Properties

Label 570.2.s.a.521.3
Level $570$
Weight $2$
Character 570.521
Analytic conductor $4.551$
Analytic rank $0$
Dimension $24$
CM no
Inner twists $2$

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) \(=\) \( 570 = 2 \cdot 3 \cdot 5 \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 570.s (of order \(6\), degree \(2\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(4.55147291521\)
Analytic rank: \(0\)
Dimension: \(24\)
Relative dimension: \(12\) over \(\Q(\zeta_{6})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 521.3
Character \(\chi\) \(=\) 570.521
Dual form 570.2.s.a.221.3

$q$-expansion

\(f(q)\) \(=\) \(q+(-0.500000 + 0.866025i) q^{2} +(-1.01463 + 1.40375i) q^{3} +(-0.500000 - 0.866025i) q^{4} +(-0.866025 - 0.500000i) q^{5} +(-0.708367 - 1.58057i) q^{6} +2.73284 q^{7} +1.00000 q^{8} +(-0.941036 - 2.84859i) q^{9} +O(q^{10})\) \(q+(-0.500000 + 0.866025i) q^{2} +(-1.01463 + 1.40375i) q^{3} +(-0.500000 - 0.866025i) q^{4} +(-0.866025 - 0.500000i) q^{5} +(-0.708367 - 1.58057i) q^{6} +2.73284 q^{7} +1.00000 q^{8} +(-0.941036 - 2.84859i) q^{9} +(0.866025 - 0.500000i) q^{10} -0.361598i q^{11} +(1.72300 + 0.176823i) q^{12} +(2.32225 - 1.34075i) q^{13} +(-1.36642 + 2.36671i) q^{14} +(1.58057 - 0.708367i) q^{15} +(-0.500000 + 0.866025i) q^{16} +(1.37205 + 0.792151i) q^{17} +(2.93747 + 0.609333i) q^{18} +(2.26593 - 3.72365i) q^{19} +1.00000i q^{20} +(-2.77283 + 3.83623i) q^{21} +(0.313153 + 0.180799i) q^{22} +(3.44153 - 1.98697i) q^{23} +(-1.01463 + 1.40375i) q^{24} +(0.500000 + 0.866025i) q^{25} +2.68150i q^{26} +(4.95352 + 1.56929i) q^{27} +(-1.36642 - 2.36671i) q^{28} +(1.24989 + 2.16488i) q^{29} +(-0.176823 + 1.72300i) q^{30} +5.44068i q^{31} +(-0.500000 - 0.866025i) q^{32} +(0.507593 + 0.366889i) q^{33} +(-1.37205 + 0.792151i) q^{34} +(-2.36671 - 1.36642i) q^{35} +(-1.99643 + 2.23925i) q^{36} +7.93595i q^{37} +(2.09181 + 3.82417i) q^{38} +(-0.474151 + 4.62022i) q^{39} +(-0.866025 - 0.500000i) q^{40} +(-2.12250 + 3.67627i) q^{41} +(-1.93585 - 4.31946i) q^{42} +(1.23694 - 2.14245i) q^{43} +(-0.313153 + 0.180799i) q^{44} +(-0.609333 + 2.93747i) q^{45} +3.97393i q^{46} +(6.62319 - 3.82390i) q^{47} +(-0.708367 - 1.58057i) q^{48} +0.468410 q^{49} -1.00000 q^{50} +(-2.50411 + 1.12227i) q^{51} +(-2.32225 - 1.34075i) q^{52} +(-1.37459 - 2.38085i) q^{53} +(-3.83581 + 3.50522i) q^{54} +(-0.180799 + 0.313153i) q^{55} +2.73284 q^{56} +(2.92800 + 6.95894i) q^{57} -2.49978 q^{58} +(-1.56849 + 2.71671i) q^{59} +(-1.40375 - 1.01463i) q^{60} +(3.73492 + 6.46907i) q^{61} +(-4.71176 - 2.72034i) q^{62} +(-2.57170 - 7.78473i) q^{63} +1.00000 q^{64} -2.68150 q^{65} +(-0.571532 + 0.256144i) q^{66} +(-0.731797 + 0.422503i) q^{67} -1.58430i q^{68} +(-0.702683 + 6.84709i) q^{69} +(2.36671 - 1.36642i) q^{70} +(4.22259 - 7.31374i) q^{71} +(-0.941036 - 2.84859i) q^{72} +(6.07501 - 10.5222i) q^{73} +(-6.87273 - 3.96797i) q^{74} +(-1.72300 - 0.176823i) q^{75} +(-4.35774 - 0.100523i) q^{76} -0.988188i q^{77} +(-3.76416 - 2.72074i) q^{78} +(3.57112 + 2.06179i) q^{79} +(0.866025 - 0.500000i) q^{80} +(-7.22890 + 5.36125i) q^{81} +(-2.12250 - 3.67627i) q^{82} +0.651818i q^{83} +(4.70869 + 0.483229i) q^{84} +(-0.792151 - 1.37205i) q^{85} +(1.23694 + 2.14245i) q^{86} +(-4.30713 - 0.442019i) q^{87} -0.361598i q^{88} +(-5.47514 - 9.48321i) q^{89} +(-2.23925 - 1.99643i) q^{90} +(6.34632 - 3.66405i) q^{91} +(-3.44153 - 1.98697i) q^{92} +(-7.63736 - 5.52029i) q^{93} +7.64780i q^{94} +(-3.82417 + 2.09181i) q^{95} +(1.72300 + 0.176823i) q^{96} +(15.3033 + 8.83538i) q^{97} +(-0.234205 + 0.405655i) q^{98} +(-1.03004 + 0.340276i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 24q - 12q^{2} + 4q^{3} - 12q^{4} - 2q^{6} - 12q^{7} + 24q^{8} - 4q^{9} + O(q^{10}) \) \( 24q - 12q^{2} + 4q^{3} - 12q^{4} - 2q^{6} - 12q^{7} + 24q^{8} - 4q^{9} - 2q^{12} + 18q^{13} + 6q^{14} - 12q^{16} + 12q^{17} + 2q^{18} + 6q^{19} - 6q^{21} + 18q^{22} + 4q^{24} + 12q^{25} + 28q^{27} + 6q^{28} - 12q^{32} - 22q^{33} - 12q^{34} + 2q^{36} + 6q^{38} + 40q^{39} + 6q^{41} - 6q^{42} - 22q^{43} - 18q^{44} + 8q^{45} + 12q^{47} - 2q^{48} + 12q^{49} - 24q^{50} - 20q^{51} - 18q^{52} + 8q^{53} + 4q^{54} - 12q^{56} + 26q^{59} + 22q^{61} - 18q^{62} + 6q^{63} + 24q^{64} + 8q^{65} + 8q^{66} - 48q^{67} - 64q^{69} + 24q^{71} - 4q^{72} - 8q^{73} + 30q^{74} + 2q^{75} - 12q^{76} - 38q^{78} + 18q^{79} - 12q^{81} + 6q^{82} + 12q^{84} - 22q^{86} - 24q^{87} + 28q^{89} + 8q^{90} + 18q^{91} + 2q^{93} - 2q^{96} + 6q^{97} - 6q^{98} + 2q^{99} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/570\mathbb{Z}\right)^\times\).

