i \(-0.143531\pi\)
\(488\) 1.25195 + 2.16845i 0.0566733 + 0.0981610i
\(489\) 1.12270 + 21.4952i 0.0507700 + 0.972046i
\(490\) 1.31336 0.758271i 0.0593318 0.0342552i
\(491\) 18.7155 + 10.8054i 0.844619 + 0.487641i 0.858832 0.512258i \(-0.171191\pi\)
−0.0142124 + 0.999899i \(0.504524\pi\)
\(492\) 0.189038 + 3.61934i 0.00852251 + 0.163173i
\(493\) 1.73895i 0.0783183i
\(494\) 2.03157 0.476294i 0.0914048 0.0214295i
\(495\) 2.92890 6.57214i 0.131644 0.295396i
\(496\) −1.77633 1.02556i −0.0797596 0.0460492i
\(497\) 6.28470 10.8854i 0.281908 0.488278i
\(498\) −8.89508 + 17.4499i −0.398598 + 0.781950i
\(499\) −9.49912 + 16.4530i −0.425239 + 0.736535i −0.996443 0.0842728i \(-0.973143\pi\)
0.571204 + 0.820808i \(0.306477\pi\)
\(500\) 0.866025 0.500000i 0.0387298 0.0223607i
\(501\) 0.397527 0.258057i 0.0177602 0.0115291i
\(502\) 12.5052i 0.558136i
\(503\) 17.2526 9.96081i 0.769256 0.444130i −0.0633529 0.997991i \(-0.520179\pi\)
0.832609 + 0.553861i \(0.186846\pi\)
\(504\) −6.98681 + 0.731839i −0.311217 + 0.0325987i
\(505\) −4.57341 −0.203514
\(506\) 4.98612 0.221660
\(507\) −19.7070 10.0456i −0.875221 0.446143i
\(508\) −9.58763 5.53542i −0.425382 0.245594i
\(509\) 15.7560 + 27.2902i 0.698372 + 1.20962i 0.969031 + 0.246941i \(0.0794253\pi\)
−0.270658 + 0.962675i \(0.587241\pi\)
\(510\) −0.250377 4.79373i −0.0110869 0.212270i
\(511\) −13.6062 + 23.5666i −0.601903 + 1.04253i
\(512\) 1.00000 0.0441942
\(513\) 20.9759 8.54472i 0.926108 0.377259i
\(514\) −1.46751 −0.0647289
\(515\) 1.14956 1.99110i 0.0506559 0.0877385i
\(516\) 0.681668 + 13.0513i 0.0300088 + 0.574550i
\(517\) −2.69176 4.66226i −0.118383 0.205046i
\(518\) 11.5102 + 6.64542i 0.505729 + 0.291983i
\(519\) 37.6356 + 19.1847i 1.65202 + 0.842115i
\(520\) −0.478712 −0.0209929
\(521\) −11.3505 −0.497273 −0.248637 0.968597i \(-0.579982\pi\)
−0.248637 + 0.968597i \(0.579982\pi\)
\(522\) 1.87212 0.196097i 0.0819406 0.00858294i
\(523\) 31.9970 18.4735i 1.39913 0.807788i 0.404828 0.914393i \(-0.367331\pi\)
0.994301 + 0.106605i \(0.0339980\pi\)
\(524\) 15.4519i 0.675018i
\(525\) −3.40196 + 2.20840i −0.148474 + 0.0963825i
\(526\) −12.2015 + 7.04453i −0.532010 + 0.307156i
\(527\) −2.84228 + 4.92298i −0.123812 + 0.214448i
\(528\) 1.88661 3.70106i 0.0821043 0.161068i
\(529\) −9.33904 + 16.1757i −0.406045 + 0.703291i
\(530\) 11.5028 + 6.64114i 0.499649 + 0.288473i
\(531\) −7.66339 + 17.1958i −0.332563 + 0.746236i
\(532\) 7.44136 6.98655i 0.322624 0.302905i
\(533\) 1.00169i 0.0433882i
\(534\) −0.898654 17.2057i −0.0388886 0.744563i
\(535\) 10.5517 + 6.09204i 0.456191 + 0.263382i
\(536\) 11.3258 6.53894i 0.489199 0.282439i
\(537\) 1.81379 + 34.7269i 0.0782707 + 1.49858i
