# Properties

 Label 570.2.s.a.221.5 Level $570$ Weight $2$ Character 570.221 Analytic conductor $4.551$ Analytic rank $0$ Dimension $24$ CM no Inner twists $2$

# Related objects

## Newspace parameters

 Level: $$N$$ $$=$$ $$570 = 2 \cdot 3 \cdot 5 \cdot 19$$ Weight: $$k$$ $$=$$ $$2$$ Character orbit: $$[\chi]$$ $$=$$ 570.s (of order $$6$$, degree $$2$$, minimal)

## Newform invariants

 Self dual: no Analytic conductor: $$4.55147291521$$ Analytic rank: $$0$$ Dimension: $$24$$ Relative dimension: $$12$$ over $$\Q(\zeta_{6})$$ Twist minimal: yes Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

## Embedding invariants

 Embedding label 221.5 Character $$\chi$$ $$=$$ 570.221 Dual form 570.2.s.a.521.5

## $q$-expansion

 $$f(q)$$ $$=$$ $$q+(-0.500000 - 0.866025i) q^{2} +(-0.641070 + 1.60905i) q^{3} +(-0.500000 + 0.866025i) q^{4} +(-0.866025 + 0.500000i) q^{5} +(1.71401 - 0.249340i) q^{6} -2.43208 q^{7} +1.00000 q^{8} +(-2.17806 - 2.06302i) q^{9} +O(q^{10})$$ $$q+(-0.500000 - 0.866025i) q^{2} +(-0.641070 + 1.60905i) q^{3} +(-0.500000 + 0.866025i) q^{4} +(-0.866025 + 0.500000i) q^{5} +(1.71401 - 0.249340i) q^{6} -2.43208 q^{7} +1.00000 q^{8} +(-2.17806 - 2.06302i) q^{9} +(0.866025 + 0.500000i) q^{10} -2.32454i q^{11} +(-1.07294 - 1.35971i) q^{12} +(-0.190454 - 0.109959i) q^{13} +(1.21604 + 2.10624i) q^{14} +(-0.249340 - 1.71401i) q^{15} +(-0.500000 - 0.866025i) q^{16} +(4.43932 - 2.56304i) q^{17} +(-0.697602 + 2.91776i) q^{18} +(-3.94445 - 1.85508i) q^{19} -1.00000i q^{20} +(1.55913 - 3.91332i) q^{21} +(-2.01311 + 1.16227i) q^{22} +(7.51400 + 4.33821i) q^{23} +(-0.641070 + 1.60905i) q^{24} +(0.500000 - 0.866025i) q^{25} +0.219917i q^{26} +(4.71579 - 2.18205i) q^{27} +(1.21604 - 2.10624i) q^{28} +(3.98772 - 6.90694i) q^{29} +(-1.35971 + 1.07294i) q^{30} -4.02893i q^{31} +(-0.500000 + 0.866025i) q^{32} +(3.74029 + 1.49019i) q^{33} +(-4.43932 - 2.56304i) q^{34} +(2.10624 - 1.21604i) q^{35} +(2.87566 - 0.854742i) q^{36} +1.28133i q^{37} +(0.365675 + 4.34353i) q^{38} +(0.299023 - 0.235958i) q^{39} +(-0.866025 + 0.500000i) q^{40} +(-1.19057 - 2.06213i) q^{41} +(-4.16860 + 0.606413i) q^{42} +(-0.705429 - 1.22184i) q^{43} +(2.01311 + 1.16227i) q^{44} +(2.91776 + 0.697602i) q^{45} -8.67642i q^{46} +(-4.74957 - 2.74216i) q^{47} +(1.71401 - 0.249340i) q^{48} -1.08501 q^{49} -1.00000 q^{50} +(1.27814 + 8.78616i) q^{51} +(0.190454 - 0.109959i) q^{52} +(2.04507 - 3.54217i) q^{53} +(-4.24761 - 2.99297i) q^{54} +(1.16227 + 2.01311i) q^{55} -2.43208 