\(n\) \(191\) \(211\) \(457\)
\(\chi(n)\) \(-1\) \(e\left(\frac{1}{6}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.500000 + 0.866025i −0.353553 + 0.612372i
\(3\) −1.01463 + 1.40375i −0.585799 + 0.810456i
\(4\) −0.500000 0.866025i −0.250000 0.433013i
\(5\) −0.866025 0.500000i −0.387298 0.223607i
\(6\) −0.708367 1.58057i −0.289190 0.645267i
\(7\) 2.73284 1.03292 0.516458 0.856312i \(-0.327250\pi\)
0.516458 + 0.856312i \(0.327250\pi\)
\(8\) 1.00000 0.353553
\(9\) −0.941036 2.84859i −0.313679 0.949529i
\(10\) 0.866025 0.500000i 0.273861 0.158114i
\(11\) 0.361598i 0.109026i −0.998513 0.0545129i \(-0.982639\pi\)
0.998513 0.0545129i \(-0.0173606\pi\)
\(12\) 1.72300 + 0.176823i 0.497388 + 0.0510444i
\(13\) 2.32225 1.34075i 0.644075 0.371857i −0.142108 0.989851i \(-0.545388\pi\)
0.786183 + 0.617994i \(0.212055\pi\)
\(14\) −1.36642 + 2.36671i −0.365191 + 0.632529i
\(15\) 1.58057 0.708367i 0.408103 0.182900i
\(16\) −0.500000 + 0.866025i −0.125000 + 0.216506i
\(17\) 1.37205 + 0.792151i 0.332770 + 0.192125i 0.657070 0.753829i \(-0.271795\pi\)
−0.324300 + 0.945954i \(0.605129\pi\)
\(18\) 2.93747 + 0.609333i 0.692368 + 0.143621i
\(19\) 2.26593 3.72365i 0.519839 0.854264i
\(20\) 1.00000i 0.223607i
\(21\) −2.77283 + 3.83623i −0.605081 + 0.837133i
\(22\) 0.313153 + 0.180799i 0.0667644 + 0.0385464i
\(23\) 3.44153 1.98697i 0.717608 0.414311i −0.0962636 0.995356i \(-0.530689\pi\)
0.813872 + 0.581045i \(0.197356\pi\)
\(24\) −1.01463 + 1.40375i −0.207111 + 0.286540i
\(25\) 0.500000 + 0.866025i 0.100000 + 0.173205i
\(26\) 2.68150i 0.525885i
\(27\) 4.95352 + 1.56929i 0.953305 + 0.302011i
\(28\) −1.36642 2.36671i −0.258229 0.447266i
\(29\) 1.24989 + 2.16488i 0.232099 + 0.402007i 0.958426 0.285342i \(-0.0921073\pi\)
−0.726327 + 0.687350i \(0.758774\pi\)
\(30\) −0.176823 + 1.72300i −0.0322833 + 0.314576i
\(31\) 5.44068i 0.977174i 0.872515 + 0.488587i \(0.162488\pi\)
−0.872515 + 0.488587i \(0.837512\pi\)
\(32\) −0.500000 0.866025i −0.0883883 0.153093i
\(33\) 0.507593 + 0.366889i 0.0883606 + 0.0638672i
\(34\) −1.37205 + 0.792151i −0.235304 + 0.135853i
\(35\) −2.36671 1.36642i −0.400047 0.230967i
\(36\) −1.99643 + 2.23925i −0.332739 + 0.373209i
\(37\) 7.93595i 1.30466i 0.757934 + 0.652331i \(0.226209\pi\)
−0.757934 + 0.652331i \(0.773791\pi\)
\(38\) 2.09181 + 3.82417i 0.339337 + 0.620363i
\(39\) −0.474151 + 4.62022i −0.0759249 + 0.739828i
\(40\) −0.866025 0.500000i −0.136931 0.0790569i
\(41\) −2.12250 + 3.67627i −0.331478 + 0.574137i −0.982802 0.184663i \(-0.940881\pi\)
0.651324 + 0.758800i \(0.274214\pi\)
\(42\) −1.93585 4.31946i −0.298709 0.666507i
\(43\) 1.23694 2.14245i 0.188632 0.326720i −0.756162 0.654384i \(-0.772928\pi\)
0.944794 + 0.327664i \(0.106261\pi\)
\(44\) −0.313153 + 0.180799i −0.0472095 + 0.0272564i
\(45\) −0.609333 + 2.93747i −0.0908340 + 0.437892i
\(46\) 3.97393i 0.585925i
\(47\) 6.62319 3.82390i 0.966092 0.557773i 0.0680494 0.997682i \(-0.478322\pi\)
0.898043 + 0.439908i \(0.144989\pi\)
\(48\) −0.708367 1.58057i −0.102244 0.228136i
\(49\) 0.468410 0.0669158
\(50\) −1.00000 −0.141421
\(51\) −2.50411 + 1.12227i −0.350645 + 0.157149i
\(52\) −2.32225 1.34075i −0.322037 0.185928i
\(53\) −1.37459 2.38085i −0.188814 0.327035i 0.756041 0.654524i \(-0.227131\pi\)
−0.944855 + 0.327489i \(0.893798\pi\)
\(54\) −3.83581 + 3.50522i −0.521987 + 0.477001i
\(55\) −0.180799 + 0.313153i −0.0243789 + 0.0422255i
\(56\) 2.73284 0.365191
\(57\) 2.92800 + 6.95894i 0.387822 + 0.921734i
\(58\) −2.49978 −0.328238
\(59\) −1.56849 + 2.71671i −0.204200 + 0.353685i −0.949878 0.312622i \(-0.898793\pi\)
0.745677 + 0.666307i \(0.232126\pi\)
\(60\) −1.40375 1.01463i −0.181224 0.130989i
\(61\) 3.73492 + 6.46907i 0.478208 + 0.828280i 0.999688 0.0249834i \(-0.00795330\pi\)
−0.521480 + 0.853263i \(0.674620\pi\)
\(62\) −4.71176 2.72034i −0.598395 0.345483i
\(63\) −2.57170 7.78473i −0.324004 0.980784i
\(64\) 1.00000 0.125000
\(65\) −2.68150 −0.332599
\(66\) −0.571532 + 0.256144i −0.0703507 + 0.0315291i
\(67\) −0.731797 + 0.422503i −0.0894032 + 0.0516170i −0.544035 0.839062i \(-0.683104\pi\)
0.454632 + 0.890679i \(0.349771\pi\)
\(68\) 1.58430i 0.192125i
\(69\) −0.702683 + 6.84709i −0.0845931 + 0.824293i
\(70\) 2.36671 1.36642i 0.282876 0.163318i
\(71\) 4.22259 7.31374i 0.501129 0.867981i −0.498870 0.866677i \(-0.666251\pi\)
0.999999 0.00130440i \(-0.000415204\pi\)
\(72\) −0.941036 2.84859i −0.110902 0.335709i
\(73\) 6.07501 10.5222i 0.711026 1.23153i −0.253447 0.967349i \(-0.581564\pi\)
0.964472 0.264184i \(-0.0851025\pi\)
\(74\) −6.87273 3.96797i −0.798939 0.461268i
\(75\) −1.72300 0.176823i −0.198955 0.0204178i
\(76\) −4.35774 0.100523i −0.499867 0.0115308i
\(77\) 0.988188i 0.112614i
\(78\) −3.76416 2.72074i −0.426207 0.308063i
\(79\) 3.57112 + 2.06179i 0.401783 + 0.231969i 0.687253 0.726418i \(-0.258816\pi\)
−0.285470 + 0.958388i \(0.592150\pi\)
\(80\) 0.866025 0.500000i 0.0968246 0.0559017i
\(81\) −7.22890 + 5.36125i −0.803211 + 0.595694i
\(82\) −2.12250 3.67627i −0.234391 0.405976i
\(83\) 0.651818i 0.0715463i 0.999360 + 0.0357732i \(0.0113894\pi\)
−0.999360 + 0.0357732i \(0.988611\pi\)
\(84\) 4.70869 + 0.483229i 0.513760 + 0.0527246i
\(85\) −0.792151 1.37205i −0.0859208 0.148819i
\(86\) 1.23694 + 2.14245i 0.133383 + 0.231026i
\(87\) −4.30713 0.442019i −0.461773 0.0473895i
\(88\) 0.361598i 0.0385464i
\(89\) −5.47514 9.48321i −0.580363 1.00522i −0.995436 0.0954304i \(-0.969577\pi\)
0.415073 0.909788i \(-0.363756\pi\)
\(90\) −2.23925 1.99643i −0.236038 0.210442i
\(91\) 6.34632 3.66405i 0.665275 0.384097i
\(92\) −3.44153 1.98697i −0.358804 0.207156i
\(93\) −7.63736 5.52029i −0.791957 0.572428i
\(94\) 7.64780i 0.788811i
\(95\) −3.82417 + 2.09181i −0.392352 + 0.214616i
\(96\) 1.72300 + 0.176823i 0.175853 + 0.0180469i
\(97\) 15.3033 + 8.83538i 1.55382 + 0.897097i 0.997826 + 0.0659098i \(0.0209950\pi\)
0.555992 + 0.831187i \(0.312338\pi\)
\(98\) −0.234205 + 0.405655i −0.0236583 + 0.0409774i
\(99\) −1.03004 + 0.340276i −0.103523 + 0.0341990i
\(100\) 0.500000 0.866025i 0.0500000 0.0866025i
\(101\) 0.597354 0.344883i 0.0594390 0.0343171i −0.469986 0.882674i \(-0.655741\pi\)
0.529425 + 0.848357i \(0.322408\pi\)
\(102\) 0.280141 2.72975i 0.0277381 0.270286i
\(103\) 15.3946i 1.51688i −0.651744 0.758439i \(-0.725962\pi\)
0.651744 0.758439i \(-0.274038\pi\)