\(538\) −9.48574 16.4298i −0.408959 0.708339i
\(539\) 3.63730i 0.156670i
\(540\) −5.13261 + 0.810128i −0.220872 + 0.0348624i
\(541\) 15.2223 + 26.3657i 0.654456 + 1.13355i 0.982030 + 0.188725i \(0.0604356\pi\)
−0.327574 + 0.944826i \(0.606231\pi\)
\(542\) 12.6913 + 21.9819i 0.545137 + 0.944205i
\(543\) 11.1134 + 17.1198i 0.476924 + 0.734683i
\(544\) 2.77143i 0.118824i
\(545\) −0.360514 0.624429i −0.0154427 0.0267476i
\(546\) 1.93897 0.101272i 0.0829802 0.00433406i
\(547\) −7.08775 + 4.09212i −0.303050 + 0.174966i −0.643812 0.765183i \(-0.722648\pi\)
0.340762 + 0.940150i \(0.389315\pi\)
\(548\) −7.57874 4.37559i −0.323748 0.186916i
\(549\) −4.41313 6.07868i −0.188348 0.259432i
\(550\) 2.39841i 0.102269i
\(551\) −1.99392 + 1.87205i −0.0849438 + 0.0797521i
\(552\) −1.96060 3.02023i −0.0834487 0.128550i
\(553\) 23.7890 + 13.7346i 1.01161 + 0.584053i
\(554\) −4.05429 + 7.02224i −0.172250 + 0.298346i
\(555\) 8.75845 + 4.46461i 0.371776 + 0.189512i
\(556\) 3.74921 6.49383i 0.159002 0.275400i
\(557\) −1.37346 + 0.792970i −0.0581956 + 0.0335992i −0.528815 0.848737i \(-0.677364\pi\)
0.470620 + 0.882336i \(0.344030\pi\)
\(558\) 5.62051 + 2.50480i 0.237935 + 0.106037i
\(559\) 3.61209i 0.152775i
\(560\) −2.02795 + 1.17084i −0.0856966 + 0.0494770i
\(561\) −10.2572 5.22862i −0.433061 0.220752i
\(562\) −25.2934 −1.06694
\(563\) −12.2083 −0.514519 −0.257260 0.966342i \(-0.582820\pi\)
−0.257260 + 0.966342i \(0.582820\pi\)
\(564\) −1.76563 + 3.46373i −0.0743465 + 0.145849i
\(565\) −8.65597 4.99753i −0.364159 0.210247i
\(566\) 0.496185 + 0.859418i 0.0208562 + 0.0361240i
\(567\) 20.6177 4.36714i 0.865861 0.183403i
\(568\) 2.68385 4.64856i 0.112612 0.195049i
\(569\) −30.1807 −1.26524 −0.632620 0.774462i \(-0.718021\pi\)
−0.632620 + 0.774462i \(0.718021\pi\)
\(570\) 5.22706 5.44774i 0.218937 0.228181i
\(571\) −35.1445 −1.47075 −0.735375 0.677660i \(-0.762994\pi\)
−0.735375 + 0.677660i \(0.762994\pi\)
\(572\) −0.574075 + 0.994328i −0.0240033 + 0.0415749i
\(573\) −12.7459 + 0.665718i −0.532467 + 0.0278108i
\(574\) −2.44995 4.24344i −0.102259 0.177118i
\(575\) −1.80040 1.03946i −0.0750818 0.0433485i
\(576\) −2.98368 + 0.312528i −0.124320 + 0.0130220i
\(577\) 3.33452 0.138818 0.0694088 0.997588i \(-0.477889\pi\)
0.0694088 + 0.997588i \(0.477889\pi\)
\(578\) 9.31916 0.387626
\(579\) 5.87755 11.5303i 0.244262 0.479182i
\(580\) 0.543392 0.313727i 0.0225631 0.0130268i
\(581\) 26.4800i 1.09858i
\(582\) −8.15874 12.5682i −0.338191 0.520970i
\(583\) 27.5885 15.9282i 1.14260 0.659679i
\(584\) −5.81045 + 10.0640i −0.240438 + 0.416451i
\(585\) 1.42832 0.149611i 0.0590539 0.00618565i
