Properties

Label 570.2.s.a.221.8
Level $570$
Weight $2$
Character 570.221
Analytic conductor $4.551$
Analytic rank $0$
Dimension $24$
CM no
Inner twists $2$

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) \(=\) \( 570 = 2 \cdot 3 \cdot 5 \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 570.s (of order \(6\), degree \(2\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(4.55147291521\)
Analytic rank: \(0\)
Dimension: \(24\)
Relative dimension: \(12\) over \(\Q(\zeta_{6})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 221.8
Character \(\chi\) \(=\) 570.221
Dual form 570.2.s.a.521.8

$q$-expansion

\(f(q)\) \(=\) \(q+(-0.500000 - 0.866025i) q^{2} +(0.691758 - 1.58791i) q^{3} +(-0.500000 + 0.866025i) q^{4} +(-0.866025 + 0.500000i) q^{5} +(-1.72105 + 0.194877i) q^{6} -1.96058 q^{7} +1.00000 q^{8} +(-2.04294 - 2.19691i) q^{9} +O(q^{10})\) \(q+(-0.500000 - 0.866025i) q^{2} +(0.691758 - 1.58791i) q^{3} +(-0.500000 + 0.866025i) q^{4} +(-0.866025 + 0.500000i) q^{5} +(-1.72105 + 0.194877i) q^{6} -1.96058 q^{7} +1.00000 q^{8} +(-2.04294 - 2.19691i) q^{9} +(0.866025 + 0.500000i) q^{10} -4.91222i q^{11} +(1.02929 + 1.39304i) q^{12} +(1.73616 + 1.00237i) q^{13} +(0.980288 + 1.69791i) q^{14} +(0.194877 + 1.72105i) q^{15} +(-0.500000 - 0.866025i) q^{16} +(-3.39530 + 1.96028i) q^{17} +(-0.881106 + 2.86769i) q^{18} +(-3.86720 + 2.01117i) q^{19} -1.00000i q^{20} +(-1.35624 + 3.11322i) q^{21} +(-4.25411 + 2.45611i) q^{22} +(-5.91161 - 3.41307i) q^{23} +(0.691758 - 1.58791i) q^{24} +(0.500000 - 0.866025i) q^{25} -2.00475i q^{26} +(-4.90172 + 1.72429i) q^{27} +(0.980288 - 1.69791i) q^{28} +(-2.51673 + 4.35910i) q^{29} +(1.39304 - 1.02929i) q^{30} -0.233588i q^{31} +(-0.500000 + 0.866025i) q^{32} +(-7.80018 - 3.39807i) q^{33} +(3.39530 + 1.96028i) q^{34} +(1.69791 - 0.980288i) q^{35} +(2.92405 - 0.670786i) q^{36} -7.19430i q^{37} +(3.67532 + 2.34350i) q^{38} +(2.79269 - 2.06347i) q^{39} +(-0.866025 + 0.500000i) q^{40} +(5.88249 + 10.1888i) q^{41} +(3.37425 - 0.382070i) q^{42} +(-2.94487 - 5.10067i) q^{43} +(4.25411 + 2.45611i) q^{44} +(2.86769 + 0.881106i) q^{45} +6.82614i q^{46} +(1.60922 + 0.929084i) q^{47} +(-1.72105 + 0.194877i) q^{48} -3.15615 q^{49} -1.00000 q^{50} +(0.764024 + 6.74748i) q^{51} +(-1.73616 + 1.00237i) q^{52} +(5.29044 - 9.16331i) q^{53} +(3.94413 + 3.38287i) q^{54} +(2.45611 + 4.25411i) q^{55} -1.96058 q^{56} +(0.518398 + 7.53202i) q^{57} +5.03345 q^{58} +(4.25879 + 7.37643i) q^{59} +(-1.58791 - 0.691758i) q^{60} +(3.91378 - 6.77887i) q^{61} +(-0.202293 + 0.116794i) q^{62} +(4.00534 + 4.30720i) q^{63} +1.00000 q^{64} -2.00475 q^{65} +(0.957276 + 8.45419i) q^{66} +(-13.7456 - 7.93605i) q^{67} -3.92055i q^{68} +(-9.50907 + 7.02611i) q^{69} +(-1.69791 - 0.980288i) q^{70} +(-2.26439 - 3.92204i) q^{71} +(-2.04294 - 2.19691i) q^{72} +(1.13889 + 1.97262i) q^{73} +(-6.23045 + 3.59715i) q^{74} +(-1.02929 - 1.39304i) q^{75} +(0.191874 - 4.35467i) q^{76} +9.63077i q^{77} +(-3.18336 - 1.38680i) q^{78} +(10.7900 - 6.22958i) q^{79} +(0.866025 + 0.500000i) q^{80} +(-0.652788 + 8.97629i) q^{81} +(5.88249 - 10.1888i) q^{82} -13.7111i q^{83} +(-2.01801 - 2.73115i) q^{84} +(1.96028 - 3.39530i) q^{85} +(-2.94487 + 5.10067i) q^{86} +(5.18091 + 7.01179i) q^{87} -4.91222i q^{88} +(5.48139 - 9.49404i) q^{89} +(-0.670786 - 2.92405i) q^{90} +(-3.40387 - 1.96523i) q^{91} +(5.91161 - 3.41307i) q^{92} +(-0.370917 - 0.161586i) q^{93} -1.85817i q^{94} +(2.34350 - 3.67532i) q^{95} +(1.02929 + 1.39304i) q^{96} +(-13.3158 + 7.68789i) q^{97} +(1.57807 + 2.73330i) q^{98} +(-10.7917 + 10.0354i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 24q - 12q^{2} + 4q^{3} - 12q^{4} - 2q^{6} - 12q^{7} + 24q^{8} - 4q^{9} + O(q^{10}) \) \( 24q - 12q^{2} + 4q^{3} - 12q^{4} - 2q^{6} - 12q^{7} + 24q^{8} - 4q^{9} - 2q^{12} + 18q^{13} + 6q^{14} - 12q^{16} + 12q^{17} + 2q^{18} + 6q^{19} - 6q^{21} + 18q^{22} + 4q^{24} + 12q^{25} + 28q^{27} + 6q^{28} - 12q^{32} - 22q^{33} - 12q^{34} + 2q^{36} + 6q^{38} + 40q^{39} + 6q^{41} - 6q^{42} - 22q^{43} - 18q^{44} + 8q^{45} + 12q^{47} - 2q^{48} + 12q^{49} - 24q^{50} - 20q^{51} - 18q^{52} + 8q^{53} + 4q^{54} - 12q^{56} + 26q^{59} + 22q^{61} - 18q^{62} + 6q^{63} + 24q^{64} + 8q^{65} + 8q^{66} - 48q^{67} - 64q^{69} + 24q^{71} - 4q^{72} - 8q^{73} + 30q^{74} + 2q^{75} - 12q^{76} - 38q^{78} + 18q^{79} - 12q^{81} + 6q^{82} + 12q^{84} - 22q^{86} - 24q^{87} + 28q^{89} + 8q^{90} + 18q^{91} + 2q^{93} - 2q^{96} + 6q^{97} - 6q^{98} + 2q^{99} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/570\mathbb{Z}\right)^\times\).