\(104\) 2.32225 1.34075i 0.227715 0.131471i
\(105\) 4.31946 1.93585i 0.421536 0.188920i
\(106\) 2.74917 0.267023
\(107\) 0.902808 0.0872778 0.0436389 0.999047i \(-0.486105\pi\)
0.0436389 + 0.999047i \(0.486105\pi\)
\(108\) −1.11771 5.07452i −0.107552 0.488296i
\(109\) 8.27239 + 4.77607i 0.792351 + 0.457464i 0.840790 0.541362i \(-0.182091\pi\)
−0.0484384 + 0.998826i \(0.515424\pi\)
\(110\) −0.180799 0.313153i −0.0172385 0.0298579i
\(111\) −11.1401 8.05208i −1.05737 0.764270i
\(112\) −1.36642 + 2.36671i −0.129115 + 0.223633i
\(113\) 18.0868 1.70146 0.850731 0.525602i \(-0.176160\pi\)
0.850731 + 0.525602i \(0.176160\pi\)
\(114\) −7.49062 0.943751i −0.701561 0.0883904i
\(115\) −3.97393 −0.370571
\(116\) 1.24989 2.16488i 0.116050 0.201004i
\(117\) −6.00456 5.35343i −0.555121 0.494924i
\(118\) −1.56849 2.71671i −0.144391 0.250093i
\(119\) 3.74958 + 2.16482i 0.343723 + 0.198449i
\(120\) 1.58057 0.708367i 0.144286 0.0646648i
\(121\) 10.8692 0.988113
\(122\) −7.46984 −0.676288
\(123\) −3.00702 6.70953i −0.271133 0.604978i
\(124\) 4.71176 2.72034i 0.423129 0.244294i
\(125\) 1.00000i 0.0894427i
\(126\) 8.02763 + 1.66521i 0.715158 + 0.148349i
\(127\) −3.08394 + 1.78051i −0.273655 + 0.157995i −0.630548 0.776151i \(-0.717170\pi\)
0.356892 + 0.934145i \(0.383836\pi\)
\(128\) −0.500000 + 0.866025i −0.0441942 + 0.0765466i
\(129\) 1.75242 + 3.91016i 0.154292 + 0.344271i
\(130\) 1.34075 2.32225i 0.117591 0.203674i
\(131\) −4.10014 2.36722i −0.358231 0.206825i 0.310073 0.950713i \(-0.399646\pi\)
−0.668305 + 0.743888i \(0.732980\pi\)
\(132\) 0.0639388 0.623033i 0.00556516 0.0542281i
\(133\) 6.19241 10.1761i 0.536950 0.882383i
\(134\) 0.845006i 0.0729974i
\(135\) −3.50522 3.83581i −0.301682 0.330134i
\(136\) 1.37205 + 0.792151i 0.117652 + 0.0679264i
\(137\) −4.07740 + 2.35409i −0.348356 + 0.201123i −0.663961 0.747767i \(-0.731126\pi\)
0.315605 + 0.948891i \(0.397793\pi\)
\(138\) −5.57841 4.03209i −0.474866 0.343234i
\(139\) −7.46724 12.9336i −0.633363 1.09702i −0.986860 0.161581i \(-0.948341\pi\)
0.353497 0.935436i \(-0.384993\pi\)
\(140\) 2.73284i 0.230967i
\(141\) −1.35231 + 13.1772i −0.113885 + 1.10972i
\(142\) 4.22259 + 7.31374i 0.354352 + 0.613755i
\(143\) −0.484812 0.839718i −0.0405420 0.0702208i
\(144\) 2.93747 + 0.609333i 0.244789 + 0.0507777i
\(145\) 2.49978i 0.207596i
\(146\) 6.07501 + 10.5222i 0.502771 + 0.870825i
\(147\) −0.475265 + 0.657532i −0.0391992 + 0.0542323i
\(148\) 6.87273 3.96797i 0.564935 0.326165i
\(149\) −19.6035 11.3181i −1.60598 0.927215i −0.990257 0.139254i \(-0.955529\pi\)
−0.615726 0.787960i \(-0.711137\pi\)
\(150\) 1.01463 1.40375i 0.0828445 0.114616i
\(151\) 3.63440i 0.295763i 0.989005 + 0.147882i \(0.0472455\pi\)
−0.989005 + 0.147882i \(0.952755\pi\)
\(152\) 2.26593 3.72365i 0.183791 0.302028i
\(153\) 0.965367 4.65383i 0.0780453 0.376240i
\(154\) 0.855796 + 0.494094i 0.0689620 + 0.0398152i
\(155\) 2.72034 4.71176i 0.218503 0.378458i
\(156\) 4.23831 1.89949i 0.339336 0.152081i
\(157\) −6.76442 + 11.7163i −0.539859 + 0.935064i 0.459052 + 0.888410i \(0.348189\pi\)
−0.998911 + 0.0466542i \(0.985144\pi\)
\(158\) −3.57112 + 2.06179i −0.284103 + 0.164027i
\(159\) 4.73683 + 0.486117i 0.375655 + 0.0385516i
\(160\) 1.00000i 0.0790569i
\(161\) 9.40514 5.43006i 0.741229 0.427949i
\(162\) −1.02852 8.94104i −0.0808084 0.702474i
\(163\) −18.9557 −1.48472 −0.742361 0.670000i \(-0.766294\pi\)
−0.742361 + 0.670000i \(0.766294\pi\)
\(164\) 4.24499 0.331478
\(165\) −0.256144 0.571532i −0.0199408 0.0444937i
\(166\) −0.564491 0.325909i −0.0438130 0.0252954i
\(167\) −2.66087 4.60877i −0.205905 0.356637i 0.744516 0.667605i \(-0.232680\pi\)
−0.950421 + 0.310967i \(0.899347\pi\)
\(168\) −2.77283 + 3.83623i −0.213929 + 0.295971i
\(169\) −2.90478 + 5.03123i −0.223445 + 0.387018i
\(170\) 1.58430 0.121510
\(171\) −12.7395 2.95060i −0.974211 0.225638i
\(172\) −2.47389 −0.188632
\(173\) −5.01989 + 8.69470i −0.381655 + 0.661046i −0.991299 0.131630i \(-0.957979\pi\)
0.609644 + 0.792675i \(0.291312\pi\)
\(174\) 2.53636 3.50907i 0.192281 0.266022i
\(175\) 1.36642 + 2.36671i 0.103292 + 0.178906i
\(176\) 0.313153 + 0.180799i 0.0236048 + 0.0136282i
\(177\) −2.22214 4.95824i −0.167026 0.372684i
\(178\) 10.9503 0.820757
\(179\) −6.28120 −0.469479 −0.234739 0.972058i \(-0.575424\pi\)
−0.234739 + 0.972058i \(0.575424\pi\)
\(180\) 2.84859 0.941036i 0.212321 0.0701407i
\(181\) −21.3026 + 12.2990i −1.58341 + 0.914180i −0.589049 + 0.808097i \(0.700498\pi\)
−0.994357 + 0.106083i \(0.966169\pi\)
\(182\) 7.32810i 0.543195i
\(183\) −12.8705 1.32084i −0.951418 0.0976394i
\(184\) 3.44153 1.98697i 0.253713 0.146481i
\(185\) 3.96797 6.87273i 0.291731 0.505293i
\(186\) 8.59939 3.85400i 0.630538 0.282589i
\(187\) 0.286440 0.496128i 0.0209466 0.0362805i
\(188\) −6.62319 3.82390i −0.483046 0.278887i
\(189\) 13.5372 + 4.28863i 0.984684 + 0.311952i
\(190\) 0.100523 4.35774i 0.00729274 0.316144i
\(191\) 25.6046i 1.85268i −0.376683 0.926342i \(-0.622935\pi\)
0.376683 0.926342i \(-0.377065\pi\)
\(192\) −1.01463 + 1.40375i −0.0732249 + 0.101307i
\(193\) 2.59120 + 1.49603i 0.186519 + 0.107687i 0.590352 0.807146i \(-0.298989\pi\)
−0.403833 + 0.914833i \(0.632322\pi\)
\(194\) −15.3033 + 8.83538i −1.09872 + 0.634344i
\(195\) 2.72074 3.76416i 0.194836 0.269557i
\(196\) −0.234205 0.405655i −0.0167289 0.0289754i
\(197\) 17.7186i 1.26240i 0.775620 + 0.631201i \(0.217438\pi\)
−0.775620 + 0.631201i \(0.782562\pi\)
\(198\) 0.220333 1.06218i 0.0156584 0.0754859i
\(199\) −10.2862 17.8162i −0.729170 1.26296i −0.957235 0.289313i \(-0.906573\pi\)
0.228065 0.973646i \(-0.426760\pi\)
\(200\) 0.500000 + 0.866025i 0.0353553 + 0.0612372i
\(201\) 0.149417 1.45595i 0.0105390 0.102695i
\(202\) 0.689765i 0.0485317i
\(203\) 3.41575 + 5.91626i 0.239739 + 0.415240i
\(204\) 2.22397 + 1.60749i 0.155709 + 0.112547i
\(205\) 3.67627 2.12250i 0.256762 0.148242i
\(206\) 13.3321 + 7.69731i 0.928894 + 0.536297i
\(207\) −8.89865 7.93369i −0.618499 0.551429i
\(208\) 2.68150i 0.185928i
\(209\) −1.34646 0.819353i −0.0931368 0.0566758i
\(210\) −0.483229 + 4.70869i −0.0333460 + 0.324930i
\(211\) 0.240924 + 0.139098i 0.0165859 + 0.00957587i 0.508270 0.861198i \(-0.330285\pi\)
−0.491684 + 0.870774i \(0.663619\pi\)
\(212\) −1.37459 + 2.38085i −0.0944069 + 0.163518i
\(213\) 5.98229 + 13.3482i 0.409900 + 0.914606i