q^{56} +(5.51358 - 5.15756i) q^{57} -7.97545 q^{58} +(0.478076 + 0.828051i) q^{59} +(1.60905 + 0.641070i) q^{60} +(4.12504 - 7.14478i) q^{61} +(-3.48915 + 2.01446i) q^{62} +(5.29720 + 5.01743i) q^{63} +1.00000 q^{64} +0.219917 q^{65} +(-0.579599 - 3.98428i) q^{66} +(-6.63960 - 3.83338i) q^{67} +5.12609i q^{68} +(-11.7974 + 9.30928i) q^{69} +(-2.10624 - 1.21604i) q^{70} +(-5.05616 - 8.75753i) q^{71} +(-2.17806 - 2.06302i) q^{72} +(-1.78502 - 3.09174i) q^{73} +(1.10967 - 0.640666i) q^{74} +(1.07294 + 1.35971i) q^{75} +(3.57877 - 2.48845i) q^{76} +5.65345i q^{77} +(-0.353857 - 0.140982i) q^{78} +(-13.0596 + 7.53998i) q^{79} +(0.866025 + 0.500000i) q^{80} +(0.487870 + 8.98677i) q^{81} +(-1.19057 + 2.06213i) q^{82} -4.36047i q^{83} +(2.60947 + 3.30691i) q^{84} +(-2.56304 + 4.43932i) q^{85} +(-0.705429 + 1.22184i) q^{86} +(8.55717 + 10.8443i) q^{87} -2.32454i q^{88} +(2.03041 - 3.51677i) q^{89} +(-0.854742 - 2.87566i) q^{90} +(0.463199 + 0.267428i) q^{91} +(-7.51400 + 4.33821i) q^{92} +(6.48273 + 2.58282i) q^{93} +5.48433i q^{94} +(4.34353 - 0.365675i) q^{95} +(-1.07294 - 1.35971i) q^{96} +(6.10768 - 3.52627i) q^{97} +(0.542503 + 0.939644i) q^{98} +(-4.79557 + 5.06297i) q^{99} +O(q^{100})$$ $$\operatorname{Tr}(f)(q)$$ $$=$$ $$24q - 12q^{2} + 4q^{3} - 12q^{4} - 2q^{6} - 12q^{7} + 24q^{8} - 4q^{9} + O(q^{10})$$ $$24q - 12q^{2} + 4q^{3} - 12q^{4} - 2q^{6} - 12q^{7} + 24q^{8} - 4q^{9} - 2q^{12} + 18q^{13} + 6q^{14} - 12q^{16} + 12q^{17} + 2q^{18} + 6q^{19} - 6q^{21} + 18q^{22} + 4q^{24} + 12q^{25} + 28q^{27} + 6q^{28} - 12q^{32} - 22q^{33} - 12q^{34} + 2q^{36} + 6q^{38} + 40q^{39} + 6q^{41} - 6q^{42} - 22q^{43} - 18q^{44} + 8q^{45} + 12q^{47} - 2q^{48} + 12q^{49} - 24q^{50} - 20q^{51} - 18q^{52} + 8q^{53} + 4q^{54} - 12q^{56} + 26q^{59} + 22q^{61} - 18q^{62} + 6q^{63} + 24q^{64} + 8q^{65} + 8q^{66} - 48q^{67} - 64q^{69} + 24q^{71} - 4q^{72} - 8q^{73} + 30q^{74} + 2q^{75} - 12q^{76} - 38q^{78} + 18q^{79} - 12q^{81} + 6q^{82} + 12q^{84} - 22q^{86} - 24q^{87} + 28q^{89} + 8q^{90} + 18q^{91} + 2q^{93} - 2q^{96} + 6q^{97} - 6q^{98} + 2q^{99} + O(q^{100})$$

## Character values

We give the values of $$\chi$$ on generators for $$\left(\mathbb{Z}/570\mathbb{Z}\right)^\times$$.

 $$n$$ $$191$$ $$211$$ $$457$$ $$\chi(n)$$ $$-1$$ $$e\left(\frac{5}{6}\right)$$ $$1$$

## Coefficient data

For each $$n$$ we display the coefficients of the $$q$$-expansion $$a_n$$, the Satake parameters $$\alpha_p$$, and the Satake angles $$\theta_p = \textrm{Arg}(\alpha_p)$$.