\(n\) \(191\) \(211\) \(457\)
\(\chi(n)\) \(-1\) \(e\left(\frac{5}{6}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.500000 0.866025i −0.353553 0.612372i
\(3\) 0.691758 1.58791i 0.399387 0.916782i
\(4\) −0.500000 + 0.866025i −0.250000 + 0.433013i
\(5\) −0.866025 + 0.500000i −0.387298 + 0.223607i
\(6\) −1.72105 + 0.194877i −0.702617 + 0.0795580i
\(7\) −1.96058 −0.741028 −0.370514 0.928827i \(-0.620818\pi\)
−0.370514 + 0.928827i \(0.620818\pi\)
\(8\) 1.00000 0.353553
\(9\) −2.04294 2.19691i −0.680980 0.732302i
\(10\) 0.866025 + 0.500000i 0.273861 + 0.158114i
\(11\) 4.91222i 1.48109i −0.672007 0.740545i \(-0.734568\pi\)
0.672007 0.740545i \(-0.265432\pi\)
\(12\) 1.02929 + 1.39304i 0.297132 + 0.402135i
\(13\) 1.73616 + 1.00237i 0.481524 + 0.278008i 0.721051 0.692881i \(-0.243659\pi\)
−0.239527 + 0.970890i \(0.576992\pi\)
\(14\) 0.980288 + 1.69791i 0.261993 + 0.453785i
\(15\) 0.194877 + 1.72105i 0.0503169 + 0.444374i
\(16\) −0.500000 0.866025i −0.125000 0.216506i
\(17\) −3.39530 + 1.96028i −0.823481 + 0.475437i −0.851615 0.524167i \(-0.824377\pi\)
0.0281343 + 0.999604i \(0.491043\pi\)
\(18\) −0.881106 + 2.86769i −0.207679 + 0.675921i
\(19\) −3.86720 + 2.01117i −0.887195 + 0.461394i
\(20\) 1.00000i 0.223607i
\(21\) −1.35624 + 3.11322i −0.295957 + 0.679361i
\(22\) −4.25411 + 2.45611i −0.906978 + 0.523644i
\(23\) −5.91161 3.41307i −1.23266 0.711674i −0.265073 0.964228i \(-0.585396\pi\)
−0.967583 + 0.252554i \(0.918729\pi\)
\(24\) 0.691758 1.58791i 0.141205 0.324132i
\(25\) 0.500000 0.866025i 0.100000 0.173205i
\(26\) 2.00475i 0.393163i
\(27\) −4.90172 + 1.72429i −0.943336 + 0.331839i
\(28\) 0.980288 1.69791i 0.185257 0.320874i
\(29\) −2.51673 + 4.35910i −0.467344 + 0.809464i −0.999304 0.0373055i \(-0.988123\pi\)
0.531959 + 0.846770i \(0.321456\pi\)
\(30\) 1.39304 1.02929i 0.254333 0.187923i
\(31\) 0.233588i 0.0419536i −0.999780 0.0209768i \(-0.993322\pi\)
0.999780 0.0209768i \(-0.00667761\pi\)
\(32\) −0.500000 + 0.866025i −0.0883883 + 0.153093i
\(33\) −7.80018 3.39807i −1.35784 0.591528i
\(34\) 3.39530 + 1.96028i 0.582289 + 0.336185i
\(35\) 1.69791 0.980288i 0.286999 0.165699i
\(36\) 2.92405 0.670786i 0.487341 0.111798i
\(37\) 7.19430i 1.18274i −0.806402 0.591368i \(-0.798588\pi\)
0.806402 0.591368i \(-0.201412\pi\)
\(38\) 3.67532 + 2.34350i 0.596216 + 0.380167i
\(39\) 2.79269 2.06347i 0.447188 0.330420i
\(40\) −0.866025 + 0.500000i −0.136931 + 0.0790569i
\(41\) 5.88249 + 10.1888i 0.918690 + 1.59122i 0.801407 + 0.598119i \(0.204085\pi\)
0.117282 + 0.993099i \(0.462582\pi\)
\(42\) 3.37425 0.382070i 0.520659 0.0589547i
\(43\) −2.94487 5.10067i −0.449089 0.777845i 0.549238 0.835666i \(-0.314918\pi\)
−0.998327 + 0.0578212i \(0.981585\pi\)
\(44\) 4.25411 + 2.45611i 0.641331 + 0.370272i
\(45\) 2.86769 + 0.881106i 0.427490 + 0.131347i
\(46\) 6.82614i 1.00646i
\(47\) 1.60922 + 0.929084i 0.234729 + 0.135521i 0.612752 0.790275i \(-0.290063\pi\)
−0.378023 + 0.925796i \(0.623396\pi\)
\(48\) −1.72105 + 0.194877i −0.248413 + 0.0281280i
\(49\) −3.15615 −0.450878
\(50\) −1.00000 −0.141421
\(51\) 0.764024 + 6.74748i 0.106985 + 0.944836i
\(52\) −1.73616 + 1.00237i −0.240762 + 0.139004i
\(53\) 5.29044 9.16331i 0.726698 1.25868i −0.231573 0.972817i \(-0.574387\pi\)
0.958271 0.285861i \(-0.0922794\pi\)
\(54\) 3.94413 + 3.38287i 0.536729 + 0.460350i
\(55\) 2.45611 + 4.25411i 0.331182 + 0.573624i
\(56\) −1.96058 −0.261993
\(57\) 0.518398 + 7.53202i 0.0686635 + 0.997640i
\(58\) 5.03345 0.660925
\(59\) 4.25879 + 7.37643i 0.554447 + 0.960330i 0.997946 + 0.0640552i \(0.0204034\pi\)
−0.443500 + 0.896274i \(0.646263\pi\)
\(60\) −1.58791 0.691758i −0.204999 0.0893056i
\(61\) 3.91378 6.77887i 0.501108 0.867945i −0.498891 0.866665i \(-0.666259\pi\)
0.999999 0.00128020i \(-0.000407502\pi\)
\(62\) −0.202293 + 0.116794i −0.0256912 + 0.0148328i
\(63\) 4.00534 + 4.30720i 0.504625 + 0.542656i
\(64\) 1.00000 0.125000
\(65\) −2.00475 −0.248658
\(66\) 0.957276 + 8.45419i 0.117833 + 1.04064i
\(67\) −13.7456 7.93605i −1.67930 0.969542i −0.962110 0.272661i \(-0.912096\pi\)
−0.717186 0.696882i \(-0.754570\pi\)
\(68\) 3.92055i 0.475437i
\(69\) −9.50907 + 7.02611i −1.14476 + 0.845844i
\(70\) −1.69791 0.980288i −0.202939 0.117167i
\(71\) −2.26439 3.92204i −0.268734 0.465461i 0.699801 0.714338i \(-0.253272\pi\)
−0.968535 + 0.248877i \(0.919939\pi\)
\(72\) −2.04294 2.19691i −0.240763 0.258908i
\(73\) 1.13889 + 1.97262i 0.133297 + 0.230877i 0.924946 0.380099i \(-0.124110\pi\)
−0.791649 + 0.610977i \(0.790777\pi\)
\(74\) −6.23045 + 3.59715i −0.724275 + 0.418160i
\(75\) −1.02929 1.39304i −0.118853 0.160854i
\(76\) 0.191874 4.35467i 0.0220095 0.499515i
\(77\) 9.63077i 1.09753i
\(78\) −3.18336 1.38680i −0.360445 0.157024i
\(79\) 10.7900 6.22958i 1.21396 0.700883i 0.250344 0.968157i \(-0.419456\pi\)
0.963621 + 0.267274i \(0.0861229\pi\)
\(80\) 0.866025 + 0.500000i 0.0968246 + 0.0559017i
\(81\) −0.652788 + 8.97629i −0.0725320 + 0.997366i
\(82\) 5.88249 10.1888i 0.649612 1.12516i
\(83\) 13.7111i 1.50499i −0.658599 0.752494i \(-0.728851\pi\)
0.658599 0.752494i \(-0.271149\pi\)
\(84\) −2.01801 2.73115i −0.220183 0.297993i
\(85\) 1.96028 3.39530i 0.212622 0.368272i
\(86\) −2.94487 + 5.10067i −0.317554 + 0.550019i
\(87\) 5.18091 + 7.01179i 0.555451 + 0.751743i
\(88\) 4.91222i 0.523644i
\(89\) 5.48139 9.49404i 0.581026 1.00637i −0.414332 0.910126i \(-0.635985\pi\)
0.995358 0.0962408i \(-0.0306819\pi\)
\(90\) −0.670786 2.92405i −0.0707070 0.308222i
\(91\) −3.40387 1.96523i −0.356823 0.206012i
\(92\) 5.91161 3.41307i 0.616328 0.355837i
\(93\) −0.370917 0.161586i −0.0384623 0.0167557i
\(94\) 1.85817i 0.191655i
\(95\) 2.34350 3.67532i 0.240439 0.377080i
\(96\) 1.02929 + 1.39304i 0.105052 + 0.142176i
\(97\) −13.3158 + 7.68789i −1.35202 + 0.780587i −0.988532 0.151013i \(-0.951746\pi\)
−0.363484 + 0.931600i \(0.618413\pi\)
\(98\) 1.57807 + 2.73330i 0.159409 + 0.276105i
\(99\) −10.7917 + 10.0354i −1.08460 + 1.00859i
\(100\) 0.500000 + 0.866025i 0.0500000 + 0.0866025i
\(101\) 9.94449 + 5.74146i 0.989514 + 0.571296i 0.905129 0.425137i \(-0.139774\pi\)
0.0843851 + 0.996433i \(0.473107\pi\)
\(102\) 5.46148 4.03541i 0.540767 0.399565i
\(103\) 1.76334i 0.173747i −0.996219 0.0868736i \(-0.972312\pi\)
0.996219 0.0868736i \(-0.0276876\pi\)