\(214\) −0.451404 + 0.781855i −0.0308573 + 0.0534465i
\(215\) −2.14245 + 1.23694i −0.146114 + 0.0843588i
\(216\) 4.95352 + 1.56929i 0.337044 + 0.106777i
\(217\) 14.8685i 1.00934i
\(218\) −8.27239 + 4.77607i −0.560277 + 0.323476i
\(219\) 8.60667 + 19.2040i 0.581585 + 1.29769i
\(220\) 0.361598 0.0243789
\(221\) 4.24830 0.285772
\(222\) 12.5434 5.62157i 0.841855 0.377295i
\(223\) 4.55894 + 2.63211i 0.305290 + 0.176259i 0.644817 0.764337i \(-0.276934\pi\)
−0.339527 + 0.940596i \(0.610267\pi\)
\(224\) −1.36642 2.36671i −0.0912978 0.158132i
\(225\) 1.99643 2.23925i 0.133095 0.149284i
\(226\) −9.04339 + 15.6636i −0.601557 + 1.04193i
\(227\) 18.1853 1.20700 0.603500 0.797363i \(-0.293773\pi\)
0.603500 + 0.797363i \(0.293773\pi\)
\(228\) 4.56262 6.01519i 0.302167 0.398366i
\(229\) −0.0923898 −0.00610529 −0.00305265 0.999995i \(-0.500972\pi\)
−0.00305265 + 0.999995i \(0.500972\pi\)
\(230\) 1.98697 3.44153i 0.131017 0.226928i
\(231\) 1.38717 + 1.00265i 0.0912691 + 0.0659695i
\(232\) 1.24989 + 2.16488i 0.0820594 + 0.142131i
\(233\) 12.3845 + 7.15019i 0.811335 + 0.468425i 0.847419 0.530924i \(-0.178155\pi\)
−0.0360842 + 0.999349i \(0.511488\pi\)
\(234\) 7.63848 2.52339i 0.499343 0.164959i
\(235\) −7.64780 −0.498888
\(236\) 3.13699 0.204200
\(237\) −6.51762 + 2.92101i −0.423365 + 0.189740i
\(238\) −3.74958 + 2.16482i −0.243049 + 0.140324i
\(239\) 26.1968i 1.69453i 0.531172 + 0.847264i \(0.321752\pi\)
−0.531172 + 0.847264i \(0.678248\pi\)
\(240\) −0.176823 + 1.72300i −0.0114139 + 0.111219i
\(241\) −16.7185 + 9.65242i −1.07693 + 0.621767i −0.930067 0.367390i \(-0.880251\pi\)
−0.146865 + 0.989157i \(0.546918\pi\)
\(242\) −5.43462 + 9.41304i −0.349351 + 0.605093i
\(243\) −0.191165 15.5873i −0.0122632 0.999925i
\(244\) 3.73492 6.46907i 0.239104 0.414140i
\(245\) −0.405655 0.234205i −0.0259164 0.0149628i
\(246\) 7.31413 + 0.750613i 0.466332 + 0.0478573i
\(247\) 0.269553 11.6853i 0.0171513 0.743516i
\(248\) 5.44068i 0.345483i
\(249\) −0.914990 0.661357i −0.0579852 0.0419118i
\(250\) 0.866025 + 0.500000i 0.0547723 + 0.0316228i
\(251\) −9.65147 + 5.57228i −0.609195 + 0.351719i −0.772650 0.634832i \(-0.781069\pi\)
0.163455 + 0.986551i \(0.447736\pi\)
\(252\) −5.45593 + 6.11952i −0.343691 + 0.385494i
\(253\) −0.718482 1.24445i −0.0451706 0.0782378i
\(254\) 3.56102i 0.223438i
\(255\) 2.72975 + 0.280141i 0.170944 + 0.0175431i
\(256\) −0.500000 0.866025i −0.0312500 0.0541266i
\(257\) 3.98490 + 6.90205i 0.248571 + 0.430538i 0.963130 0.269038i \(-0.0867057\pi\)
−0.714558 + 0.699576i \(0.753372\pi\)
\(258\) −4.26251 0.437440i −0.265372 0.0272338i
\(259\) 21.6877i 1.34761i
\(260\) 1.34075 + 2.32225i 0.0831497 + 0.144020i
\(261\) 4.99064 5.59765i 0.308913 0.346486i
\(262\) 4.10014 2.36722i 0.253308 0.146247i
\(263\) 14.1470 + 8.16779i 0.872343 + 0.503647i 0.868126 0.496344i \(-0.165324\pi\)
0.00421689 + 0.999991i \(0.498658\pi\)
\(264\) 0.507593 + 0.366889i 0.0312402 + 0.0225805i
\(265\) 2.74917i 0.168880i
\(266\) 5.71659 + 10.4509i 0.350507 + 0.640783i
\(267\) 18.8673 + 1.93626i 1.15466 + 0.118497i
\(268\) 0.731797 + 0.422503i 0.0447016 + 0.0258085i
\(269\) 15.6050 27.0287i 0.951456 1.64797i 0.209179 0.977877i \(-0.432921\pi\)
0.742277 0.670093i \(-0.233746\pi\)
\(270\) 5.07452 1.11771i 0.308825 0.0680216i
\(271\) 15.8830 27.5101i 0.964823 1.67112i 0.254733 0.967011i \(-0.418012\pi\)
0.710090 0.704111i \(-0.248654\pi\)
\(272\) −1.37205 + 0.792151i −0.0831925 + 0.0480312i
\(273\) −1.29578 + 12.6263i −0.0784241 + 0.764180i
\(274\) 4.70818i 0.284431i
\(275\) 0.313153 0.180799i 0.0188838 0.0109026i
\(276\) 6.28110 2.81500i 0.378078 0.169443i
\(277\) −20.8653 −1.25367 −0.626836 0.779151i \(-0.715651\pi\)
−0.626836 + 0.779151i \(0.715651\pi\)
\(278\) 14.9345 0.895710
\(279\) 15.4982 5.11987i 0.927855 0.306519i
\(280\) −2.36671 1.36642i −0.141438 0.0816592i
\(281\) 0.194045 + 0.336095i 0.0115757 + 0.0200498i 0.871755 0.489942i \(-0.162982\pi\)
−0.860180 + 0.509991i \(0.829649\pi\)
\(282\) −10.7356 7.75972i −0.639297 0.462085i
\(283\) −10.8411 + 18.7773i −0.644434 + 1.11619i 0.339997 + 0.940426i \(0.389574\pi\)
−0.984432 + 0.175767i \(0.943760\pi\)
\(284\) −8.44518 −0.501129
\(285\) 0.943751 7.49062i 0.0559030 0.443706i
\(286\) 0.969623 0.0573350
\(287\) −5.80044 + 10.0467i −0.342389 + 0.593036i
\(288\) −1.99643 + 2.23925i −0.117641 + 0.131949i
\(289\) −7.24499 12.5487i −0.426176 0.738159i
\(290\) 2.16488 + 1.24989i 0.127126 + 0.0733961i
\(291\) −27.9300 + 12.5174i −1.63728 + 0.733783i
\(292\) −12.1500 −0.711026
\(293\) −32.2855 −1.88614 −0.943069 0.332596i \(-0.892076\pi\)
−0.943069 + 0.332596i \(0.892076\pi\)
\(294\) −0.331807 0.740357i −0.0193514 0.0431785i
\(295\) 2.71671 1.56849i 0.158173 0.0913212i
\(296\) 7.93595i 0.461268i
\(297\) 0.567453 1.79118i 0.0329269 0.103935i
\(298\) 19.6035 11.3181i 1.13560 0.655640i
\(299\) 5.32805 9.22845i 0.308129 0.533695i
\(300\) 0.708367 + 1.58057i 0.0408976 + 0.0912545i
\(301\) 3.38037 5.85497i 0.194841 0.337475i
\(302\) −3.14748 1.81720i −0.181117 0.104568i
\(303\) −0.121966 + 1.18847i −0.00700679 + 0.0682756i
\(304\) 2.09181 + 3.82417i 0.119974 + 0.219331i
\(305\) 7.46984i 0.427722i
\(306\) 3.54765 + 3.16295i 0.202806 + 0.180814i
\(307\) −16.9205 9.76906i −0.965705 0.557550i −0.0677805 0.997700i \(-0.521592\pi\)
−0.897924 + 0.440150i \(0.854925\pi\)
\(308\) −0.855796 + 0.494094i −0.0487635 + 0.0281536i
\(309\) 21.6102 + 15.6199i 1.22936 + 0.888586i
\(310\) 2.72034 + 4.71176i 0.154505 + 0.267610i
\(311\) 30.7306i 1.74257i 0.490775 + 0.871287i \(0.336714\pi\)
−0.490775 + 0.871287i \(0.663286\pi\)
\(312\) −0.474151 + 4.62022i −0.0268435 + 0.261569i
\(313\) −5.11644 8.86194i −0.289198 0.500906i 0.684420 0.729088i \(-0.260055\pi\)
−0.973619 + 0.228181i \(0.926722\pi\)
\(314\) −6.76442 11.7163i −0.381738 0.661190i
\(315\) −1.66521 + 8.02763i −0.0938239 + 0.452305i
\(316\) 4.12358i 0.231969i
\(317\) 0.252084 + 0.436622i 0.0141584 + 0.0245231i 0.873018 0.487688i \(-0.162160\pi\)
−0.858859 + 0.512211i \(0.828826\pi\)
\(318\) −2.78940 + 3.85915i −0.156422 + 0.216411i
\(319\) 0.782814 0.451958i 0.0438291 0.0253048i
\(320\) −0.866025 0.500000i −0.0484123 0.0279508i
\(321\) −0.916020 + 1.26732i −0.0511272 + 0.0707348i
\(322\) 10.8601i 0.605211i
\(323\) 6.05865 3.31406i 0.337112 0.184399i
\(324\) 8.25743 + 3.57979i 0.458746 + 0.198877i