\(586\) −11.6674 + 20.2085i −0.481976 + 0.834807i
\(587\) −6.62612 3.82559i −0.273489 0.157899i 0.356983 0.934111i \(-0.383805\pi\)
−0.630472 + 0.776212i \(0.717139\pi\)
\(588\) −2.20321 + 1.43023i −0.0908590 + 0.0589816i
\(589\) −8.70464 + 2.04077i −0.358668 + 0.0840883i
\(590\) 6.27539i 0.258354i
\(591\) 35.0038 1.82825i 1.43986 0.0752042i
\(592\) 4.91536 + 2.83789i 0.202020 + 0.116636i
\(593\) 16.7538 9.67281i 0.687996 0.397215i −0.114865 0.993381i \(-0.536643\pi\)
0.802861 + 0.596166i \(0.203310\pi\)
\(594\) −4.47236 + 11.6324i −0.183503 + 0.477283i
\(595\) 3.24490 + 5.62033i 0.133028 + 0.230411i
\(596\) 12.2347i 0.501152i
\(597\) 16.3382 10.6060i 0.668678 0.434076i
\(598\) 0.497603 + 0.861873i 0.0203485 + 0.0352446i
\(599\) 0.00576144 + 0.00997910i 0.000235406 + 0.000407735i 0.866143 0.499796i \(-0.166592\pi\)
−0.865908 + 0.500204i \(0.833258\pi\)
\(600\) −1.45279 + 0.943085i −0.0593098 + 0.0385013i
\(601\) 19.6294i 0.800698i 0.916363 + 0.400349i \(0.131111\pi\)
−0.916363 + 0.400349i \(0.868889\pi\)
\(602\) −8.83447 15.3018i −0.360066 0.623653i
\(603\) −31.7489 + 23.0497i −1.29291 + 0.938657i
\(604\) −13.9036 + 8.02727i −0.565731 + 0.326625i
\(605\) 4.54456 + 2.62380i 0.184763 + 0.106673i
\(606\) 7.91060 0.413171i 0.321346 0.0167839i
\(607\) 48.4715i 1.96740i 0.179821 + 0.983699i \(0.442448\pi\)
−0.179821 + 0.983699i \(0.557552\pi\)
\(608\) 3.17779 2.98356i 0.128876 0.120999i
\(609\) −2.13458 + 1.38567i −0.0864974 + 0.0561503i
\(610\) −2.16845 1.25195i −0.0877979 0.0506901i
\(611\) 0.537262 0.930565i 0.0217353 0.0376466i
\(612\) 0.866149 + 8.26906i 0.0350120 + 0.334257i
\(613\) 17.8645 30.9422i 0.721539 1.24974i −0.238843 0.971058i \(-0.576768\pi\)
0.960383 0.278685i \(-0.0898985\pi\)
\(614\) 21.4512 12.3849i 0.865702 0.499813i
\(615\) −1.97338 3.03992i −0.0795745 0.122582i
\(616\) 5.61632i 0.226288i
\(617\) −28.5725 + 16.4963i −1.15028 + 0.664117i −0.948957 0.315407i \(-0.897859\pi\)
−0.201328 + 0.979524i \(0.564526\pi\)
\(618\) −1.80851 + 3.54785i −0.0727491 + 0.142716i
\(619\) −33.4945 −1.34626 −0.673129 0.739525i \(-0.735050\pi\)
−0.673129 + 0.739525i \(0.735050\pi\)
\(620\) 2.05113 0.0823753
\(621\) 6.79370 + 8.39865i 0.272622 + 0.337026i
\(622\) −9.74385 5.62562i −0.390693 0.225567i
\(623\) 11.6466 + 20.1725i 0.466612 + 0.808196i
\(624\) 0.828026 0.0432478i 0.0331476 0.00173130i
\(625\) −0.500000 + 0.866025i −0.0200000 + 0.0346410i
\(626\) −10.9329 −0.436966
\(627\) −5.04710 17.3900i −0.201562 0.694491i
\(628\) 1.67251 0.0667404
\(629\) 7.86501 13.6226i 0.313598 0.543169i
\(630\) 5.68484 4.12720i 0.226489 0.164431i
\(631\) −11.0092 19.0686i −0.438271 0.759108i 0.559285 0.828975i \(-0.311076\pi\)