\(104\) 1.73616 + 1.00237i 0.170245 + 0.0982907i
\(105\) −0.382070 3.37425i −0.0372862 0.329293i
\(106\) −10.5809 −1.02771
\(107\) 3.01131 0.291115 0.145557 0.989350i \(-0.453502\pi\)
0.145557 + 0.989350i \(0.453502\pi\)
\(108\) 0.957584 5.10716i 0.0921436 0.491436i
\(109\) 9.05950 5.23051i 0.867743 0.500992i 0.00114554 0.999999i \(-0.499635\pi\)
0.866598 + 0.499008i \(0.166302\pi\)
\(110\) 2.45611 4.25411i 0.234181 0.405613i
\(111\) −11.4239 4.97672i −1.08431 0.472369i
\(112\) 0.980288 + 1.69791i 0.0926285 + 0.160437i
\(113\) −12.1589 −1.14382 −0.571909 0.820317i \(-0.693797\pi\)
−0.571909 + 0.820317i \(0.693797\pi\)
\(114\) 6.26372 4.21495i 0.586651 0.394767i
\(115\) 6.82614 0.636541
\(116\) −2.51673 4.35910i −0.233672 0.404732i
\(117\) −1.34475 5.86197i −0.124323 0.541939i
\(118\) 4.25879 7.37643i 0.392053 0.679056i
\(119\) 6.65674 3.84327i 0.610222 0.352312i
\(120\) 0.194877 + 1.72105i 0.0177897 + 0.157110i
\(121\) −13.1299 −1.19363
\(122\) −7.82756 −0.708674
\(123\) 20.2481 2.29272i 1.82571 0.206727i
\(124\) 0.202293 + 0.116794i 0.0181664 + 0.0104884i
\(125\) 1.00000i 0.0894427i
\(126\) 1.72747 5.62232i 0.153896 0.500876i
\(127\) 11.2081 + 6.47100i 0.994557 + 0.574208i 0.906633 0.421919i \(-0.138643\pi\)
0.0879240 + 0.996127i \(0.471977\pi\)
\(128\) −0.500000 0.866025i −0.0441942 0.0765466i
\(129\) −10.1366 + 1.14777i −0.892475 + 0.101056i
\(130\) 1.00237 + 1.73616i 0.0879139 + 0.152271i
\(131\) −7.74381 + 4.47089i −0.676580 + 0.390624i −0.798565 0.601908i \(-0.794407\pi\)
0.121985 + 0.992532i \(0.461074\pi\)
\(132\) 6.84290 5.05612i 0.595598 0.440079i
\(133\) 7.58193 3.94305i 0.657436 0.341906i
\(134\) 15.8721i 1.37114i
\(135\) 3.38287 3.94413i 0.291151 0.339457i
\(136\) −3.39530 + 1.96028i −0.291145 + 0.168092i
\(137\) −3.55144 2.05042i −0.303420 0.175180i 0.340558 0.940223i \(-0.389384\pi\)
−0.643978 + 0.765044i \(0.722717\pi\)
\(138\) 10.8393 + 4.72204i 0.922704 + 0.401967i
\(139\) 6.74169 11.6770i 0.571823 0.990426i −0.424556 0.905402i \(-0.639570\pi\)
0.996379 0.0850246i \(-0.0270969\pi\)
\(140\) 1.96058i 0.165699i
\(141\) 2.58850 1.91260i 0.217991 0.161070i
\(142\) −2.26439 + 3.92204i −0.190024 + 0.329131i
\(143\) 4.92387 8.52840i 0.411755 0.713181i
\(144\) −0.881106 + 2.86769i −0.0734255 + 0.238974i
\(145\) 5.03345i 0.418006i
\(146\) 1.13889 1.97262i 0.0942553 0.163255i
\(147\) −2.18329 + 5.01169i −0.180075 + 0.413357i
\(148\) 6.23045 + 3.59715i 0.512140 + 0.295684i
\(149\) −3.99172 + 2.30462i −0.327014 + 0.188802i −0.654515 0.756049i \(-0.727127\pi\)
0.327500 + 0.944851i \(0.393794\pi\)
\(150\) −0.691758 + 1.58791i −0.0564818 + 0.129653i
\(151\) 17.3564i 1.41245i −0.707990 0.706223i \(-0.750398\pi\)
0.707990 0.706223i \(-0.249602\pi\)
\(152\) −3.86720 + 2.01117i −0.313671 + 0.163127i
\(153\) 11.2429 + 3.45442i 0.908938 + 0.279274i
\(154\) 8.34049 4.81539i 0.672096 0.388035i
\(155\) 0.116794 + 0.202293i 0.00938111 + 0.0162486i
\(156\) 0.390678 + 3.45027i 0.0312793 + 0.276243i
\(157\) 0.833700 + 1.44401i 0.0665365 + 0.115245i 0.897375 0.441270i \(-0.145472\pi\)
−0.830838 + 0.556514i \(0.812138\pi\)
\(158\) −10.7900 6.22958i −0.858403 0.495599i
\(159\) −10.8908 14.7396i −0.863700 1.16892i
\(160\) 1.00000i 0.0790569i
\(161\) 11.5902 + 6.69158i 0.913432 + 0.527370i
\(162\) 8.10009 3.92282i 0.636403 0.308206i
\(163\) 8.55940 0.670424 0.335212 0.942143i \(-0.391192\pi\)
0.335212 + 0.942143i \(0.391192\pi\)
\(164\) −11.7650 −0.918690
\(165\) 8.45419 0.957276i 0.658158 0.0745238i
\(166\) −11.8742 + 6.85554i −0.921613 + 0.532093i
\(167\) 4.84533 8.39236i 0.374943 0.649420i −0.615376 0.788234i \(-0.710996\pi\)
0.990318 + 0.138814i \(0.0443290\pi\)
\(168\) −1.35624 + 3.11322i −0.104637 + 0.240190i
\(169\) −4.49050 7.77777i −0.345423 0.598290i
\(170\) −3.92055 −0.300693
\(171\) 12.3188 + 4.38716i 0.942042 + 0.335495i
\(172\) 5.88974 0.449089
\(173\) −5.22274 9.04605i −0.397078 0.687759i 0.596286 0.802772i \(-0.296642\pi\)
−0.993364 + 0.115013i \(0.963309\pi\)
\(174\) 3.48193 7.99269i 0.263965 0.605924i
\(175\) −0.980288 + 1.69791i −0.0741028 + 0.128350i
\(176\) −4.25411 + 2.45611i −0.320665 + 0.185136i
\(177\) 14.6592 1.65987i 1.10185 0.124764i
\(178\) −10.9628 −0.821695
\(179\) −1.34670 −0.100657 −0.0503285 0.998733i \(-0.516027\pi\)
−0.0503285 + 0.998733i \(0.516027\pi\)
\(180\) −2.19691 + 2.04294i −0.163748 + 0.152272i
\(181\) 12.6588 + 7.30854i 0.940919 + 0.543240i 0.890248 0.455476i \(-0.150531\pi\)
0.0506704 + 0.998715i \(0.483864\pi\)
\(182\) 3.93045i 0.291345i
\(183\) −8.05687 10.9041i −0.595581 0.806053i
\(184\) −5.91161 3.41307i −0.435810 0.251615i
\(185\) 3.59715 + 6.23045i 0.264468 + 0.458072i
\(186\) 0.0455208 + 0.402017i 0.00333774 + 0.0294773i
\(187\) 9.62931 + 16.6785i 0.704165 + 1.21965i
\(188\) −1.60922 + 0.929084i −0.117364 + 0.0677604i
\(189\) 9.61019 3.38059i 0.699038 0.245902i
\(190\) −4.35467 0.191874i −0.315921 0.0139200i
\(191\) 6.09365i 0.440921i −0.975396 0.220461i \(-0.929244\pi\)
0.975396 0.220461i \(-0.0707560\pi\)
\(192\) 0.691758 1.58791i 0.0499234 0.114598i
\(193\) 2.59888 1.50046i 0.187071 0.108006i −0.403540 0.914962i \(-0.632220\pi\)
0.590611 + 0.806957i \(0.298887\pi\)
\(194\) 13.3158 + 7.68789i 0.956020 + 0.551958i
\(195\) −1.38680 + 3.18336i −0.0993108 + 0.227965i
\(196\) 1.57807 2.73330i 0.112719 0.195236i
\(197\) 2.48104i 0.176767i 0.996087 + 0.0883833i \(0.0281700\pi\)
−0.996087 + 0.0883833i \(0.971830\pi\)
\(198\) 14.0867 + 4.32818i 1.00110 + 0.307591i
\(199\) −11.8062 + 20.4489i −0.836918 + 1.44958i 0.0555409 + 0.998456i \(0.482312\pi\)
−0.892459 + 0.451128i \(0.851022\pi\)
\(200\) 0.500000 0.866025i 0.0353553 0.0612372i
\(201\) −22.1104 + 16.3371i −1.55955 + 1.15233i
\(202\) 11.4829i 0.807935i
\(203\) 4.93423 8.54634i 0.346315 0.599836i
\(204\) −6.22550 2.71208i −0.435872 0.189883i
\(205\) −10.1888 5.88249i −0.711614 0.410851i
\(206\) −1.52710 + 0.881671i −0.106398 + 0.0614289i
\(207\) 4.57888 + 19.9599i 0.318254 + 1.38731i
\(208\) 2.00475i 0.139004i
\(209\) 9.87930 + 18.9965i 0.683366 + 1.31402i
\(210\) −2.73115 + 2.01801i −0.188468 + 0.139256i
\(211\) 2.52326 1.45680i 0.173708 0.100290i −0.410625 0.911804i \(-0.634689\pi\)
0.584333 + 0.811514i \(0.301356\pi\)
\(212\) 5.29044 + 9.16331i 0.363349 + 0.629339i
\(213\) −7.79428 + 0.882554i −0.534055 + 0.0604716i