\(325\) 2.32225 + 1.34075i 0.128815 + 0.0743714i
\(326\) 9.47783 16.4161i 0.524929 0.909203i
\(327\) −15.0979 + 6.76642i −0.834913 + 0.374184i
\(328\) −2.12250 + 3.67627i −0.117195 + 0.202988i
\(329\) 18.1001 10.4501i 0.997892 0.576133i
\(330\) 0.623033 + 0.0639388i 0.0342968 + 0.00351972i
\(331\) 16.7161i 0.918800i 0.888229 + 0.459400i \(0.151936\pi\)
−0.888229 + 0.459400i \(0.848064\pi\)
\(332\) 0.564491 0.325909i 0.0309805 0.0178866i
\(333\) 22.6062 7.46801i 1.23881 0.409244i
\(334\) 5.32175 0.291193
\(335\) 0.845006 0.0461676
\(336\) −1.93585 4.31946i −0.105609 0.235646i
\(337\) 5.81314 + 3.35622i 0.316662 + 0.182825i 0.649904 0.760017i \(-0.274809\pi\)
−0.333242 + 0.942841i \(0.608143\pi\)
\(338\) −2.90478 5.03123i −0.157999 0.273663i
\(339\) −18.3515 + 25.3893i −0.996715 + 1.37896i
\(340\) −0.792151 + 1.37205i −0.0429604 + 0.0744096i
\(341\) 1.96733 0.106537
\(342\) 8.92503 9.55740i 0.482610 0.516805i
\(343\) −17.8498 −0.963798
\(344\) 1.23694 2.14245i 0.0666915 0.115513i
\(345\) 4.03209 5.57841i 0.217080 0.300332i
\(346\) −5.01989 8.69470i −0.269871 0.467430i
\(347\) 28.1207 + 16.2355i 1.50960 + 0.871566i 0.999937 + 0.0111900i \(0.00356197\pi\)
0.509660 + 0.860376i \(0.329771\pi\)
\(348\) 1.77076 + 3.95109i 0.0949229 + 0.211801i
\(349\) 2.90700 0.155608 0.0778040 0.996969i \(-0.475209\pi\)
0.0778040 + 0.996969i \(0.475209\pi\)
\(350\) −2.73284 −0.146076
\(351\) 13.6073 2.99714i 0.726304 0.159975i
\(352\) −0.313153 + 0.180799i −0.0166911 + 0.00963661i
\(353\) 10.7325i 0.571233i 0.958344 + 0.285616i \(0.0921983\pi\)
−0.958344 + 0.285616i \(0.907802\pi\)
\(354\) 5.40503 + 0.554692i 0.287274 + 0.0294815i
\(355\) −7.31374 + 4.22259i −0.388173 + 0.224112i
\(356\) −5.47514 + 9.48321i −0.290182 + 0.502609i
\(357\) −6.84332 + 3.06698i −0.362187 + 0.162322i
\(358\) 3.14060 5.43967i 0.165986 0.287496i
\(359\) 1.09849 + 0.634215i 0.0579762 + 0.0334726i 0.528708 0.848804i \(-0.322677\pi\)
−0.470732 + 0.882276i \(0.656010\pi\)
\(360\) −0.609333 + 2.93747i −0.0321147 + 0.154818i
\(361\) −8.73116 16.8750i −0.459535 0.888160i
\(362\) 24.5981i 1.29285i
\(363\) −11.0283 + 15.2577i −0.578836 + 0.800823i
\(364\) −6.34632 3.66405i −0.332638 0.192048i
\(365\) −10.5222 + 6.07501i −0.550758 + 0.317980i
\(366\) 7.57916 10.4858i 0.396169 0.548102i
\(367\) −4.80585 8.32397i −0.250863 0.434508i 0.712900 0.701265i \(-0.247381\pi\)
−0.963764 + 0.266757i \(0.914048\pi\)
\(368\) 3.97393i 0.207156i
\(369\) 12.4695 + 2.58661i 0.649138 + 0.134654i
\(370\) 3.96797 + 6.87273i 0.206285 + 0.357296i
\(371\) −3.75652 6.50649i −0.195029 0.337800i
\(372\) −0.962037 + 9.37429i −0.0498793 + 0.486034i
\(373\) 13.3101i 0.689173i 0.938755 + 0.344586i \(0.111981\pi\)
−0.938755 + 0.344586i \(0.888019\pi\)
\(374\) 0.286440 + 0.496128i 0.0148114 + 0.0256542i
\(375\) 1.40375 + 1.01463i 0.0724894 + 0.0523955i
\(376\) 6.62319 3.82390i 0.341565 0.197203i
\(377\) 5.80511 + 3.35158i 0.298978 + 0.172615i
\(378\) −10.4826 + 9.57921i −0.539169 + 0.492702i
\(379\) 6.83849i 0.351270i −0.984455 0.175635i \(-0.943802\pi\)
0.984455 0.175635i \(-0.0561978\pi\)
\(380\) 3.72365 + 2.26593i 0.191019 + 0.116240i
\(381\) 0.629671 6.13565i 0.0322590 0.314339i
\(382\) 22.1742 + 12.8023i 1.13453 + 0.655023i
\(383\) 10.2329 17.7238i 0.522874 0.905645i −0.476771 0.879027i \(-0.658193\pi\)
0.999646 0.0266177i \(-0.00847367\pi\)
\(384\) −0.708367 1.58057i −0.0361487 0.0806584i
\(385\) −0.494094 + 0.855796i −0.0251814 + 0.0436154i
\(386\) −2.59120 + 1.49603i −0.131889 + 0.0761460i
\(387\) −7.26696 1.50742i −0.369400 0.0766265i
\(388\) 17.6708i 0.897097i
\(389\) −9.69169 + 5.59550i −0.491388 + 0.283703i −0.725150 0.688591i \(-0.758230\pi\)
0.233762 + 0.972294i \(0.424896\pi\)
\(390\) 1.89949 + 4.23831i 0.0961842 + 0.214615i
\(391\) 6.29591 0.318398
\(392\) 0.468410 0.0236583
\(393\) 7.48313 3.35372i 0.377474 0.169173i
\(394\) −15.3448 8.85932i −0.773060 0.446326i
\(395\) −2.06179 3.57112i −0.103740 0.179683i
\(396\) 0.809709 + 0.721905i 0.0406894 + 0.0362771i
\(397\) 19.4671 33.7181i 0.977028 1.69226i 0.303953 0.952687i \(-0.401693\pi\)
0.673074 0.739575i \(-0.264973\pi\)
\(398\) 20.5724 1.03120
\(399\) 8.00174 + 19.0177i 0.400588 + 0.952074i
\(400\) −1.00000 −0.0500000
\(401\) −14.6051 + 25.2968i −0.729345 + 1.26326i 0.227815 + 0.973704i \(0.426842\pi\)
−0.957160 + 0.289559i \(0.906492\pi\)
\(402\) 1.18618 + 0.857372i 0.0591612 + 0.0427618i
\(403\) 7.29458 + 12.6346i 0.363369 + 0.629373i
\(404\) −0.597354 0.344883i −0.0297195 0.0171586i
\(405\) 8.94104 1.02852i 0.444284 0.0511077i
\(406\) −6.83150 −0.339042
\(407\) 2.86962 0.142242
\(408\) −2.50411 + 1.12227i −0.123972 + 0.0555605i
\(409\) −13.1471 + 7.59047i −0.650081 + 0.375325i −0.788487 0.615051i \(-0.789135\pi\)
0.138406 + 0.990376i \(0.455802\pi\)
\(410\) 4.24499i 0.209645i
\(411\) 0.832515 8.11220i 0.0410649 0.400145i
\(412\) −13.3321 + 7.69731i −0.656827 + 0.379219i
\(413\) −4.28644 + 7.42433i −0.210922 + 0.365327i
\(414\) 11.3201 3.73961i 0.556352 0.183792i
\(415\) 0.325909 0.564491i 0.0159982 0.0277098i
\(416\) −2.32225 1.34075i −0.113857 0.0657356i
\(417\) 25.7321 + 2.64076i 1.26011 + 0.129319i
\(418\) 1.38281 0.756395i 0.0676356 0.0369965i
\(419\) 18.6245i 0.909864i −0.890526 0.454932i \(-0.849663\pi\)
0.890526 0.454932i \(-0.150337\pi\)
\(420\) −3.83623 2.77283i −0.187189 0.135300i
\(421\) 0.995150 + 0.574550i 0.0485006 + 0.0280019i 0.524054 0.851685i \(-0.324419\pi\)
−0.475554 + 0.879687i \(0.657752\pi\)
\(422\) −0.240924 + 0.139098i −0.0117280 + 0.00677117i
\(423\) −17.1254 15.2683i −0.832665 0.742371i
\(424\) −1.37459 2.38085i −0.0667558 0.115624i
\(425\) 1.58430i 0.0768499i
\(426\) −14.5511 1.49330i −0.705001 0.0723508i
\(427\) 10.2069 + 17.6789i 0.493948 + 0.855544i
\(428\) −0.451404 0.781855i −0.0218194 0.0377924i
\(429\) 1.67066 + 0.171452i 0.0806603 + 0.00827777i
\(430\) 2.47389i 0.119301i
\(431\) −0.361329 0.625840i −0.0174046 0.0301457i 0.857192 0.514997i \(-0.172207\pi\)
−0.874597 + 0.484851i \(0.838874\pi\)
\(432\) −3.83581 + 3.50522i −0.184550 + 0.168645i
\(433\) −20.1778 + 11.6497i −0.969684 + 0.559847i −0.899140 0.437662i \(-0.855807\pi\)
−0.0705439 + 0.997509i \(0.522473\pi\)
\(434\) −12.8765 7.43425i −0.618091 0.356855i
\(435\) 3.50907 + 2.53636i 0.168247 + 0.121609i
\(436\) 9.55213i 0.457464i