Display $$a_p$$ with $$p$$ up to: 50 250 1000 Display $$a_n$$ with $$n$$ up to: 50 250 1000
$$n$$ $$a_n$$ $$a_n / n^{(k-1)/2}$$ $$\alpha_n$$ $$\theta_n$$
$$p$$ $$a_p$$ $$a_p / p^{(k-1)/2}$$ $$\alpha_p$$ $$\theta_p$$
$$2$$ −0.500000 0.866025i −0.353553 0.612372i
$$3$$ −0.641070 + 1.60905i −0.370122 + 0.928983i
$$4$$ −0.500000 + 0.866025i −0.250000 + 0.433013i
$$5$$ −0.866025 + 0.500000i −0.387298 + 0.223607i
$$6$$ 1.71401 0.249340i 0.699742 0.101793i
$$7$$ −2.43208 −0.919238 −0.459619 0.888116i $$-0.652014\pi$$
−0.459619 + 0.888116i $$0.652014\pi$$
$$8$$ 1.00000 0.353553
$$9$$ −2.17806 2.06302i −0.726019 0.687674i
$$10$$ 0.866025 + 0.500000i 0.273861 + 0.158114i
$$11$$ 2.32454i 0.700874i −0.936586 0.350437i $$-0.886033\pi$$
0.936586 0.350437i $$-0.113967\pi$$
$$12$$ −1.07294 1.35971i −0.309731 0.392513i
$$13$$ −0.190454 0.109959i −0.0528224 0.0304970i 0.473356 0.880871i $$-0.343042\pi$$
−0.526179 + 0.850374i $$0.676376\pi$$
$$14$$ 1.21604 + 2.10624i 0.325000 + 0.562916i
$$15$$ −0.249340 1.71401i −0.0643792 0.442555i
$$16$$ −0.500000 0.866025i −0.125000 0.216506i
$$17$$ 4.43932 2.56304i 1.07669 0.621629i 0.146691 0.989182i $$-0.453138\pi$$
0.930002 + 0.367553i $$0.119804\pi$$
$$18$$ −0.697602 + 2.91776i −0.164426 + 0.687724i
$$19$$ −3.94445 1.85508i −0.904918 0.425585i
$$20$$ 1.00000i 0.223607i
$$21$$ 1.55913 3.91332i 0.340230 0.853957i
$$22$$ −2.01311 + 1.16227i −0.429196 + 0.247796i
$$23$$ 7.51400 + 4.33821i 1.56678 + 0.904580i 0.996541 + 0.0830996i $$0.0264820\pi$$
0.570237 + 0.821480i $$0.306851\pi$$
$$24$$ −0.641070 + 1.60905i −0.130858 + 0.328445i
$$25$$ 0.500000 0.866025i 0.100000 0.173205i
$$26$$ 0.219917i 0.0431293i
$$27$$ 4.71579 2.18205i 0.907554 0.419936i
$$28$$ 1.21604 2.10624i 0.229810 0.398042i
$$29$$ 3.98772 6.90694i 0.740502 1.28259i −0.211765 0.977321i $$-0.567921\pi$$
0.952267 0.305266i $$-0.0987454\pi$$
$$30$$ −1.35971 + 1.07294i −0.248247 + 0.195891i
$$31$$ 4.02893i 0.723616i −0.932253 0.361808i $$-0.882160\pi$$
0.932253 0.361808i $$-0.117840\pi$$
$$32$$ −0.500000 + 0.866025i −0.0883883 + 0.153093i
$$33$$ 3.74029 + 1.49019i 0.651100 + 0.259409i
$$34$$ −4.43932 2.56304i −0.761337 0.439558i
$$35$$ 2.10624 1.21604i 0.356019 0.205548i
$$36$$ 2.87566 0.854742i 0.479277 0.142457i
$$37$$ 1.28133i 0.210650i 0.994438 + 0.105325i $$0.0335883\pi$$
−0.994438 + 0.105325i $$0.966412\pi$$
$$38$$ 0.365675 + 4.34353i 0.0593203 + 0.704614i
$$39$$ 0.299023 0.235958i 0.0478820 0.0377835i
$$40$$ −0.866025 + 0.500000i −0.136931 + 0.0790569i