\(214\) −1.50566 2.60787i −0.102925 0.178271i
\(215\) 5.10067 + 2.94487i 0.347863 + 0.200839i
\(216\) −4.90172 + 1.72429i −0.333520 + 0.117323i
\(217\) 0.457966i 0.0310888i
\(218\) −9.05950 5.23051i −0.613587 0.354255i
\(219\) 3.92018 0.443886i 0.264901 0.0299950i
\(220\) −4.91222 −0.331182
\(221\) −7.85971 −0.528702
\(222\) 1.40200 + 12.3818i 0.0940961 + 0.831010i
\(223\) 3.39391 1.95947i 0.227273 0.131216i −0.382040 0.924146i \(-0.624778\pi\)
0.609313 + 0.792930i \(0.291445\pi\)
\(224\) 0.980288 1.69791i 0.0654982 0.113446i
\(225\) −2.92405 + 0.670786i −0.194936 + 0.0447190i
\(226\) 6.07947 + 10.5300i 0.404400 + 0.700442i
\(227\) −0.316084 −0.0209793 −0.0104896 0.999945i \(-0.503339\pi\)
−0.0104896 + 0.999945i \(0.503339\pi\)
\(228\) −6.78212 3.31706i −0.449157 0.219678i
\(229\) 6.13340 0.405306 0.202653 0.979251i \(-0.435044\pi\)
0.202653 + 0.979251i \(0.435044\pi\)
\(230\) −3.41307 5.91161i −0.225051 0.389800i
\(231\) 15.2928 + 6.66217i 1.00619 + 0.438339i
\(232\) −2.51673 + 4.35910i −0.165231 + 0.286189i
\(233\) −9.37631 + 5.41341i −0.614262 + 0.354644i −0.774632 0.632413i \(-0.782065\pi\)
0.160369 + 0.987057i \(0.448731\pi\)
\(234\) −4.40424 + 4.09558i −0.287914 + 0.267736i
\(235\) −1.85817 −0.121214
\(236\) −8.51757 −0.554447
\(237\) −2.42800 21.4429i −0.157715 1.39287i
\(238\) −6.65674 3.84327i −0.431492 0.249122i
\(239\) 3.18686i 0.206141i 0.994674 + 0.103070i \(0.0328667\pi\)
−0.994674 + 0.103070i \(0.967133\pi\)
\(240\) 1.39304 1.02929i 0.0899202 0.0664407i
\(241\) −16.5317 9.54461i −1.06490 0.614822i −0.138119 0.990416i \(-0.544106\pi\)
−0.926785 + 0.375593i \(0.877439\pi\)
\(242\) 6.56495 + 11.3708i 0.422011 + 0.730944i
\(243\) 13.8020 + 7.24600i 0.885399 + 0.464831i
\(244\) 3.91378 + 6.77887i 0.250554 + 0.433973i
\(245\) 2.73330 1.57807i 0.174624 0.100819i
\(246\) −12.1096 16.3890i −0.772081 1.04493i
\(247\) −8.73001 0.384659i −0.555477 0.0244753i
\(248\) 0.233588i 0.0148328i
\(249\) −21.7720 9.48476i −1.37975 0.601072i
\(250\) 0.866025 0.500000i 0.0547723 0.0316228i
\(251\) 10.0866 + 5.82352i 0.636663 + 0.367578i 0.783328 0.621609i \(-0.213521\pi\)
−0.146665 + 0.989186i \(0.546854\pi\)
\(252\) −5.73281 + 1.31513i −0.361133 + 0.0828451i
\(253\) −16.7657 + 29.0391i −1.05405 + 1.82567i
\(254\) 12.9420i 0.812053i
\(255\) −4.03541 5.46148i −0.252707 0.342011i
\(256\) −0.500000 + 0.866025i −0.0312500 + 0.0541266i
\(257\) 11.7735 20.3923i 0.734410 1.27204i −0.220571 0.975371i \(-0.570792\pi\)
0.954982 0.296665i \(-0.0958746\pi\)
\(258\) 6.06228 + 8.20463i 0.377421 + 0.510798i
\(259\) 14.1050i 0.876440i
\(260\) 1.00237 1.73616i 0.0621645 0.107672i
\(261\) 14.7181 3.37637i 0.911025 0.208992i
\(262\) 7.74381 + 4.47089i 0.478414 + 0.276213i
\(263\) 3.46036 1.99784i 0.213375 0.123192i −0.389504 0.921025i \(-0.627354\pi\)
0.602879 + 0.797833i \(0.294020\pi\)
\(264\) −7.80018 3.39807i −0.480068 0.209137i
\(265\) 10.5809i 0.649979i
\(266\) −7.20574 4.59462i −0.441812 0.281714i
\(267\) −11.2839 15.2716i −0.690565 0.934604i
\(268\) 13.7456 7.93605i 0.839648 0.484771i
\(269\) −1.12373 1.94636i −0.0685152 0.118672i 0.829733 0.558161i \(-0.188493\pi\)
−0.898248 + 0.439489i \(0.855160\pi\)
\(270\) −5.10716 0.957584i −0.310812 0.0582767i
\(271\) 2.70149 + 4.67912i 0.164104 + 0.284236i 0.936337 0.351103i \(-0.114193\pi\)
−0.772233 + 0.635340i \(0.780860\pi\)
\(272\) 3.39530 + 1.96028i 0.205870 + 0.118859i
\(273\) −5.47527 + 4.04559i −0.331378 + 0.244851i
\(274\) 4.10085i 0.247741i
\(275\) −4.25411 2.45611i −0.256532 0.148109i
\(276\) −1.33025 11.7481i −0.0800719 0.707155i
\(277\) −20.1531 −1.21088 −0.605441 0.795890i \(-0.707003\pi\)
−0.605441 + 0.795890i \(0.707003\pi\)
\(278\) −13.4834 −0.808680
\(279\) −0.513170 + 0.477206i −0.0307227 + 0.0285696i
\(280\) 1.69791 0.980288i 0.101469 0.0585834i
\(281\) −9.35418 + 16.2019i −0.558023 + 0.966525i 0.439638 + 0.898175i \(0.355107\pi\)
−0.997661 + 0.0683499i \(0.978227\pi\)
\(282\) −2.95061 1.28540i −0.175706 0.0765447i
\(283\) 10.5801 + 18.3252i 0.628919 + 1.08932i 0.987769 + 0.155924i \(0.0498355\pi\)
−0.358850 + 0.933395i \(0.616831\pi\)
\(284\) 4.52879 0.268734
\(285\) −4.21495 6.26372i −0.249672 0.371031i
\(286\) −9.84775 −0.582310
\(287\) −11.5331 19.9758i −0.680775 1.17914i
\(288\) 2.92405 0.670786i 0.172301 0.0395264i
\(289\) −0.814625 + 1.41097i −0.0479191 + 0.0829984i
\(290\) −4.35910 + 2.51673i −0.255975 + 0.147787i
\(291\) 2.99638 + 26.4625i 0.175651 + 1.55126i
\(292\) −2.27778 −0.133297
\(293\) −12.3120 −0.719275 −0.359638 0.933092i \(-0.617100\pi\)
−0.359638 + 0.933092i \(0.617100\pi\)
\(294\) 5.43189 0.615059i 0.316794 0.0358709i
\(295\) −7.37643 4.25879i −0.429472 0.247956i
\(296\) 7.19430i 0.418160i
\(297\) 8.47007 + 24.0783i 0.491483 + 1.39717i
\(298\) 3.99172 + 2.30462i 0.231234 + 0.133503i
\(299\) −6.84234 11.8513i −0.395702 0.685377i
\(300\) 1.72105 0.194877i 0.0993650 0.0112512i
\(301\) 5.77364 + 10.0002i 0.332787 + 0.576405i
\(302\) −15.0311 + 8.67821i −0.864943 + 0.499375i
\(303\) 15.9961 11.8193i 0.918953 0.679001i
\(304\) 3.67532 + 2.34350i 0.210794 + 0.134409i
\(305\) 7.82756i 0.448205i
\(306\) −2.62985 11.4639i −0.150339 0.655347i
\(307\) −13.1520 + 7.59331i −0.750624 + 0.433373i −0.825919 0.563788i \(-0.809343\pi\)
0.0752952 + 0.997161i \(0.476010\pi\)
\(308\) −8.34049 4.81539i −0.475244 0.274382i
\(309\) −2.80004 1.21981i −0.159288 0.0693924i
\(310\) 0.116794 0.202293i 0.00663344 0.0114895i
\(311\) 31.8839i 1.80797i −0.427563 0.903986i \(-0.640628\pi\)
0.427563 0.903986i \(-0.359372\pi\)
\(312\) 2.79269 2.06347i 0.158105 0.116821i
\(313\) −7.47579 + 12.9485i −0.422557 + 0.731890i −0.996189 0.0872234i \(-0.972201\pi\)
0.573632 + 0.819113i \(0.305534\pi\)
\(314\) 0.833700 1.44401i 0.0470484 0.0814902i
\(315\) −5.62232 1.72747i −0.316782 0.0973321i
\(316\) 12.4592i 0.700883i
\(317\) −12.7583 + 22.0980i −0.716577 + 1.24115i 0.245771 + 0.969328i \(0.420959\pi\)
−0.962348 + 0.271821i \(0.912374\pi\)
\(318\) −7.31942 + 16.8015i −0.410452 + 0.942183i
\(319\) 21.4128 + 12.3627i 1.19889 + 0.692179i
\(320\) −0.866025 + 0.500000i −0.0484123 + 0.0279508i
\(321\) 2.08310 4.78171i 0.116267 0.266889i
\(322\) 13.3832i 0.745814i
\(323\) 9.18784 14.4093i 0.511225 0.801755i
\(324\) −7.44731 5.05348i −0.413739 0.280749i