\(437\) 0.399474 17.3174i 0.0191094 0.828402i
\(438\) −20.9345 2.14840i −1.00029 0.102655i
\(439\) 4.96102 + 2.86425i 0.236776 + 0.136703i 0.613694 0.789544i \(-0.289683\pi\)
−0.376918 + 0.926247i \(0.623016\pi\)
\(440\) −0.180799 + 0.313153i −0.00861924 + 0.0149290i
\(441\) −0.440791 1.33431i −0.0209900 0.0635385i
\(442\) −2.12415 + 3.67914i −0.101036 + 0.174999i
\(443\) −20.0773 + 11.5917i −0.953903 + 0.550736i −0.894291 0.447486i \(-0.852320\pi\)
−0.0596116 + 0.998222i \(0.518986\pi\)
\(444\) −1.40326 + 13.6736i −0.0665957 + 0.648923i
\(445\) 10.9503i 0.519093i
\(446\) −4.55894 + 2.63211i −0.215872 + 0.124634i
\(447\) 35.7782 16.0347i 1.69225 0.758417i
\(448\) 2.73284 0.129115
\(449\) −12.0455 −0.568464 −0.284232 0.958755i \(-0.591739\pi\)
−0.284232 + 0.958755i \(0.591739\pi\)
\(450\) 0.941036 + 2.84859i 0.0443609 + 0.134284i
\(451\) 1.32933 + 0.767490i 0.0625958 + 0.0361397i
\(452\) −9.04339 15.6636i −0.425365 0.736754i
\(453\) −5.10179 3.68759i −0.239703 0.173258i
\(454\) −9.09264 + 15.7489i −0.426739 + 0.739133i
\(455\) −7.32810 −0.343547
\(456\) 2.92800 + 6.95894i 0.137116 + 0.325882i
\(457\) 30.1464 1.41019 0.705094 0.709113i \(-0.250905\pi\)
0.705094 + 0.709113i \(0.250905\pi\)
\(458\) 0.0461949 0.0800119i 0.00215855 0.00373871i
\(459\) 5.55333 + 6.07707i 0.259207 + 0.283653i
\(460\) 1.98697 + 3.44153i 0.0926428 + 0.160462i
\(461\) −34.0561 19.6623i −1.58615 0.915765i −0.993933 0.109987i \(-0.964919\pi\)
−0.592218 0.805778i \(-0.701748\pi\)
\(462\) −1.56190 + 0.700000i −0.0726664 + 0.0325670i
\(463\) −16.6034 −0.771624 −0.385812 0.922577i \(-0.626079\pi\)
−0.385812 + 0.922577i \(0.626079\pi\)
\(464\) −2.49978 −0.116050
\(465\) 3.85400 + 8.59939i 0.178725 + 0.398787i
\(466\) −12.3845 + 7.15019i −0.573701 + 0.331226i
\(467\) 17.0263i 0.787884i −0.919135 0.393942i \(-0.871111\pi\)
0.919135 0.393942i \(-0.128889\pi\)
\(468\) −1.63393 + 7.87681i −0.0755282 + 0.364106i
\(469\) −1.99988 + 1.15463i −0.0923460 + 0.0533160i
\(470\) 3.82390 6.62319i 0.176383 0.305505i
\(471\) −9.58338 21.3833i −0.441579 0.985292i
\(472\) −1.56849 + 2.71671i −0.0721957 + 0.125047i
\(473\) −0.774704 0.447276i −0.0356209 0.0205658i
\(474\) 0.729144 7.10493i 0.0334907 0.326340i
\(475\) 4.35774 + 0.100523i 0.199947 + 0.00461233i
\(476\) 4.32964i 0.198449i
\(477\) −5.48853 + 6.15610i −0.251303 + 0.281868i
\(478\) −22.6871 13.0984i −1.03768 0.599106i
\(479\) −10.9769 + 6.33750i −0.501546 + 0.289568i −0.729352 0.684139i \(-0.760178\pi\)
0.227806 + 0.973707i \(0.426845\pi\)
\(480\) −1.40375 1.01463i −0.0640722 0.0463115i
\(481\) 10.6401 + 18.4292i 0.485147 + 0.840300i
\(482\) 19.3048i 0.879311i
\(483\) −1.92032 + 18.7120i −0.0873776 + 0.851426i
\(484\) −5.43462 9.41304i −0.247028 0.427866i
\(485\) −8.83538 15.3033i −0.401194 0.694889i
\(486\) 13.5946 + 7.62809i 0.616662 + 0.346017i
\(487\) 32.6229i 1.47829i −0.673549 0.739143i \(-0.735231\pi\)
0.673549 0.739143i \(-0.264769\pi\)
\(488\) 3.73492 + 6.46907i 0.169072 + 0.292841i
\(489\) 19.2331 26.6090i 0.869749 1.20330i
\(490\) 0.405655 0.234205i 0.0183256 0.0105803i
\(491\) 6.27240 + 3.62137i 0.283070 + 0.163430i 0.634812 0.772666i \(-0.281077\pi\)
−0.351743 + 0.936097i \(0.614411\pi\)
\(492\) −4.30712 + 5.95892i −0.194180 + 0.268649i
\(493\) 3.96041i 0.178368i
\(494\) 9.98496 + 6.07608i 0.449245 + 0.273376i
\(495\) 1.06218 + 0.220333i 0.0477415 + 0.00990325i
\(496\) −4.71176 2.72034i −0.211564 0.122147i
\(497\) 11.5397 19.9873i 0.517624 0.896552i
\(498\) 1.03025 0.461727i 0.0461665 0.0206905i
\(499\) 8.51878 14.7550i 0.381353 0.660522i −0.609903 0.792476i \(-0.708792\pi\)
0.991256 + 0.131954i \(0.0421250\pi\)
\(500\) −0.866025 + 0.500000i −0.0387298 + 0.0223607i
\(501\) 9.16938 + 0.941008i 0.409658 + 0.0420412i
\(502\) 11.1446i 0.497406i
\(503\) 24.2478 13.9995i 1.08115 0.624205i 0.149947 0.988694i \(-0.452090\pi\)
0.931208 + 0.364489i \(0.118756\pi\)
\(504\) −2.57170 7.78473i −0.114553 0.346760i
\(505\) −0.689765 −0.0306942
\(506\) 1.43696 0.0638809
\(507\) −4.11531 9.18246i −0.182767 0.407807i
\(508\) 3.08394 + 1.78051i 0.136828 + 0.0789974i
\(509\) −16.1465 27.9666i −0.715683 1.23960i −0.962695 0.270587i \(-0.912782\pi\)
0.247012 0.969012i \(-0.420551\pi\)
\(510\) −1.60749 + 2.22397i −0.0711807 + 0.0984788i
\(511\) 16.6020 28.7555i 0.734430 1.27207i
\(512\) 1.00000 0.0441942
\(513\) 17.0678 14.8893i 0.753562 0.657377i
\(514\) −7.96980 −0.351533
\(515\) −7.69731 + 13.3321i −0.339184 + 0.587484i
\(516\) 2.51009 3.47272i 0.110501 0.152878i
\(517\) −1.38271 2.39493i −0.0608117 0.105329i
\(518\) −18.7821 10.8438i −0.825237 0.476451i
\(519\) −7.11185 15.8686i −0.312175 0.696555i
\(520\) −2.68150 −0.117591
\(521\) −32.0134 −1.40253 −0.701266 0.712900i \(-0.747381\pi\)
−0.701266 + 0.712900i \(0.747381\pi\)
\(522\) 2.35238 + 7.12085i 0.102961 + 0.311671i
\(523\) −15.0870 + 8.71046i −0.659707 + 0.380882i −0.792165 0.610307i \(-0.791046\pi\)
0.132458 + 0.991189i \(0.457713\pi\)
\(524\) 4.73444i 0.206825i
\(525\) −4.70869 0.483229i −0.205504 0.0210899i
\(526\) −14.1470 + 8.16779i −0.616840 + 0.356133i
\(527\) −4.30984 + 7.46485i −0.187739 + 0.325174i
\(528\) −0.571532 + 0.256144i −0.0248727 + 0.0111472i
\(529\) −3.60393 + 6.24218i −0.156692 + 0.271399i
\(530\) −2.38085 1.37459i −0.103418 0.0597082i
\(531\) 9.21479 + 1.91147i 0.399888 + 0.0829507i
\(532\) −11.9090 0.274714i −0.516321 0.0119104i
\(533\) 11.3829i 0.493050i
\(534\) −11.1105 + 15.3715i −0.480799 + 0.665188i
\(535\) −0.781855 0.451404i −0.0338025 0.0195159i
\(536\) −0.731797 + 0.422503i −0.0316088 + 0.0182494i
\(537\) 6.37311 8.81724i 0.275020 0.380492i
\(538\) 15.6050 + 27.0287i 0.672781 + 1.16529i
\(539\) 0.169376i 0.00729554i
\(540\) −1.56929 + 4.95352i −0.0675316 + 0.213165i
\(541\) −14.8276 25.6821i −0.637487 1.10416i −0.985982 0.166850i \(-0.946641\pi\)
0.348495 0.937311i \(-0.386693\pi\)
\(542\) 15.8830 + 27.5101i 0.682233 + 1.18166i
\(543\) 4.34951 42.3825i 0.186655 1.81881i
\(544\) 1.58430i 0.0679264i
\(545\) −4.77607 8.27239i −0.204584 0.354350i
\(546\) −10.2868 7.43534i −0.440236 0.318203i
\(547\) −20.9812 + 12.1135i −0.897093 + 0.517937i −0.876256 0.481846i \(-0.839967\pi\)
−0.0208373 + 0.999783i \(0.506633\pi\)
\(548\) 4.07740 + 2.35409i 0.174178 + 0.100562i
\(549\) 14.9130 16.7269i 0.636473 0.713886i
\(550\) 0.361598i 0.0154186i