$$41$$ −1.19057 2.06213i −0.185936 0.322050i 0.757956 0.652306i $$-0.226198\pi$$
−0.943891 + 0.330256i $$0.892865\pi$$
$$42$$ −4.16860 + 0.606413i −0.643229 + 0.0935716i
$$43$$ −0.705429 1.22184i −0.107577 0.186329i 0.807211 0.590263i $$-0.200976\pi$$
−0.914788 + 0.403934i $$0.867643\pi$$
$$44$$ 2.01311 + 1.16227i 0.303487 + 0.175218i
$$45$$ 2.91776 + 0.697602i 0.434955 + 0.103992i
$$46$$ 8.67642i 1.27927i
$$47$$ −4.74957 2.74216i −0.692795 0.399986i 0.111863 0.993724i $$-0.464318\pi$$
−0.804658 + 0.593738i $$0.797652\pi$$
$$48$$ 1.71401 0.249340i 0.247396 0.0359891i
$$49$$ −1.08501 −0.155001
$$50$$ −1.00000 −0.141421
$$51$$ 1.27814 + 8.78616i 0.178975 + 1.23031i
$$52$$ 0.190454 0.109959i 0.0264112 0.0152485i
$$53$$ 2.04507 3.54217i 0.280912 0.486555i −0.690697 0.723144i $$-0.742696\pi$$
0.971610 + 0.236589i $$0.0760296\pi$$
$$54$$ −4.24761 2.99297i −0.578026 0.407291i
$$55$$ 1.16227 + 2.01311i 0.156720 + 0.271447i
$$56$$ −2.43208 −0.325000
$$57$$ 5.51358 5.15756i 0.730292 0.683135i
$$58$$ −7.97545 −1.04723
$$59$$ 0.478076 + 0.828051i 0.0622402 + 0.107803i 0.895466 0.445129i $$-0.146842\pi$$
−0.833226 + 0.552932i $$0.813509\pi$$
$$60$$ 1.60905 + 0.641070i 0.207727 + 0.0827618i
$$61$$ 4.12504 7.14478i 0.528158 0.914796i −0.471304 0.881971i $$-0.656216\pi$$
0.999461 0.0328247i $$-0.0104503\pi$$
$$62$$ −3.48915 + 2.01446i −0.443123 + 0.255837i
$$63$$ 5.29720 + 5.01743i 0.667385 + 0.632137i
$$64$$ 1.00000 0.125000
$$65$$ 0.219917 0.0272774
$$66$$ −0.579599 3.98428i −0.0713437 0.490431i
$$67$$ −6.63960 3.83338i −0.811157 0.468322i 0.0362006 0.999345i $$-0.488474\pi$$
−0.847357 + 0.531023i $$0.821808\pi$$
$$68$$ 5.12609i 0.621629i
$$69$$ −11.7974 + 9.30928i −1.42024 + 1.12071i
$$70$$ −2.10624 1.21604i −0.251744 0.145344i
$$71$$ −5.05616 8.75753i −0.600056 1.03933i −0.992812 0.119685i $$-0.961812\pi$$
0.392756 0.919643i $$-0.371522\pi$$
$$72$$ −2.17806 2.06302i −0.256687 0.243130i
$$73$$ −1.78502 3.09174i −0.208921 0.361861i 0.742454 0.669897i $$-0.233662\pi$$
−0.951375 + 0.308036i $$0.900328\pi$$
$$74$$ 1.10967 0.640666i 0.128996 0.0744760i
$$75$$ 1.07294 + 1.35971i 0.123892 + 0.157005i
$$76$$ 3.57877 2.48845i 0.410513 0.285445i
$$77$$ 5.65345i 0.644270i
$$78$$ −0.353857 0.140982i −0.0400664 0.0159631i
$$79$$ −13.0596 + 7.53998i −1.46932 + 0.848313i −0.999408 0.0343988i $$-0.989048\pi$$
−0.469914 + 0.882712i $$0.655715\pi$$
$$80$$ 0.866025 + 0.500000i 0.0968246 + 0.0559017i
$$81$$ 0.487870 + 8.98677i 0.0542078 + 0.998530i
$$82$$ −1.19057 + 2.06213i −0.131476 + 0.227724i