\(325\) 1.73616 1.00237i 0.0963049 0.0556016i
\(326\) −4.27970 7.41266i −0.237031 0.410549i
\(327\) −2.03861 18.0040i −0.112735 0.995621i
\(328\) 5.88249 + 10.1888i 0.324806 + 0.562580i
\(329\) −3.15500 1.82154i −0.173941 0.100425i
\(330\) −5.05612 6.84290i −0.278330 0.376689i
\(331\) 23.6270i 1.29866i 0.760508 + 0.649329i \(0.224950\pi\)
−0.760508 + 0.649329i \(0.775050\pi\)
\(332\) 11.8742 + 6.85554i 0.651679 + 0.376247i
\(333\) −15.8052 + 14.6975i −0.866120 + 0.805420i
\(334\) −9.69066 −0.530249
\(335\) 15.8721 0.867185
\(336\) 3.37425 0.382070i 0.184081 0.0208436i
\(337\) −1.65491 + 0.955464i −0.0901489 + 0.0520475i −0.544397 0.838828i \(-0.683241\pi\)
0.454248 + 0.890875i \(0.349908\pi\)
\(338\) −4.49050 + 7.77777i −0.244251 + 0.423055i
\(339\) −8.41105 + 19.3074i −0.456826 + 1.04863i
\(340\) 1.96028 + 3.39530i 0.106311 + 0.184136i
\(341\) −1.14743 −0.0621370
\(342\) −2.36000 12.8620i −0.127614 0.695496i
\(343\) 19.9119 1.07514
\(344\) −2.94487 5.10067i −0.158777 0.275010i
\(345\) 4.72204 10.8393i 0.254226 0.583569i
\(346\) −5.22274 + 9.04605i −0.280776 + 0.486319i
\(347\) 13.6960 7.90736i 0.735237 0.424489i −0.0850978 0.996373i \(-0.527120\pi\)
0.820335 + 0.571883i \(0.193787\pi\)
\(348\) −8.66284 + 0.980902i −0.464377 + 0.0525819i
\(349\) −29.7786 −1.59401 −0.797006 0.603972i \(-0.793584\pi\)
−0.797006 + 0.603972i \(0.793584\pi\)
\(350\) 1.96058 0.104797
\(351\) −10.2385 1.91971i −0.546493 0.102467i
\(352\) 4.25411 + 2.45611i 0.226745 + 0.130911i
\(353\) 2.45671i 0.130758i 0.997861 + 0.0653788i \(0.0208256\pi\)
−0.997861 + 0.0653788i \(0.979174\pi\)
\(354\) −8.76709 11.8653i −0.465965 0.630633i
\(355\) 3.92204 + 2.26439i 0.208160 + 0.120182i
\(356\) 5.48139 + 9.49404i 0.290513 + 0.503183i
\(357\) −1.49793 13.2289i −0.0792787 0.700150i
\(358\) 0.673349 + 1.16628i 0.0355876 + 0.0616396i
\(359\) 3.05773 1.76538i 0.161381 0.0931733i −0.417135 0.908845i \(-0.636966\pi\)
0.578515 + 0.815671i \(0.303632\pi\)
\(360\) 2.86769 + 0.881106i 0.151141 + 0.0464384i
\(361\) 10.9104 15.5552i 0.574232 0.818693i
\(362\) 14.6171i 0.768257i
\(363\) −9.08271 + 20.8491i −0.476719 + 1.09430i
\(364\) 3.40387 1.96523i 0.178411 0.103006i
\(365\) −1.97262 1.13889i −0.103251 0.0596123i
\(366\) −5.41478 + 12.4295i −0.283035 + 0.649700i
\(367\) −1.33512 + 2.31249i −0.0696925 + 0.120711i −0.898766 0.438429i \(-0.855535\pi\)
0.829073 + 0.559140i \(0.188868\pi\)
\(368\) 6.82614i 0.355837i
\(369\) 10.3662 33.7383i 0.539642 1.75635i
\(370\) 3.59715 6.23045i 0.187007 0.323906i
\(371\) −10.3723 + 17.9654i −0.538503 + 0.932715i
\(372\) 0.325396 0.240431i 0.0168710 0.0124657i
\(373\) 4.16443i 0.215626i 0.994171 + 0.107813i \(0.0343848\pi\)
−0.994171 + 0.107813i \(0.965615\pi\)
\(374\) 9.62931 16.6785i 0.497920 0.862422i
\(375\) 1.58791 + 0.691758i 0.0819995 + 0.0357223i
\(376\) 1.60922 + 0.929084i 0.0829892 + 0.0479138i
\(377\) −8.73888 + 5.04540i −0.450075 + 0.259851i
\(378\) −7.73277 6.63237i −0.397731 0.341132i
\(379\) 10.8219i 0.555884i 0.960598 + 0.277942i \(0.0896523\pi\)
−0.960598 + 0.277942i \(0.910348\pi\)
\(380\) 2.01117 + 3.86720i 0.103171 + 0.198383i
\(381\) 18.0287 13.3211i 0.923637 0.682462i
\(382\) −5.27726 + 3.04683i −0.270008 + 0.155889i
\(383\) 8.28137 + 14.3437i 0.423158 + 0.732931i 0.996246 0.0865623i \(-0.0275882\pi\)
−0.573088 + 0.819494i \(0.694255\pi\)
\(384\) −1.72105 + 0.194877i −0.0878271 + 0.00994475i
\(385\) −4.81539 8.34049i −0.245415 0.425071i
\(386\) −2.59888 1.50046i −0.132279 0.0763715i
\(387\) −5.18949 + 16.8900i −0.263797 + 0.858565i
\(388\) 15.3758i 0.780587i
\(389\) 32.4626 + 18.7423i 1.64592 + 0.950273i 0.978670 + 0.205440i \(0.0658625\pi\)
0.667251 + 0.744833i \(0.267471\pi\)
\(390\) 3.45027 0.390678i 0.174711 0.0197827i
\(391\) 26.7623 1.35343
\(392\) −3.15615 −0.159409
\(393\) 1.74254 + 15.3893i 0.0878997 + 0.776286i
\(394\) 2.14864 1.24052i 0.108247 0.0624965i
\(395\) −6.22958 + 10.7900i −0.313444 + 0.542902i
\(396\) −3.29505 14.3636i −0.165582 0.721796i
\(397\) −2.65169 4.59286i −0.133085 0.230509i 0.791780 0.610807i \(-0.209155\pi\)
−0.924864 + 0.380298i \(0.875822\pi\)
\(398\) 23.6124 1.18358
\(399\) −1.01636 14.7671i −0.0508815 0.739279i
\(400\) −1.00000 −0.0500000
\(401\) −3.00036 5.19678i −0.149831 0.259515i 0.781334 0.624113i \(-0.214540\pi\)
−0.931165 + 0.364598i \(0.881206\pi\)
\(402\) 25.2035 + 10.9797i 1.25704 + 0.547615i
\(403\) 0.234142 0.405546i 0.0116634 0.0202017i
\(404\) −9.94449 + 5.74146i −0.494757 + 0.285648i
\(405\) −3.92282 8.10009i −0.194926 0.402497i
\(406\) −9.86847 −0.489764
\(407\) −35.3400 −1.75174
\(408\) 0.764024 + 6.74748i 0.0378248 + 0.334050i
\(409\) −23.6531 13.6561i −1.16957 0.675253i −0.215993 0.976395i \(-0.569299\pi\)
−0.953579 + 0.301143i \(0.902632\pi\)
\(410\) 11.7650i 0.581030i
\(411\) −5.71263 + 4.22098i −0.281783 + 0.208206i
\(412\) 1.52710 + 0.881671i 0.0752348 + 0.0434368i
\(413\) −8.34967 14.4620i −0.410860 0.711631i
\(414\) 14.9964 13.9454i 0.737032 0.685379i
\(415\) 6.85554 + 11.8742i 0.336525 + 0.582879i
\(416\) −1.73616 + 1.00237i −0.0851223 + 0.0491454i
\(417\) −13.8784 18.7829i −0.679627 0.919801i
\(418\) 11.5118 18.0540i 0.563061 0.883049i
\(419\) 5.21876i 0.254953i 0.991842 + 0.127477i \(0.0406878\pi\)
−0.991842 + 0.127477i \(0.959312\pi\)
\(420\) 3.11322 + 1.35624i 0.151910 + 0.0661780i
\(421\) 0.601100 0.347045i 0.0292958 0.0169139i −0.485281 0.874358i \(-0.661283\pi\)
0.514576 + 0.857445i \(0.327949\pi\)
\(422\) −2.52326 1.45680i −0.122830 0.0709160i
\(423\) −1.24643 5.43337i −0.0606036 0.264179i
\(424\) 5.29044 9.16331i 0.256927 0.445010i
\(425\) 3.92055i 0.190175i
\(426\) 4.66145 + 6.30877i 0.225848 + 0.305661i
\(427\) −7.67326 + 13.2905i −0.371335 + 0.643171i
\(428\) −1.50566 + 2.60787i −0.0727787 + 0.126056i
\(429\) −10.1362 13.7183i −0.489382 0.662325i
\(430\) 5.88974i 0.284029i
\(431\) 8.30269 14.3807i 0.399926 0.692693i −0.593790 0.804620i \(-0.702369\pi\)
0.993716 + 0.111927i \(0.0357024\pi\)
\(432\) 3.94413 + 3.38287i 0.189762 + 0.162758i
\(433\) 18.0716 + 10.4336i 0.868465 + 0.501409i 0.866838 0.498590i \(-0.166149\pi\)
0.00162720 + 0.999999i \(0.499482\pi\)
\(434\) 0.396610 0.228983i 0.0190379 0.0109915i
\(435\) −7.99269 3.48193i −0.383220 0.166946i
\(436\) 10.4610i 0.500992i