−0.997556 + 0.0698675i \(0.977742\pi\)
\(632\) 10.1589 + 5.86527i 0.404101 + 0.233308i
\(633\) 20.8651 40.9320i 0.829312 1.62690i
\(634\) 17.9005 0.710921
\(635\) 11.0708 0.439333
\(636\) −20.4963 10.4479i −0.812730 0.414288i
\(637\) 0.628724 0.362994i 0.0249110 0.0143823i
\(638\) 1.50490i 0.0595794i
\(639\) −6.55493 + 14.7086i −0.259309 + 0.581862i
\(640\) −0.866025 + 0.500000i −0.0342327 + 0.0197642i
\(641\) −7.33431 + 12.7034i −0.289688 + 0.501754i −0.973735 0.227684i \(-0.926885\pi\)
0.684047 + 0.729438i \(0.260218\pi\)
\(642\) −18.8016 9.58409i −0.742040 0.378254i
\(643\) −15.3180 + 26.5315i −0.604082 + 1.04630i 0.388114 + 0.921612i \(0.373127\pi\)
−0.992196 + 0.124690i \(0.960207\pi\)
\(644\) 4.21595 + 2.43408i 0.166132 + 0.0959163i
\(645\) −7.11597 10.9619i −0.280191 0.431624i
\(646\) −8.26874 8.80703i −0.325329 0.346508i
\(647\) 9.82606i 0.386302i 0.981169 + 0.193151i \(0.0618707\pi\)
−0.981169 + 0.193151i \(0.938129\pi\)
\(648\) 8.80465 1.86496i 0.345879 0.0732627i
\(649\) 13.0345 + 7.52549i 0.511650 + 0.295401i
\(650\) 0.414577 0.239356i 0.0162611 0.00938832i
\(651\) −8.30786 + 0.433920i −0.325611 + 0.0170067i
\(652\) −6.21359 10.7622i −0.243343 0.421482i
\(653\) 31.4026i 1.22888i −0.788964 0.614440i \(-0.789382\pi\)
0.788964 0.614440i \(-0.210618\pi\)
\(654\) 0.679991 + 1.04750i 0.0265898 + 0.0409605i
\(655\) 7.72594 + 13.3817i 0.301877 + 0.522867i
\(656\) −1.04624 1.81214i −0.0408487 0.0707521i
\(657\) 14.1912 31.8436i 0.553652 1.24234i
\(658\) 5.25616i 0.204906i
\(659\) −1.68244 2.91407i −0.0655385 0.113516i 0.831394 0.555683i \(-0.187543\pi\)
−0.896933 + 0.442167i \(0.854210\pi\)
\(660\) 0.216677 + 4.14852i 0.00843416 + 0.161481i
\(661\) −6.16334 + 3.55840i −0.239726 + 0.138406i −0.615051 0.788487i \(-0.710865\pi\)
0.375325 + 0.926893i \(0.377531\pi\)
\(662\) −8.97416 5.18123i −0.348790 0.201374i
\(663\) −0.119858 2.29482i −0.00465491 0.0891233i
\(664\) 11.3081i 0.438841i
\(665\) −2.95113 + 9.77121i −0.114440 + 0.378911i
\(666\) −15.5528 6.93115i −0.602658 0.268577i
\(667\) −1.12967 0.652215i −0.0437410 0.0252539i
\(668\) −0.136815 + 0.236971i −0.00529355 + 0.00916869i
\(669\) 11.9997 23.5403i 0.463933 0.910122i
\(670\) −6.53894 + 11.3258i −0.252621 + 0.437553i
\(671\) −5.20084 + 3.00270i −0.200776 + 0.115918i
\(672\) 3.40196 2.20840i 0.131233 0.0851909i
\(673\) 26.5117i 1.02195i −0.859596 0.510975i \(-0.829284\pi\)
0.859596 0.510975i \(-0.170716\pi\)
\(674\) 23.7499 13.7120i 0.914810 0.528166i
\(675\) 4.03991 3.26790i 0.155496 0.125781i
\(676\) 12.7708 0.491186
\(677\) −42.3166 −1.62636 −0.813179 0.582013i \(-0.802265\pi\)
−0.813179 + 0.582013i \(0.802265\pi\)