$$83$$ 4.36047i 0.478623i −0.970943 0.239312i $$-0.923078\pi$$
0.970943 0.239312i $$-0.0769218\pi$$
$$84$$ 2.60947 + 3.30691i 0.284717 + 0.360813i
$$85$$ −2.56304 + 4.43932i −0.278001 + 0.481512i
$$86$$ −0.705429 + 1.22184i −0.0760684 + 0.131754i
$$87$$ 8.55717 + 10.8443i 0.917425 + 1.16263i
$$88$$ 2.32454i 0.247796i
$$89$$ 2.03041 3.51677i 0.215223 0.372776i −0.738119 0.674671i $$-0.764286\pi$$
0.953341 + 0.301894i $$0.0976190\pi$$
$$90$$ −0.854742 2.87566i −0.0900977 0.303121i
$$91$$ 0.463199 + 0.267428i 0.0485564 + 0.0280341i
$$92$$ −7.51400 + 4.33821i −0.783389 + 0.452290i
$$93$$ 6.48273 + 2.58282i 0.672227 + 0.267826i
$$94$$ 5.48433i 0.565665i
$$95$$ 4.34353 0.365675i 0.445637 0.0375175i
$$96$$ −1.07294 1.35971i −0.109506 0.138774i
$$97$$ 6.10768 3.52627i 0.620141 0.358038i −0.156783 0.987633i $$-0.550112\pi$$
0.776924 + 0.629595i $$0.216779\pi$$
$$98$$ 0.542503 + 0.939644i 0.0548011 + 0.0949183i
$$99$$ −4.79557 + 5.06297i −0.481973 + 0.508848i
$$100$$ 0.500000 + 0.866025i 0.0500000 + 0.0866025i
$$101$$ −10.2389 5.91143i −1.01881 0.588209i −0.105050 0.994467i $$-0.533500\pi$$
−0.913759 + 0.406258i $$0.866834\pi$$
$$102$$ 6.96997 5.49998i 0.690130 0.544579i
$$103$$ 17.5769i 1.73190i 0.500130 + 0.865950i $$0.333286\pi$$
−0.500130 + 0.865950i $$0.666714\pi$$
$$104$$ −0.190454 0.109959i −0.0186756 0.0107823i
$$105$$ 0.606413 + 4.16860i 0.0591799 + 0.406814i
$$106$$ −4.09015 −0.397270
$$107$$ −2.80439 −0.271111 −0.135555 0.990770i $$-0.543282\pi$$
−0.135555 + 0.990770i $$0.543282\pi$$
$$108$$ −0.468182 + 5.17502i −0.0450508 + 0.497966i
$$109$$ 13.8072 7.97161i 1.32249 0.763542i 0.338368 0.941014i $$-0.390125\pi$$
0.984126 + 0.177472i $$0.0567919\pi$$
$$110$$ 1.16227 2.01311i 0.110818 0.191942i
$$111$$ −2.06172 0.821425i −0.195690 0.0779662i
$$112$$ 1.21604 + 2.10624i 0.114905 + 0.199021i
$$113$$ −12.1749 −1.14532 −0.572659 0.819794i $$-0.694088\pi$$
−0.572659 + 0.819794i $$0.694088\pi$$
$$114$$ −7.22337 2.19612i −0.676530 0.205686i
$$115$$ −8.67642 −0.809081
$$116$$ 3.98772 + 6.90694i 0.370251 + 0.641293i
$$117$$ 0.187972 + 0.632407i 0.0173781 + 0.0584661i
$$118$$ 0.478076 0.828051i 0.0440104 0.0762283i
$$119$$ −10.7968 + 6.23351i −0.989738 + 0.571425i
$$120$$ −0.249340 1.71401i −0.0227615 0.156467i
$$121$$ 5.59653 0.508776
$$122$$ −8.25009 −0.746928
$$123$$ 4.08129 0.593712i 0.367998 0.0535332i
$$124$$ 3.48915 + 2.01446i 0.313335 + 0.180904i
$$125$$ 1.00000i 0.0894427i
$$126$$ 1.69662 7.09623i 0.151147 0.632182i