\(437\) 29.7256 + 1.30976i 1.42197 + 0.0626543i
\(438\) −2.34451 3.17304i −0.112025 0.151613i
\(439\) −9.46913 + 5.46701i −0.451937 + 0.260926i −0.708648 0.705562i \(-0.750695\pi\)
0.256711 + 0.966488i \(0.417361\pi\)
\(440\) 2.45611 + 4.25411i 0.117090 + 0.202807i
\(441\) 6.44782 + 6.93375i 0.307039 + 0.330179i
\(442\) 3.92986 + 6.80671i 0.186924 + 0.323762i
\(443\) 32.8931 + 18.9908i 1.56280 + 0.902281i 0.996972 + 0.0777559i \(0.0247755\pi\)
0.565825 + 0.824525i \(0.308558\pi\)
\(444\) 10.0219 7.40505i 0.475620 0.351428i
\(445\) 10.9628i 0.519685i
\(446\) −3.39391 1.95947i −0.160706 0.0927838i
\(447\) 0.898233 + 7.93275i 0.0424849 + 0.375206i
\(448\) −1.96058 −0.0926285
\(449\) 37.0794 1.74989 0.874944 0.484225i \(-0.160898\pi\)
0.874944 + 0.484225i \(0.160898\pi\)
\(450\) 2.04294 + 2.19691i 0.0963051 + 0.103563i
\(451\) 50.0494 28.8961i 2.35674 1.36066i
\(452\) 6.07947 10.5300i 0.285954 0.495287i
\(453\) −27.5605 12.0065i −1.29491 0.564112i
\(454\) 0.158042 + 0.273737i 0.00741729 + 0.0128471i
\(455\) 3.93045 0.184263
\(456\) 0.518398 + 7.53202i 0.0242762 + 0.352719i
\(457\) 24.8264 1.16133 0.580665 0.814142i \(-0.302793\pi\)
0.580665 + 0.814142i \(0.302793\pi\)
\(458\) −3.06670 5.31168i −0.143297 0.248198i
\(459\) 13.2627 15.4632i 0.619051 0.721760i
\(460\) −3.41307 + 5.91161i −0.159135 + 0.275630i
\(461\) 4.14251 2.39168i 0.192936 0.111392i −0.400420 0.916332i \(-0.631136\pi\)
0.593356 + 0.804940i \(0.297803\pi\)
\(462\) −1.87681 16.5751i −0.0873172 0.771142i
\(463\) −19.1590 −0.890394 −0.445197 0.895433i \(-0.646866\pi\)
−0.445197 + 0.895433i \(0.646866\pi\)
\(464\) 5.03345 0.233672
\(465\) 0.402017 0.0455208i 0.0186431 0.00211097i
\(466\) 9.37631 + 5.41341i 0.434349 + 0.250772i
\(467\) 18.5479i 0.858296i −0.903234 0.429148i \(-0.858814\pi\)
0.903234 0.429148i \(-0.141186\pi\)
\(468\) 5.74899 + 1.76639i 0.265747 + 0.0816515i
\(469\) 26.9493 + 15.5592i 1.24441 + 0.718458i
\(470\) 0.929084 + 1.60922i 0.0428554 + 0.0742278i
\(471\) 2.86968 0.324937i 0.132228 0.0149723i
\(472\) 4.25879 + 7.37643i 0.196026 + 0.339528i
\(473\) −25.0556 + 14.4659i −1.15206 + 0.665141i
\(474\) −17.3561 + 12.8242i −0.797191 + 0.589033i
\(475\) −0.191874 + 4.35467i −0.00880380 + 0.199806i
\(476\) 7.68654i 0.352312i
\(477\) −30.9390 + 7.09750i −1.41660 + 0.324972i
\(478\) 2.75990 1.59343i 0.126235 0.0728817i
\(479\) −22.9732 13.2636i −1.04967 0.606028i −0.127114 0.991888i \(-0.540571\pi\)
−0.922557 + 0.385860i \(0.873905\pi\)
\(480\) −1.58791 0.691758i −0.0724780 0.0315743i
\(481\) 7.21137 12.4905i 0.328810 0.569516i
\(482\) 19.0892i 0.869490i
\(483\) 18.6432 13.7752i 0.848297 0.626794i
\(484\) 6.56495 11.3708i 0.298407 0.516855i
\(485\) 7.68789 13.3158i 0.349089 0.604640i
\(486\) −0.625786 15.5759i −0.0283862 0.706537i
\(487\) 11.3164i 0.512796i −0.966571 0.256398i \(-0.917464\pi\)
0.966571 0.256398i \(-0.0825357\pi\)
\(488\) 3.91378 6.77887i 0.177169 0.306865i
\(489\) 5.92104 13.5916i 0.267759 0.614633i
\(490\) −2.73330 1.57807i −0.123478 0.0712900i
\(491\) −6.02160 + 3.47657i −0.271751 + 0.156896i −0.629683 0.776852i \(-0.716815\pi\)
0.357932 + 0.933748i \(0.383482\pi\)
\(492\) −8.13852 + 18.6818i −0.366913 + 0.842239i
\(493\) 19.7339i 0.888772i
\(494\) 4.03188 + 7.75274i 0.181403 + 0.348812i
\(495\) 4.32818 14.0867i 0.194537 0.633151i
\(496\) −0.202293 + 0.116794i −0.00908322 + 0.00524420i
\(497\) 4.43951 + 7.68946i 0.199139 + 0.344920i
\(498\) 2.67197 + 23.5975i 0.119734 + 1.05743i
\(499\) −17.0361 29.5074i −0.762642 1.32093i −0.941484 0.337057i \(-0.890569\pi\)
0.178843 0.983878i \(-0.442765\pi\)
\(500\) −0.866025 0.500000i −0.0387298 0.0223607i
\(501\) −9.97454 13.4995i −0.445630 0.603111i
\(502\) 11.6470i 0.519833i
\(503\) 3.97574 + 2.29540i 0.177270 + 0.102347i 0.586009 0.810304i \(-0.300698\pi\)
−0.408740 + 0.912651i \(0.634032\pi\)
\(504\) 4.00534 + 4.30720i 0.178412 + 0.191858i
\(505\) −11.4829 −0.510983
\(506\) 33.5315 1.49066
\(507\) −15.4568 + 1.75019i −0.686459 + 0.0777284i
\(508\) −11.2081 + 6.47100i −0.497279 + 0.287104i
\(509\) −10.1206 + 17.5295i −0.448590 + 0.776980i −0.998294 0.0583790i \(-0.981407\pi\)
0.549705 + 0.835359i \(0.314740\pi\)
\(510\) −2.71208 + 6.22550i −0.120093 + 0.275670i
\(511\) −2.23288 3.86746i −0.0987769 0.171087i
\(512\) 1.00000 0.0441942
\(513\) 15.4881 16.5263i 0.683815 0.729655i
\(514\) −23.5470 −1.03861
\(515\) 0.881671 + 1.52710i 0.0388511 + 0.0672920i
\(516\) 4.07428 9.35241i 0.179360 0.411717i
\(517\) 4.56386 7.90484i 0.200718 0.347655i
\(518\) 12.2153 7.05248i 0.536708 0.309868i
\(519\) −17.9772 + 2.03558i −0.789113 + 0.0893520i
\(520\) −2.00475 −0.0879139
\(521\) −19.3708 −0.848650 −0.424325 0.905510i \(-0.639489\pi\)
−0.424325 + 0.905510i \(0.639489\pi\)
\(522\) −10.2830 11.0580i −0.450077 0.483997i
\(523\) −35.0535 20.2382i −1.53278 0.884954i −0.999232 0.0391867i \(-0.987523\pi\)
−0.533553 0.845767i \(-0.679143\pi\)
\(524\) 8.94178i 0.390624i
\(525\) 2.01801 + 2.73115i 0.0880731 + 0.119197i
\(526\) −3.46036 1.99784i −0.150879 0.0871099i
\(527\) 0.457897 + 0.793100i 0.0199463 + 0.0345480i
\(528\) 0.957276 + 8.45419i 0.0416601 + 0.367921i
\(529\) 11.7981 + 20.4349i 0.512960 + 0.888473i
\(530\) 9.16331 5.29044i 0.398029 0.229802i
\(531\) 7.50488 24.4258i 0.325684 1.05999i
\(532\) −0.376184 + 8.53767i −0.0163096 + 0.370155i
\(533\) 23.5858i 1.02161i
\(534\) −7.58359 + 17.4079i −0.328174 + 0.753315i
\(535\) −2.60787 + 1.50566i −0.112748 + 0.0650952i
\(536\) −13.7456 7.93605i −0.593721 0.342785i
\(537\) −0.931590 + 2.13844i −0.0402011 + 0.0922806i
\(538\) −1.12373 + 1.94636i −0.0484476 + 0.0839137i
\(539\) 15.5037i 0.667791i
\(540\) 1.72429 + 4.90172i 0.0742014 + 0.210936i
\(541\) 14.7204 25.4965i 0.632879 1.09618i −0.354082 0.935215i \(-0.615206\pi\)
0.986960 0.160964i \(-0.0514602\pi\)
\(542\) 2.70149 4.67912i 0.116039 0.200985i
\(543\) 20.3621 15.0453i 0.873823 0.645655i
\(544\) 3.92055i 0.168092i
\(545\) −5.23051 + 9.05950i −0.224050 + 0.388067i
\(546\) 6.24122 + 2.71892i 0.267100 + 0.116359i
\(547\) 10.3833 + 5.99478i 0.443956 + 0.256318i 0.705274 0.708935i \(-0.250824\pi\)
−0.261318 + 0.965253i \(0.584157\pi\)
\(548\) 3.55144 2.05042i 0.151710 0.0875898i
\(549\) −22.8882 + 5.25062i −0.976843 + 0.224091i
\(550\) 4.91222i 0.209458i