\(678\) 15.4237 + 7.86219i 0.592342 + 0.301946i
\(679\) 17.5441 + 10.1291i 0.673279 + 0.388718i
\(680\) 1.38572 + 2.40013i 0.0531398 + 0.0920408i
\(681\) −0.157293 3.01154i −0.00602748 0.115403i
\(682\) 2.45973 4.26038i 0.0941879 0.163138i
\(683\) 11.0677 0.423493 0.211746 0.977325i \(-0.432085\pi\)
0.211746 + 0.977325i \(0.432085\pi\)
\(684\) −8.54905 + 9.89514i −0.326881 + 0.378350i
\(685\) 8.75118 0.334365
\(686\) 9.97150 17.2711i 0.380714 0.659415i
\(687\) −1.50378 28.7914i −0.0573726 1.09846i
\(688\) −3.77271 6.53452i −0.143833 0.249126i
\(689\) 5.50653 + 3.17920i 0.209782 + 0.121118i
\(690\) 3.20804 + 1.63530i 0.122128 + 0.0622547i
\(691\) 20.2406 0.769990 0.384995 0.922919i \(-0.374203\pi\)
0.384995 + 0.922919i \(0.374203\pi\)
\(692\) −24.3892 −0.927137
\(693\) −1.75525 16.7573i −0.0666766 0.636556i
\(694\) 22.5112 12.9969i 0.854515 0.493354i
\(695\) 7.49842i 0.284431i
\(696\) −0.911558 + 0.591743i −0.0345525 + 0.0224300i
\(697\) −5.02222 + 2.89958i −0.190230 + 0.109829i
\(698\) −4.08348 + 7.07280i −0.154562 + 0.267710i
\(699\) 6.82384 13.3867i 0.258101 0.506330i
\(700\) 1.17084 2.02795i 0.0442536 0.0766494i
\(701\) −12.8127 7.39742i −0.483929 0.279397i 0.238123 0.971235i \(-0.423468\pi\)
−0.722053 + 0.691838i \(0.756801\pi\)
\(702\) −2.45704 + 0.387819i −0.0927352 + 0.0146373i
\(703\) 24.0870 5.64709i 0.908459 0.212984i
\(704\) 2.39841i 0.0903936i
\(705\) −0.202783 3.88249i −0.00763724 0.146223i
\(706\) 20.0065 + 11.5507i 0.752953 + 0.434718i
\(707\) −9.27466 + 5.35473i −0.348810 + 0.201385i
\(708\) −0.566931 10.8545i −0.0213066 0.407937i
\(709\) −0.506440 0.877179i −0.0190197 0.0329432i 0.856359 0.516381i \(-0.172721\pi\)
−0.875379 + 0.483438i \(0.839388\pi\)
\(710\) 5.36769i 0.201446i
\(711\) −32.1440 14.3251i −1.20550 0.537234i
\(712\) 4.97362 + 8.61457i 0.186394 + 0.322845i
\(713\) −2.13207 3.69285i −0.0798466 0.138298i
\(714\) −6.12044 9.42830i −0.229052 0.352845i
\(715\) 1.14815i 0.0429384i
\(716\) −10.0385 17.3871i −0.375155 0.649787i
\(717\) −33.1208 + 1.72990i −1.23692 + 0.0646043i
\(718\) −17.3948 + 10.0429i −0.649168 + 0.374798i
\(719\) 2.95761 + 1.70758i 0.110300 + 0.0636819i 0.554135 0.832427i \(-0.313049\pi\)
−0.443835 + 0.896109i \(0.646382\pi\)
\(720\) 2.42768 1.76250i 0.0904741 0.0656843i
\(721\) 5.38382i 0.200504i
\(722\) 1.19670 18.9623i 0.0445364 0.705703i
\(723\) −18.1187 27.9111i −0.673840 1.03803i
\(724\) −10.2054 5.89207i −0.379279 0.218977i
\(725\) −0.313727 + 0.543392i −0.0116515 + 0.0201811i
\(726\) −8.09774 4.12781i −0.300535 0.153197i
\(727\) −20.0624 + 34.7491i −0.744074 + 1.28877i 0.206552 + 0.978436i \(0.433776\pi\)
−0.950626 + 0.310338i \(0.899558\pi\)