\(551\) 10.8934 + 0.251287i 0.464075 + 0.0107052i
\(552\) −0.702683 + 6.84709i −0.0299082 + 0.291432i
\(553\) 9.75931 + 5.63454i 0.415008 + 0.239605i
\(554\) 10.4326 18.0699i 0.443240 0.767715i
\(555\) 5.62157 + 12.5434i 0.238622 + 0.532436i
\(556\) −7.46724 + 12.9336i −0.316681 + 0.548508i
\(557\) 16.2011 9.35371i 0.686463 0.396329i −0.115823 0.993270i \(-0.536951\pi\)
0.802285 + 0.596941i \(0.203617\pi\)
\(558\) −3.31518 + 15.9818i −0.140343 + 0.676564i
\(559\) 6.63372i 0.280577i
\(560\) 2.36671 1.36642i 0.100012 0.0577418i
\(561\) 0.405809 + 0.905479i 0.0171333 + 0.0382293i
\(562\) −0.388089 −0.0163706
\(563\) 37.5624 1.58307 0.791534 0.611125i \(-0.209283\pi\)
0.791534 + 0.611125i \(0.209283\pi\)
\(564\) 12.0879 5.41746i 0.508993 0.228116i
\(565\) −15.6636 9.04339i −0.658973 0.380458i
\(566\) −10.8411 18.7773i −0.455684 0.789268i
\(567\) −19.7554 + 14.6514i −0.829650 + 0.615302i
\(568\) 4.22259 7.31374i 0.177176 0.306878i
\(569\) −21.0817 −0.883790 −0.441895 0.897067i \(-0.645694\pi\)
−0.441895 + 0.897067i \(0.645694\pi\)
\(570\) 6.01519 + 4.56262i 0.251949 + 0.191107i
\(571\) 23.5374 0.985009 0.492505 0.870310i \(-0.336082\pi\)
0.492505 + 0.870310i \(0.336082\pi\)
\(572\) −0.484812 + 0.839718i −0.0202710 + 0.0351104i
\(573\) 35.9425 + 25.9793i 1.50152 + 1.08530i
\(574\) −5.80044 10.0467i −0.242106 0.419340i
\(575\) 3.44153 + 1.98697i 0.143522 + 0.0828622i
\(576\) −0.941036 2.84859i −0.0392098 0.118691i
\(577\) −7.74252 −0.322325 −0.161163 0.986928i \(-0.551524\pi\)
−0.161163 + 0.986928i \(0.551524\pi\)
\(578\) 14.4900 0.602704
\(579\) −4.72918 + 2.11948i −0.196538 + 0.0880825i
\(580\) −2.16488 + 1.24989i −0.0898916 + 0.0518989i
\(581\) 1.78131i 0.0739014i
\(582\) 3.12460 30.4468i 0.129519 1.26206i
\(583\) −0.860910 + 0.497047i −0.0356553 + 0.0205856i
\(584\) 6.07501 10.5222i 0.251386 0.435413i
\(585\) 2.52339 + 7.63848i 0.104329 + 0.315812i
\(586\) 16.1427 27.9601i 0.666851 1.15502i
\(587\) −33.6896 19.4507i −1.39052 0.802816i −0.397146 0.917755i \(-0.629999\pi\)
−0.993373 + 0.114939i \(0.963333\pi\)
\(588\) 0.807072 + 0.0828258i 0.0332831 + 0.00341568i
\(589\) 20.2592 + 12.3282i 0.834765 + 0.507973i
\(590\) 3.13699i 0.129148i
\(591\) −24.8726 17.9779i −1.02312 0.739514i
\(592\) −6.87273 3.96797i −0.282468 0.163083i
\(593\) 7.33331 4.23389i 0.301143 0.173865i −0.341813 0.939768i \(-0.611041\pi\)
0.642956 + 0.765903i \(0.277708\pi\)
\(594\) 1.26748 + 1.38702i 0.0520053 + 0.0569100i
\(595\) −2.16482 3.74958i −0.0887490 0.153718i
\(596\) 22.6362i 0.927215i
\(597\) 35.4463 + 3.63768i 1.45072 + 0.148880i
\(598\) 5.32805 + 9.22845i 0.217880 + 0.377379i
\(599\) 18.3405 + 31.7667i 0.749372 + 1.29795i 0.948124 + 0.317901i \(0.102978\pi\)
−0.198752 + 0.980050i \(0.563689\pi\)
\(600\) −1.72300 0.176823i −0.0703412 0.00721877i
\(601\) 9.79356i 0.399488i −0.979848 0.199744i \(-0.935989\pi\)
0.979848 0.199744i \(-0.0640110\pi\)
\(602\) 3.38037 + 5.85497i 0.137773 + 0.238631i
\(603\) 1.89218 + 1.68700i 0.0770557 + 0.0686998i
\(604\) 3.14748 1.81720i 0.128069 0.0739408i
\(605\) −9.41304 5.43462i −0.382695 0.220949i
\(606\) −0.968259 0.699860i −0.0393328 0.0284298i
\(607\) 12.9985i 0.527593i −0.964578 0.263796i \(-0.915025\pi\)
0.964578 0.263796i \(-0.0849747\pi\)
\(608\) −4.35774 0.100523i −0.176730 0.00407676i
\(609\) −11.7707 1.20797i −0.476972 0.0489493i
\(610\) 6.46907 + 3.73492i 0.261925 + 0.151223i
\(611\) 10.2538 17.7601i 0.414824 0.718496i
\(612\) −4.51302 + 1.49088i −0.182428 + 0.0602654i
\(613\) −14.8471 + 25.7160i −0.599669 + 1.03866i 0.393200 + 0.919453i \(0.371368\pi\)
−0.992870 + 0.119205i \(0.961965\pi\)
\(614\) 16.9205 9.76906i 0.682856 0.394247i
\(615\) −0.750613 + 7.31413i −0.0302676 + 0.294934i
\(616\) 0.988188i 0.0398152i
\(617\) −11.7412 + 6.77878i −0.472683 + 0.272904i −0.717362 0.696700i \(-0.754651\pi\)
0.244679 + 0.969604i \(0.421317\pi\)
\(618\) −24.3324 + 10.9051i −0.978791 + 0.438666i
\(619\) 11.0205 0.442953 0.221476 0.975166i \(-0.428912\pi\)
0.221476 + 0.975166i \(0.428912\pi\)
\(620\) −5.44068 −0.218503
\(621\) 20.1658 4.44170i 0.809225 0.178239i
\(622\) −26.6135 15.3653i −1.06710 0.616093i
\(623\) −14.9627 25.9161i −0.599466 1.03831i
\(624\) −3.76416 2.72074i −0.150687 0.108917i
\(625\) −0.500000 + 0.866025i −0.0200000 + 0.0346410i
\(626\) 10.2329 0.408988
\(627\) 2.51634 1.05876i 0.100493 0.0422826i
\(628\) 13.5288 0.539859
\(629\) −6.28647 + 10.8885i −0.250658 + 0.434152i
\(630\) −6.11952 5.45593i −0.243808 0.217369i
\(631\) 4.03125 + 6.98234i 0.160482 + 0.277962i 0.935042 0.354538i \(-0.115362\pi\)
−0.774560 + 0.632501i \(0.782029\pi\)
\(632\) 3.57112 + 2.06179i 0.142052 + 0.0820136i
\(633\) −0.439708 + 0.197064i −0.0174768 + 0.00783261i
\(634\) −0.504167 −0.0200230
\(635\) 3.56102 0.141315
\(636\) −1.94742 4.34527i −0.0772204 0.172301i
\(637\) 1.08776 0.628021i 0.0430988 0.0248831i
\(638\) 0.903915i 0.0357864i
\(639\) −24.8074 5.14593i −0.981367 0.203570i
\(640\) 0.866025 0.500000i 0.0342327 0.0197642i
\(641\) 2.77035 4.79838i 0.109422 0.189525i −0.806114 0.591760i \(-0.798433\pi\)
0.915536 + 0.402235i \(0.131767\pi\)
\(642\) −0.639520 1.42696i −0.0252398 0.0563174i
\(643\) −20.2446 + 35.0647i −0.798369 + 1.38282i 0.122308 + 0.992492i \(0.460970\pi\)
−0.920678 + 0.390324i \(0.872363\pi\)
\(644\) −9.40514 5.43006i −0.370614 0.213974i
\(645\) 0.437440 4.26251i 0.0172242 0.167836i
\(646\) −0.159259 + 6.90397i −0.00626598 + 0.271633i
\(647\) 13.7403i 0.540185i 0.962834 + 0.270093i \(0.0870543\pi\)
−0.962834 + 0.270093i \(0.912946\pi\)
\(648\) −7.22890 + 5.36125i −0.283978 + 0.210610i
\(649\) 0.982355 + 0.567163i 0.0385608 + 0.0222631i
\(650\) −2.32225 + 1.34075i −0.0910860 + 0.0525885i
\(651\) −20.8717 15.0861i −0.818025 0.591270i
\(652\) 9.47783 + 16.4161i 0.371181 + 0.642904i
\(653\) 16.0733i 0.628997i 0.949258 + 0.314498i \(0.101836\pi\)
−0.949258 + 0.314498i \(0.898164\pi\)
\(654\) 1.68904 16.4583i 0.0660466 0.643572i
\(655\) 2.36722 + 4.10014i 0.0924949 + 0.160206i
\(656\) −2.12250 3.67627i −0.0828696 0.143534i
\(657\) −35.6903 7.40340i −1.39241 0.288834i
\(658\) 20.9002i 0.814775i
\(659\) −0.00725277 0.0125622i −0.000282528 0.000489352i 0.865884 0.500245i \(-0.166757\pi\)
−0.866167 + 0.499755i \(0.833423\pi\)
\(660\) −0.366889 + 0.507593i −0.0142811 + 0.0197580i
\(661\) 1.46214 0.844167i 0.0568706 0.0328343i −0.471295 0.881976i \(-0.656213\pi\)