\(551\) 0.965790 21.9191i 0.0411441 0.933783i
\(552\) −9.50907 + 7.02611i −0.404733 + 0.299051i
\(553\) −21.1545 + 12.2136i −0.899582 + 0.519374i
\(554\) 10.0766 + 17.4531i 0.428112 + 0.741511i
\(555\) 12.3818 1.40200i 0.525577 0.0595116i
\(556\) 6.74169 + 11.6770i 0.285911 + 0.495213i
\(557\) −24.0375 13.8780i −1.01850 0.588031i −0.104831 0.994490i \(-0.533430\pi\)
−0.913669 + 0.406459i \(0.866763\pi\)
\(558\) 0.669857 + 0.205815i 0.0283573 + 0.00871286i
\(559\) 11.8074i 0.499401i
\(560\) −1.69791 0.980288i −0.0717497 0.0414247i
\(561\) 33.1451 3.75305i 1.39939 0.158454i
\(562\) 18.7084 0.789164
\(563\) −17.1980 −0.724809 −0.362404 0.932021i \(-0.618044\pi\)
−0.362404 + 0.932021i \(0.618044\pi\)
\(564\) 0.362113 + 3.19801i 0.0152477 + 0.134660i
\(565\) 10.5300 6.07947i 0.442998 0.255765i
\(566\) 10.5801 18.3252i 0.444713 0.770265i
\(567\) 1.27984 17.5987i 0.0537483 0.739076i
\(568\) −2.26439 3.92204i −0.0950118 0.164565i
\(569\) 26.3732 1.10562 0.552812 0.833306i \(-0.313555\pi\)
0.552812 + 0.833306i \(0.313555\pi\)
\(570\) −3.31706 + 6.78212i −0.138936 + 0.284072i
\(571\) 6.53285 0.273391 0.136696 0.990613i \(-0.456352\pi\)
0.136696 + 0.990613i \(0.456352\pi\)
\(572\) 4.92387 + 8.52840i 0.205878 + 0.356590i
\(573\) −9.67619 4.21534i −0.404229 0.176098i
\(574\) −11.5331 + 19.9758i −0.481380 + 0.833775i
\(575\) −5.91161 + 3.41307i −0.246531 + 0.142335i
\(576\) −2.04294 2.19691i −0.0851225 0.0915377i
\(577\) 6.44640 0.268367 0.134184 0.990956i \(-0.457159\pi\)
0.134184 + 0.990956i \(0.457159\pi\)
\(578\) 1.62925 0.0677679
\(579\) −0.584810 5.16475i −0.0243039 0.214640i
\(580\) 4.35910 + 2.51673i 0.181002 + 0.104501i
\(581\) 26.8816i 1.11524i
\(582\) 21.4190 15.8262i 0.887847 0.656017i
\(583\) −45.0122 25.9878i −1.86421 1.07630i
\(584\) 1.13889 + 1.97262i 0.0471276 + 0.0816275i
\(585\) 4.09558 + 4.40424i 0.169331 + 0.182093i
\(586\) 6.15600 + 10.6625i 0.254302 + 0.440464i
\(587\) 29.3043 16.9188i 1.20952 0.698315i 0.246863 0.969050i \(-0.420600\pi\)
0.962654 + 0.270736i \(0.0872670\pi\)
\(588\) −3.24860 4.39663i −0.133970 0.181314i
\(589\) 0.469784 + 0.903329i 0.0193571 + 0.0372210i
\(590\) 8.51757i 0.350663i
\(591\) 3.93968 + 1.71628i 0.162057 + 0.0705983i
\(592\) −6.23045 + 3.59715i −0.256070 + 0.147842i
\(593\) −25.1953 14.5465i −1.03465 0.597354i −0.116335 0.993210i \(-0.537114\pi\)
−0.918312 + 0.395856i \(0.870448\pi\)
\(594\) 16.6174 19.3744i 0.681820 0.794943i
\(595\) −3.84327 + 6.65674i −0.157559 + 0.272900i
\(596\) 4.60924i 0.188802i
\(597\) 24.3041 + 32.8929i 0.994700 + 1.34622i
\(598\) −6.84234 + 11.8513i −0.279804 + 0.484635i
\(599\) −13.7688 + 23.8483i −0.562580 + 0.974416i 0.434691 + 0.900580i \(0.356858\pi\)
−0.997270 + 0.0738365i \(0.976476\pi\)
\(600\) −1.02929 1.39304i −0.0420208 0.0568705i
\(601\) 14.9379i 0.609330i −0.952460 0.304665i \(-0.901455\pi\)
0.952460 0.304665i \(-0.0985445\pi\)
\(602\) 5.77364 10.0002i 0.235316 0.407580i
\(603\) 10.6468 + 46.4107i 0.433570 + 1.88999i
\(604\) 15.0311 + 8.67821i 0.611607 + 0.353111i
\(605\) 11.3708 6.56495i 0.462290 0.266903i
\(606\) −18.2339 7.94340i −0.740701 0.322679i
\(607\) 42.6299i 1.73030i −0.501517 0.865148i \(-0.667225\pi\)
0.501517 0.865148i \(-0.332775\pi\)
\(608\) 0.191874 4.35467i 0.00778153 0.176605i
\(609\) −10.1576 13.7471i −0.411605 0.557062i
\(610\) 6.77887 3.91378i 0.274468 0.158464i
\(611\) 1.86258 + 3.22608i 0.0753518 + 0.130513i
\(612\) −8.61309 + 8.00946i −0.348163 + 0.323763i
\(613\) 8.76635 + 15.1838i 0.354069 + 0.613266i 0.986958 0.160976i \(-0.0514643\pi\)
−0.632889 + 0.774243i \(0.718131\pi\)
\(614\) 13.1520 + 7.59331i 0.530771 + 0.306441i
\(615\) −16.3890 + 12.1096i −0.660870 + 0.488307i
\(616\) 9.63077i 0.388035i
\(617\) −38.2258 22.0697i −1.53891 0.888491i −0.998903 0.0468313i \(-0.985088\pi\)
−0.540008 0.841660i \(-0.681579\pi\)
\(618\) 0.343634 + 3.03481i 0.0138230 + 0.122078i
\(619\) −42.3600 −1.70259 −0.851296 0.524685i \(-0.824183\pi\)
−0.851296 + 0.524685i \(0.824183\pi\)
\(620\) −0.233588 −0.00938111
\(621\) 34.8622 + 6.53660i 1.39897 + 0.262305i
\(622\) −27.6123 + 15.9420i −1.10715 + 0.639214i
\(623\) −10.7467 + 18.6138i −0.430556 + 0.745746i
\(624\) −3.18336 1.38680i −0.127437 0.0555164i
\(625\) −0.500000 0.866025i −0.0200000 0.0346410i
\(626\) 14.9516 0.597585
\(627\) 36.9989 2.54648i 1.47759 0.101697i
\(628\) −1.66740 −0.0665365
\(629\) 14.1028 + 24.4268i 0.562316 + 0.973961i
\(630\) 1.31513 + 5.73281i 0.0523959 + 0.228401i
\(631\) −17.6187 + 30.5165i −0.701391 + 1.21484i 0.266588 + 0.963811i \(0.414104\pi\)
−0.967978 + 0.251033i \(0.919230\pi\)
\(632\) 10.7900 6.22958i 0.429201 0.247800i
\(633\) −0.567793 5.01447i −0.0225678 0.199307i
\(634\) 25.5166 1.01339
\(635\) −12.9420 −0.513587
\(636\) 18.2103 2.06197i 0.722084 0.0817623i
\(637\) −5.47957 3.16363i −0.217109 0.125348i
\(638\) 24.7254i 0.978889i
\(639\) −3.99034 + 12.9872i −0.157855 + 0.513764i
\(640\) 0.866025 + 0.500000i 0.0342327 + 0.0197642i
\(641\) −12.1088 20.9730i −0.478267 0.828383i 0.521422 0.853299i \(-0.325402\pi\)
−0.999690 + 0.0249155i \(0.992068\pi\)
\(642\) −5.18263 + 0.586834i −0.204542 + 0.0231605i
\(643\) −8.96485 15.5276i −0.353539 0.612348i 0.633328 0.773884i \(-0.281689\pi\)
−0.986867 + 0.161536i \(0.948355\pi\)
\(644\) −11.5902 + 6.69158i −0.456716 + 0.263685i
\(645\) 8.20463 6.06228i 0.323057 0.238702i
\(646\) −17.0727 0.752254i −0.671718 0.0295970i
\(647\) 16.2268i 0.637940i −0.947765 0.318970i \(-0.896663\pi\)
0.947765 0.318970i \(-0.103337\pi\)
\(648\) −0.652788 + 8.97629i −0.0256439 + 0.352622i
\(649\) 36.2346 20.9201i 1.42233 0.821185i
\(650\) −1.73616 1.00237i −0.0680978 0.0393163i
\(651\) 0.727211 + 0.316802i 0.0285016 + 0.0124164i
\(652\) −4.27970 + 7.41266i −0.167606 + 0.290302i
\(653\) 13.0356i 0.510121i 0.966925 + 0.255060i \(0.0820953\pi\)
−0.966925 + 0.255060i \(0.917905\pi\)
\(654\) −14.5726 + 10.7675i −0.569833 + 0.421041i
\(655\) 4.47089 7.74381i 0.174692 0.302576i
\(656\) 5.88249 10.1888i 0.229672 0.397804i
\(657\) 2.00697 6.53197i 0.0782992 0.254837i
\(658\) 3.64308i 0.142022i
\(659\) −16.7755 + 29.0560i −0.653480 + 1.13186i 0.328792 + 0.944402i \(0.393358\pi\)
−0.982272 + 0.187459i \(0.939975\pi\)
\(660\) −3.39807 + 7.80018i −0.132270 + 0.303622i