$$127$$ 2.43948 + 1.40844i 0.216469 + 0.124979i 0.604314 0.796746i $$-0.293447\pi$$
−0.387845 + 0.921725i $$0.626780\pi$$
$$128$$ −0.500000 0.866025i −0.0441942 0.0765466i
$$129$$ 2.41822 0.351783i 0.212913 0.0309728i
$$130$$ −0.109959 0.190454i −0.00964401 0.0167039i
$$131$$ −7.22873 + 4.17351i −0.631577 + 0.364641i −0.781363 0.624077i $$-0.785475\pi$$
0.149785 + 0.988719i $$0.452142\pi$$
$$132$$ −3.16069 + 2.49409i −0.275102 + 0.217082i
$$133$$ 9.59320 + 4.51170i 0.831836 + 0.391214i
$$134$$ 7.66675i 0.662307i
$$135$$ −2.99297 + 4.24761i −0.257593 + 0.365576i
$$136$$ 4.43932 2.56304i 0.380669 0.219779i
$$137$$ 12.6626 + 7.31076i 1.08184 + 0.624600i 0.931392 0.364018i $$-0.118595\pi$$
0.150448 + 0.988618i $$0.451929\pi$$
$$138$$ 13.9608 + 5.56220i 1.18842 + 0.473486i
$$139$$ 5.51342 9.54952i 0.467642 0.809979i −0.531675 0.846949i $$-0.678437\pi$$
0.999316 + 0.0369693i $$0.0117704\pi$$
$$140$$ 2.43208i 0.205548i
$$141$$ 7.45707 5.88435i 0.627999 0.495552i
$$142$$ −5.05616 + 8.75753i −0.424304 + 0.734916i
$$143$$ −0.255603 + 0.442717i −0.0213746 + 0.0370219i
$$144$$ −0.697602 + 2.91776i −0.0581335 + 0.243147i
$$145$$ 7.97545i 0.662325i
$$146$$ −1.78502 + 3.09174i −0.147729 + 0.255874i
$$147$$ 0.695566 1.74583i 0.0573693 0.143993i
$$148$$ −1.10967 0.640666i −0.0912141 0.0526625i
$$149$$ 18.2772 10.5523i 1.49732 0.864480i 0.497327 0.867563i $$-0.334315\pi$$
0.999995 + 0.00308349i $$0.000981508\pi$$
$$150$$ 0.641070 1.60905i 0.0523432 0.131378i
$$151$$ 24.2149i 1.97058i 0.170899 + 0.985289i $$0.445333\pi$$
−0.170899 + 0.985289i $$0.554667\pi$$
$$152$$ −3.94445 1.85508i −0.319937 0.150467i
$$153$$ −14.9567 3.57597i −1.20918 0.289100i
$$154$$ 4.89603 2.82672i 0.394533 0.227784i
$$155$$ 2.01446 + 3.48915i 0.161806 + 0.280255i
$$156$$ 0.0548341 + 0.376940i 0.00439024 + 0.0301794i
$$157$$ −6.46343 11.1950i −0.515837 0.893457i −0.999831 0.0183851i $$-0.994147\pi$$
0.483993 0.875072i $$-0.339186\pi$$
$$158$$ 13.0596 + 7.53998i 1.03897 + 0.599848i
$$159$$ 4.38848 + 5.56140i 0.348029 + 0.441048i
$$160$$ 1.00000i 0.0790569i
$$161$$ −18.2746 10.5509i −1.44024 0.831524i
$$162$$ 7.53883 4.91589i 0.592307 0.386229i
$$163$$ 13.6212 1.06690 0.533449 0.845832i $$-0.320896\pi$$
0.533449 + 0.845832i $$0.320896\pi$$
$$164$$ 2.38114 0.185936
$$165$$ −3.98428 + 0.579599i −0.310176 + 0.0451217i
$$166$$ −3.77627 + 2.18023i −0.293096 + 0.169219i
$$167$$ 5.43020 9.40538i 0.420202 0.727810i −0.575757 0.817621i $$-0.695293\pi$$
0.995959 + 0.0898102i $$0.0286260\pi$$
$$168$$ 1.55913 3.91332i 0.120290 0.301919i