\(728\) −0.970806 + 0.560495i −0.0359805 + 0.0207733i
\(729\) −25.6874 + 8.31615i −0.951385 + 0.308005i
\(730\) 11.6209i 0.430109i
\(731\) −18.1100 + 10.4558i −0.669822 + 0.386722i
\(732\) 3.86385 + 1.96959i 0.142812 + 0.0727983i
\(733\) 42.4761 1.56889 0.784446 0.620197i \(-0.212947\pi\)
0.784446 + 0.620197i \(0.212947\pi\)
\(734\) −9.66168 −0.356619
\(735\) 1.19293 2.34022i 0.0440017 0.0863204i
\(736\) 1.80040 + 1.03946i 0.0663636 + 0.0383150i
\(737\) 15.6831 + 27.1639i 0.577694 + 1.00060i
\(738\) 3.68798 + 5.07985i 0.135756 + 0.186992i
\(739\) −25.6660 + 44.4548i −0.944139 + 1.63530i −0.186673 + 0.982422i \(0.559770\pi\)
−0.757466 + 0.652874i \(0.773563\pi\)
\(740\) −5.67577 −0.208646
\(741\) 2.50226 2.60790i 0.0919228 0.0958036i
\(742\) 31.1028 1.14182
\(743\) −14.7044 + 25.4688i −0.539454 + 0.934361i 0.459480 + 0.888188i \(0.348036\pi\)
−0.998933 + 0.0461730i \(0.985297\pi\)
\(744\) −3.54782 + 0.185303i −0.130070 + 0.00679354i
\(745\) −6.11734 10.5955i −0.224122 0.388190i
\(746\) −14.5767 8.41587i −0.533692 0.308127i
\(747\) 3.53411 + 33.7398i 0.129306 + 1.23448i
\(748\) 6.64704 0.243040
\(749\) 28.5312 1.04251
\(750\) 0.786608 1.54313i 0.0287229 0.0563471i
\(751\) 9.26493 5.34911i 0.338082 0.195192i −0.321342 0.946963i \(-0.604134\pi\)
0.659424 + 0.751772i \(0.270800\pi\)
\(752\) 2.24461i 0.0818526i
\(753\) 11.7935 + 18.1675i 0.429779 + 0.662059i
\(754\) 0.260128 0.150185i 0.00947332 0.00546942i
\(755\) 8.02727 13.9036i 0.292142 0.506005i
\(756\) −9.46016 + 7.65236i −0.344063 + 0.278314i
\(757\) −8.59944 + 14.8947i −0.312552 + 0.541356i −0.978914 0.204272i \(-0.934517\pi\)
0.666362 + 0.745628i \(0.267851\pi\)
\(758\) 27.3759 + 15.8055i 0.994337 + 0.574081i
\(759\) 7.24376 4.70233i 0.262932 0.170684i
\(760\) −1.26026 + 4.17274i −0.0457146 + 0.151361i
\(761\) 35.2476i 1.27772i −0.769321 0.638862i \(-0.779405\pi\)
0.769321 0.638862i \(-0.220595\pi\)
\(762\) −19.1492 + 1.00016i −0.693701 + 0.0362320i
\(763\) −1.46221 0.844208i −0.0529356 0.0305624i
\(764\) 6.38163 3.68444i 0.230879 0.133298i
\(765\) −4.88464 6.72814i −0.176604 0.243256i
\(766\) −14.8637 25.7447i −0.537048 0.930194i
\(767\) 3.00411i 0.108472i
\(768\) 1.45279 0.943085i 0.0524229 0.0340306i
\(769\) −16.3809 28.3725i −0.590710 1.02314i −0.994137 0.108128i \(-0.965514\pi\)
0.403427 0.915012i \(-0.367819\pi\)
\(770\) −2.80816 4.86387i −0.101199 0.175282i
\(771\) −2.13197 + 1.38398i −0.0767811 + 0.0498429i
\(772\) 7.47201i 0.268924i
\(773\) 9.83728 + 17.0387i 0.353822 + 0.612838i 0.986916 0.161237i \(-0.0515484\pi\)
−0.633093 + 0.774075i \(0.718215\pi\)
\(774\) 13.2988 + 18.3178i 0.478014 + 0.658421i
\(775\) &m