\(661\) 13.8780 + 8.01246i 0.539791 + 0.311649i 0.744994 0.667071i \(-0.232452\pi\)
−0.205203 + 0.978719i \(0.565785\pi\)
\(662\) 20.4616 11.8135i 0.795262 0.459145i
\(663\) −5.43702 + 12.4805i −0.211156 + 0.484704i
\(664\) 13.7111i 0.532093i
\(665\) −4.59462 + 7.20574i −0.178172 + 0.279427i
\(666\) 20.6310 + 6.33894i 0.799436 + 0.245629i
\(667\) 29.7558 17.1795i 1.15215 0.665194i
\(668\) 4.84533 + 8.39236i 0.187471 + 0.324710i
\(669\) −0.763711 6.74472i −0.0295268 0.260766i
\(670\) −7.93605 13.7456i −0.306596 0.531040i
\(671\) −33.2993 19.2253i −1.28550 0.742186i
\(672\) −2.01801 2.73115i −0.0778464 0.105357i
\(673\) 31.9714i 1.23241i 0.787586 + 0.616204i \(0.211330\pi\)
−0.787586 + 0.616204i \(0.788670\pi\)
\(674\) 1.65491 + 0.955464i 0.0637449 + 0.0368031i
\(675\) −0.957584 + 5.10716i −0.0368574 + 0.196574i
\(676\) 8.98100 0.345423
\(677\) 25.2864 0.971835 0.485918 0.874005i \(-0.338486\pi\)
0.485918 + 0.874005i \(0.338486\pi\)
\(678\) 20.9262 2.36949i 0.803665 0.0909998i
\(679\) 26.1067 15.0727i 1.00188 0.578437i
\(680\) 1.96028 3.39530i 0.0751732 0.130204i
\(681\) −0.218654 + 0.501915i −0.00837884 + 0.0192334i
\(682\) 0.573717 + 0.993707i 0.0219688 + 0.0380510i
\(683\) −8.39063 −0.321059 −0.160529 0.987031i \(-0.551320\pi\)
−0.160529 + 0.987031i \(0.551320\pi\)
\(684\) −9.95880 + 8.47481i −0.380784 + 0.324042i
\(685\) 4.10085 0.156685
\(686\) −9.95594 17.2442i −0.380120 0.658387i
\(687\) 4.24283 9.73931i 0.161874 0.371578i
\(688\) −2.94487 + 5.10067i −0.112272 + 0.194461i
\(689\) 18.3701 10.6060i 0.699846 0.404056i
\(690\) −11.7481 + 1.33025i −0.447244 + 0.0506419i
\(691\) −10.0647 −0.382881 −0.191440 0.981504i \(-0.561316\pi\)
−0.191440 + 0.981504i \(0.561316\pi\)
\(692\) 10.4455 0.397078
\(693\) 21.1579 19.6751i 0.803722 0.747395i
\(694\) −13.6960 7.90736i −0.519891 0.300159i
\(695\) 13.4834i 0.511454i
\(696\) 5.18091 + 7.01179i 0.196382 + 0.265781i
\(697\) −39.9456 23.0626i −1.51305 0.873558i
\(698\) 14.8893 + 25.7890i 0.563568 + 0.976129i
\(699\) 2.10989 + 18.6335i 0.0798035 + 0.704785i
\(700\) −0.980288 1.69791i −0.0370514 0.0641749i
\(701\) 29.1351 16.8212i 1.10042 0.635327i 0.164087 0.986446i \(-0.447532\pi\)
0.936331 + 0.351119i \(0.114199\pi\)
\(702\) 3.45675 + 9.82670i 0.130467 + 0.370885i
\(703\) 14.4690 + 27.8218i 0.545707 + 1.04932i
\(704\) 4.91222i 0.185136i
\(705\) −1.28540 + 2.95061i −0.0484111 + 0.111126i
\(706\) 2.12758 1.22836i 0.0800724 0.0462298i
\(707\) −19.4969 11.2566i −0.733257 0.423346i
\(708\) −5.89210 + 13.5252i −0.221439 + 0.508307i
\(709\) 22.1508 38.3664i 0.831892 1.44088i −0.0646434 0.997908i \(-0.520591\pi\)
0.896536 0.442971i \(-0.146076\pi\)
\(710\) 4.52879i 0.169962i
\(711\) −35.7290 10.9778i −1.33994 0.411701i
\(712\) 5.48139 9.49404i 0.205424 0.355804i
\(713\) −0.797251 + 1.38088i −0.0298573 + 0.0517143i
\(714\) −10.7076 + 7.91172i −0.400723 + 0.296089i
\(715\) 9.84775i 0.368285i
\(716\) 0.673349 1.16628i 0.0251642 0.0435858i
\(717\) 5.06045 + 2.20454i 0.188986 + 0.0823299i
\(718\) −3.05773 1.76538i −0.114113 0.0658834i
\(719\) −12.8018 + 7.39114i −0.477428 + 0.275643i −0.719344 0.694654i \(-0.755557\pi\)
0.241916 + 0.970297i \(0.422224\pi\)
\(720\) −0.670786 2.92405i −0.0249987 0.108973i
\(721\) 3.45717i 0.128752i
\(722\) −18.9264 1.67110i −0.704367 0.0621919i
\(723\) −26.5920 + 19.6484i −0.988967 + 0.730733i
\(724\) −12.6588 + 7.30854i −0.470459 + 0.271620i
\(725\) 2.51673 + 4.35910i 0.0934689 + 0.161893i
\(726\) 22.5972 2.55871i 0.838662 0.0949625i
\(727\) 2.63804 + 4.56923i 0.0978397 + 0.169463i 0.910790 0.412869i \(-0.135473\pi\)
−0.812951 + 0.582333i \(0.802140\pi\)
\(728\) −3.40387 1.96523i −0.126156 0.0728362i
\(729\) 21.0537 16.9039i 0.779766 0.626071i
\(730\) 2.27778i 0.0843045i
\(731\) 19.9975 + 11.5455i 0.739632 + 0.427027i
\(732\) 13.4716 1.52541i 0.497926 0.0563807i
\(733\) −12.3735 −0.457025 −0.228513 0.973541i \(-0.573386\pi\)
−0.228513 + 0.973541i \(0.573386\pi\)
\(734\) 2.67023 0.0985601
\(735\) −0.615059 5.43189i −0.0226868 0.200358i
\(736\) 5.91161 3.41307i 0.217905 0.125807i
\(737\) −38.9836 + 67.5216i −1.43598 + 2.48719i
\(738\) −34.4013 + 7.89177i −1.26633 + 0.290500i
\(739\) 23.4208 + 40.5660i 0.861548 + 1.49224i 0.870435 + 0.492284i \(0.163838\pi\)
−0.00888687 + 0.999961i \(0.502829\pi\)
\(740\) −7.19430 −0.264468
\(741\) −6.64987 + 13.5964i −0.244289 + 0.499477i
\(742\) 20.7446 0.761559
\(743\) 3.70160 + 6.41135i 0.135798 + 0.235210i 0.925902 0.377763i \(-0.123307\pi\)
−0.790104 + 0.612973i \(0.789973\pi\)
\(744\) −0.370917 0.161586i −0.0135985 0.00592404i
\(745\) 2.30462 3.99172i 0.0844347 0.146245i
\(746\) 3.60651 2.08222i 0.132044 0.0762354i
\(747\) −30.1220 + 28.0109i −1.10211 + 1.02487i
\(748\) −19.2586 −0.704165
\(749\) −5.90391 −0.215724
\(750\) −0.194877 1.72105i −0.00711588 0.0628440i
\(751\) −36.7844 21.2375i −1.34228 0.774966i −0.355139 0.934814i \(-0.615566\pi\)
−0.987142 + 0.159848i \(0.948900\pi\)
\(752\) 1.85817i 0.0677604i
\(753\) 16.2248 11.9882i 0.591264 0.436876i
\(754\) 8.73888 + 5.04540i 0.318251 + 0.183743i
\(755\) 8.67821 + 15.0311i 0.315833 + 0.547038i
\(756\) −1.87742 + 10.0130i −0.0682809 + 0.364168i
\(757\) 24.8985 + 43.1254i 0.904950 + 1.56742i 0.820984 + 0.570951i \(0.193425\pi\)
0.0839656 + 0.996469i \(0.473241\pi\)
\(758\) 9.37204 5.41095i 0.340408 0.196535i
\(759\) 34.5138 + 46.7106i 1.25277 + 1.69549i
\(760\) 2.34350 3.67532i 0.0850079 0.133318i
\(761\) 32.0785i 1.16284i −0.813602 0.581422i \(-0.802497\pi\)
0.813602 0.581422i \(-0.197503\pi\)
\(762\) −20.5508 8.95273i −0.744476 0.324323i
\(763\) −17.7618 + 10.2548i −0.643022 + 0.371249i
\(764\) 5.27726 + 3.04683i 0.190924 + 0.110230i
\(765\) −11.4639 + 2.62985i −0.414478 + 0.0950825i
\(766\) 8.28137 14.3437i 0.299218 0.518261i
\(767\) 17.0756i 0.616563i
\(768\) 1.02929 + 1.39304i 0.0371415 + 0.0502669i
\(769\) −20.0557 + 34.7374i −0.723225 + 1.25266i 0.236475 + 0.971638i \(0.424008\pi\)
−0.959700 + 0.281026i \(0.909325\pi\)
\(770\) −4.81539 + 8.34049i −0.173534 + 0.300571i
\(771\) −24.2368 32.8018i −0.872867 1.18133i
\(772\) 3.00092i 0.108006i
\(773\) −4.07839 + 7.06397i −0.146689 + 0.254074i −0.930002 0.367555i \(-0.880195\pi\)
0.783313 + 0.621628i \(0.213528\pi\)
\(774\) 17.2219 3.95076i 0.619028 0.142007i
\(775\) −0.202293 0.116794i −0.00726657 0.00419536i