$$169$$ −6.47582 11.2164i −0.498140 0.862804i
$$170$$ 5.12609 0.393153
$$171$$ 4.76416 + 12.1780i 0.364324 + 0.931272i
$$172$$ 1.41086 0.107577
$$173$$ 6.04765 + 10.4748i 0.459794 + 0.796387i 0.998950 0.0458193i $$-0.0145899\pi$$
−0.539156 + 0.842206i $$0.681257\pi$$
$$174$$ 5.11282 12.8329i 0.387602 0.972857i
$$175$$ −1.21604 + 2.10624i −0.0919238 + 0.159217i
$$176$$ −2.01311 + 1.16227i −0.151744 + 0.0876092i
$$177$$ −1.63885 + 0.238407i −0.123184 + 0.0179197i
$$178$$ −4.06081 −0.304371
$$179$$ 9.17378 0.685681 0.342840 0.939394i $$-0.388611\pi$$
0.342840 + 0.939394i $$0.388611\pi$$
$$180$$ −2.06302 + 2.17806i −0.153769 + 0.162343i
$$181$$ −8.37372 4.83457i −0.622414 0.359351i 0.155395 0.987852i $$-0.450335\pi$$
−0.777808 + 0.628502i $$0.783668\pi$$
$$182$$ 0.534856i 0.0396461i
$$183$$ 8.85184 + 11.2177i 0.654347 + 0.829236i
$$184$$ 7.51400 + 4.33821i 0.553940 + 0.319817i
$$185$$ −0.640666 1.10967i −0.0471027 0.0815843i
$$186$$ −1.00457 6.90562i −0.0736587 0.506344i
$$187$$ −5.95789 10.3194i −0.435684 0.754626i
$$188$$ 4.74957 2.74216i 0.346398 0.199993i
$$189$$ −11.4692 + 5.30692i −0.834258 + 0.386021i
$$190$$ −2.48845 3.57877i −0.180531 0.259631i
$$191$$ 18.7213i 1.35463i 0.735695 + 0.677313i $$0.236856\pi$$
−0.735695 + 0.677313i $$0.763144\pi$$
$$192$$ −0.641070 + 1.60905i −0.0462653 + 0.116123i
$$193$$ −21.1958 + 12.2374i −1.52571 + 0.880867i −0.526171 + 0.850379i $$0.676373\pi$$
−0.999535 + 0.0304886i $$0.990294\pi$$
$$194$$ −6.10768 3.52627i −0.438506 0.253171i
$$195$$ −0.140982 + 0.353857i −0.0100960 + 0.0253402i
$$196$$ 0.542503 0.939644i 0.0387502 0.0671174i
$$197$$ 4.97845i 0.354700i −0.984148 0.177350i $$-0.943248\pi$$
0.984148 0.177350i $$-0.0567524\pi$$
$$198$$ 6.78245 + 1.62160i 0.482008 + 0.115242i
$$199$$ 9.08451 15.7348i 0.643984 1.11541i −0.340551 0.940226i $$-0.610614\pi$$
0.984535 0.175187i $$-0.0560530\pi$$
$$200$$ 0.500000 0.866025i 0.0353553 0.0612372i
$$201$$ 10.4245 8.22596i 0.735290 0.580215i
$$202$$ 11.8229i 0.831854i
$$203$$ −9.69845 + 16.7982i −0.680698 + 1.17900i
$$204$$ −8.24811 3.28618i −0.577483 0.230079i
$$205$$ 2.06213 + 1.19057i 0.144025 + 0.0831529i
$$206$$ 15.2220 8.78844i 1.06057 0.612319i
$$207$$ −7.41610 24.9504i −0.515455 1.73418i
$$208$$ 0.219917i 0.0152485i
$$209$$ −4.31221 + 9.16901i −0.298282 + 0.634234i
$$210$$ 3.30691 2.60947i 0.228198 0.180071i
$$211$$ −2.49731 + 1.44183i −0.171922 + 0.0992593i −0.583492 0.812119i $$-0.698314\pi$$
0.411570 + 0.911378i $$0.364981\pi$$
$$212$$ 2.04507 + 3.54217i 0.140456 + 0.243277i