0.528166 + 0.849141i \(0.322880\pi\)
\(662\) −14.4766 8.35805i −0.562648 0.324845i
\(663\) −4.31047 + 5.96356i −0.167405 + 0.231605i
\(664\) 0.651818i 0.0252954i
\(665\) −10.4509 + 5.71659i −0.405267 + 0.221680i
\(666\) −4.83563 + 23.3116i −0.187377 + 0.903306i
\(667\) 8.60307 + 4.96699i 0.333112 + 0.192322i
\(668\) −2.66087 + 4.60877i −0.102952 + 0.178319i
\(669\) −8.32049 + 3.72900i −0.321689 + 0.144171i
\(670\) −0.422503 + 0.731797i −0.0163227 + 0.0282718i
\(671\) 2.33920 1.35054i 0.0903039 0.0521370i
\(672\) 4.70869 + 0.483229i 0.181641 + 0.0186410i
\(673\) 23.2047i 0.894476i 0.894415 + 0.447238i \(0.147592\pi\)
−0.894415 + 0.447238i \(0.852408\pi\)
\(674\) −5.81314 + 3.35622i −0.223914 + 0.129277i
\(675\) 1.11771 + 5.07452i 0.0430207 + 0.195318i
\(676\) 5.80957 0.223445
\(677\) −41.7346 −1.60399 −0.801995 0.597330i \(-0.796228\pi\)
−0.801995 + 0.597330i \(0.796228\pi\)
\(678\) −12.8121 28.5875i −0.492045 1.09790i
\(679\) 41.8215 + 24.1457i 1.60496 + 0.926626i
\(680\) −0.792151 1.37205i −0.0303776 0.0526155i
\(681\) −18.4514 + 25.5276i −0.707059 + 0.978220i
\(682\) −0.983667 + 1.70376i −0.0376666 + 0.0652404i
\(683\) 38.4483 1.47118 0.735592 0.677424i \(-0.236904\pi\)
0.735592 + 0.677424i \(0.236904\pi\)
\(684\) 3.81444 + 12.5080i 0.145849 + 0.478255i
\(685\) 4.70818 0.179890
\(686\) 8.92489 15.4584i 0.340754 0.590203i
\(687\) 0.0937418 0.129692i 0.00357647 0.00494807i
\(688\) 1.23694 + 2.14245i 0.0471580 + 0.0816801i
\(689\) −6.38425 3.68595i −0.243221 0.140423i
\(690\) 2.81500 + 6.28110i 0.107165 + 0.239117i
\(691\) −6.15004 −0.233958 −0.116979 0.993134i \(-0.537321\pi\)
−0.116979 + 0.993134i \(0.537321\pi\)
\(692\) 10.0398 0.381655
\(693\) −2.81494 + 0.929920i −0.106931 + 0.0353247i
\(694\) −28.1207 + 16.2355i −1.06745 + 0.616290i
\(695\) 14.9345i 0.566497i
\(696\) −4.30713 0.442019i −0.163261 0.0167547i
\(697\) −5.82432 + 3.36268i −0.220612 + 0.127370i
\(698\) −1.45350 + 2.51753i −0.0550157 + 0.0952900i
\(699\) −22.6028 + 10.1299i −0.854917 + 0.383149i
\(700\) 1.36642 2.36671i 0.0516458 0.0894532i
\(701\) 11.7642 + 6.79204i 0.444326 + 0.256532i 0.705431 0.708779i \(-0.250753\pi\)
−0.261105 + 0.965310i \(0.584087\pi\)
\(702\) −4.20806 + 13.2828i −0.158823 + 0.501329i
\(703\) 29.5507 + 17.9823i 1.11453 + 0.678214i
\(704\) 0.361598i 0.0136282i
\(705\) 7.75972 10.7356i 0.292248 0.404327i
\(706\) −9.29461 5.36625i −0.349807 0.201961i
\(707\) 1.63247 0.942509i 0.0613955 0.0354467i
\(708\) −3.18289 + 4.40355i −0.119620 + 0.165495i
\(709\) 6.74259 + 11.6785i 0.253223 + 0.438596i 0.964411 0.264406i \(-0.0851759\pi\)
−0.711188 + 0.703002i \(0.751843\pi\)
\(710\) 8.44518i 0.316942i
\(711\) 2.51263 12.1129i 0.0942311 0.454268i
\(712\) −5.47514 9.48321i −0.205189 0.355398i
\(713\) 10.8104 + 18.7242i 0.404854 + 0.701228i
\(714\) 0.765581 7.45998i 0.0286511 0.279183i
\(715\) 0.969623i 0.0362618i
\(716\) 3.14060 + 5.43967i 0.117370 + 0.203290i
\(717\) −36.7738 26.5801i −1.37334 0.992653i
\(718\) −1.09849 + 0.634215i −0.0409954 + 0.0236687i
\(719\) −33.3719 19.2672i −1.24456 0.718547i −0.274541 0.961575i \(-0.588526\pi\)
−0.970019 + 0.243028i \(0.921859\pi\)
\(720\) −2.23925 1.99643i −0.0834521 0.0744026i
\(721\) 42.0710i 1.56681i
\(722\) 18.9798 + 0.876110i 0.706355 + 0.0326054i
\(723\) 3.41354 33.2622i 0.126951 1.23704i
\(724\) 21.3026 + 12.2990i 0.791703 + 0.457090i
\(725\) −1.24989 + 2.16488i −0.0464198 + 0.0804015i
\(726\) −7.69942 17.1797i −0.285752 0.637597i
\(727\) −0.428190 + 0.741646i −0.0158807 + 0.0275061i −0.873857 0.486184i \(-0.838389\pi\)
0.857976 + 0.513690i \(0.171722\pi\)
\(728\) 6.34632 3.66405i 0.235210 0.135799i
\(729\) 22.0746 + 15.5470i 0.817579 + 0.575816i
\(730\) 12.1500i 0.449692i
\(731\) 3.39428 1.95969i 0.125542 0.0724818i
\(732\) 5.29139 + 11.8066i 0.195575 + 0.436386i
\(733\) 4.85312 0.179254 0.0896270 0.995975i \(-0.471432\pi\)
0.0896270 + 0.995975i \(0.471432\pi\)
\(734\) 9.61170 0.354774
\(735\) 0.740357 0.331807i 0.0273085 0.0122389i
\(736\) −3.44153 1.98697i −0.126856 0.0732406i
\(737\) 0.152776 + 0.264616i 0.00562758 + 0.00974725i
\(738\) −8.47484 + 9.50562i −0.311963 + 0.349907i
\(739\) −6.25405 + 10.8323i −0.230059 + 0.398474i −0.957825 0.287352i \(-0.907225\pi\)
0.727766 + 0.685825i \(0.240559\pi\)
\(740\) −7.93595 −0.291731
\(741\) 16.1297 + 12.2347i 0.592540 + 0.449451i
\(742\) 7.51304 0.275813
\(743\) −8.87174 + 15.3663i −0.325473 + 0.563735i −0.981608 0.190908i \(-0.938857\pi\)
0.656135 + 0.754643i \(0.272190\pi\)
\(744\) −7.63736 5.52029i −0.279999 0.202384i
\(745\) 11.3181 + 19.6035i 0.414663 + 0.718217i
\(746\) −11.5269 6.65507i −0.422030 0.243659i
\(747\) 1.85676 0.613384i 0.0679353 0.0224425i
\(748\) −0.572880 −0.0209466
\(749\) 2.46723 0.0901506
\(750\) −1.58057 + 0.708367i −0.0577144 + 0.0258659i
\(751\) 14.7151 8.49577i 0.536962 0.310015i −0.206885 0.978365i \(-0.566333\pi\)
0.743847 + 0.668350i \(0.232999\pi\)
\(752\) 7.64780i 0.278887i
\(753\) 1.97062 19.2021i 0.0718132 0.699763i
\(754\) −5.80511 + 3.35158i −0.211410 + 0.122057i
\(755\) 1.81720 3.14748i 0.0661347 0.114549i
\(756\) −3.05452 13.8678i −0.111092 0.504368i
\(757\) 27.1732 47.0654i 0.987628 1.71062i 0.358008 0.933719i \(-0.383456\pi\)
0.629620 0.776903i \(-0.283211\pi\)
\(758\) 5.92231 + 3.41925i 0.215108 + 0.124193i
\(759\) 2.47589 + 0.254089i 0.0898692 + 0.00922283i
\(760\) −3.82417 + 2.09181i −0.138717 + 0.0758781i
\(761\) 14.7061i 0.533095i 0.963822 + 0.266547i \(0.0858829\pi\)
−0.963822 + 0.266547i \(0.914117\pi\)
\(762\) 4.99879 + 3.61314i 0.181087 + 0.130890i
\(763\) 22.6071 + 13.0522i 0.818432 + 0.472522i
\(764\) −22.1742 + 12.8023i −0.802236 + 0.463171i
\(765\) −3.16295 + 3.54765i −0.114357 + 0.128266i
\(766\) 10.2329 + 17.7238i 0.369728 + 0.640388i
\(767\) 8.41182i 0.303733i
\(768\) 1.72300 + 0.176823i 0.0621735 + 0.00638056i
\(769\) −16.8290 29.1487i −0.606869 1.05113i −0.991753 0.128164i \(-0.959092\pi\)
0.384884 0.922965i \(-0.374242\pi\)
\(770\) −0.494094 0.855796i −0.0178059 0.0308407i
\(771\) −13.7320 1.40924i −0.494545 0.0507527i
\(772\) 2.99206i 0.107687i
\(773\) 21.1817 + 36.6877i 0.761851 + 1.31957i 0.941895 + 0.335907i \(0.109043\pi\)
−0.180044 + 0.983659i \(0.557624\pi\)
\(774\) 4.93894 5.53966i 0.177527 0.199119i
\(775\) −4.71176 + 2.72034i −0.169252