$$213$$ 17.3326 2.52141i 1.18761 0.172764i
$$214$$ 1.40220 + 2.42868i 0.0958522 + 0.166021i
$$215$$ 1.22184 + 0.705429i 0.0833287 + 0.0481099i
$$216$$ 4.71579 2.18205i 0.320869 0.148470i
$$217$$ 9.79865i 0.665176i
$$218$$ −13.8072 7.97161i −0.935144 0.539906i
$$219$$ 6.11908 0.890152i 0.413489 0.0601509i
$$220$$ −2.32454 −0.156720
$$221$$ −1.12732 −0.0758314
$$222$$ 0.319487 + 2.19622i 0.0214426 + 0.147400i
$$223$$ −12.7294 + 7.34931i −0.852422 + 0.492146i −0.861467 0.507813i $$-0.830454\pi$$
0.00904511 + 0.999959i $$0.497121\pi$$
$$224$$ 1.21604 2.10624i 0.0812500 0.140729i
$$225$$ −2.87566 + 0.854742i −0.191711 + 0.0569828i
$$226$$ 6.08745 + 10.5438i 0.404931 + 0.701361i
$$227$$ −11.0675 −0.734576 −0.367288 0.930107i $$-0.619714\pi$$
−0.367288 + 0.930107i $$0.619714\pi$$
$$228$$ 1.70979 + 7.35368i 0.113233 + 0.487009i
$$229$$ 3.19538 0.211157 0.105578 0.994411i $$-0.466331\pi$$
0.105578 + 0.994411i $$0.466331\pi$$
$$230$$ 4.33821 + 7.51400i 0.286053 + 0.495459i
$$231$$ −9.09666 3.62426i −0.598516 0.238459i
$$232$$ 3.98772 6.90694i 0.261807 0.453463i
$$233$$ −6.96020 + 4.01848i −0.455978 + 0.263259i −0.710352 0.703847i $$-0.751464\pi$$
0.254374 + 0.967106i $$0.418131\pi$$
$$234$$ 0.453695 0.478993i 0.0296589 0.0313127i
$$235$$ 5.48433 0.357758
$$236$$ −0.956151 −0.0622402
$$237$$ −3.76003 25.8472i −0.244240 1.67895i
$$238$$ 10.7968 + 6.23351i 0.699850 + 0.404059i
$$239$$ 5.17399i 0.334678i −0.985899 0.167339i $$-0.946483\pi$$
0.985899 0.167339i $$-0.0535174\pi$$
$$240$$ −1.35971 + 1.07294i −0.0877687 + 0.0692579i
$$241$$ −25.4528 14.6952i −1.63956 0.946601i −0.980984 0.194086i $$-0.937826\pi$$
−0.658576 0.752514i $$-0.728841\pi$$
$$242$$ −2.79827 4.84674i −0.179879 0.311560i
$$243$$ −14.7729 4.97615i −0.947681 0.319220i
$$244$$ 4.12504 + 7.14478i 0.264079 + 0.457398i
$$245$$ 0.939644 0.542503i 0.0600316 0.0346593i
$$246$$ −2.55482 3.23765i −0.162889 0.206425i
$$247$$ 0.547253 + 0.787034i 0.0348209 + 0.0500778i
$$248$$ 4.02893i 0.255837i
$$249$$ 7.01619 + 2.79537i 0.444633 + 0.177149i
$$250$$ 0.866025 0.500000i 0.0547723 0.0316228i
$$251$$ −21.7086 12.5335i −1.37024 0.791107i −0.379279 0.925282i $$-0.623828\pi$$
−0.990958 + 0.134176i $$0.957161\pi$$
$$252$$ −6.99382 + 2.07880i −0.440569 + 0.130952i
$$253$$ 10.0843 17.4666i 0.633996 1.09811i
$$254$$ 2.81687i 0.176746i
$$255$$ −5.49998 6.96997i −0.344422 0.436476i
$$256$$ −0.500000 + 0.866025i −0.0312500 + 0.0541266i
$$257$$ −2.30955 + 4.00025i −0.144066 + 0.249529i −0.929024 0.370020i $$-0.879351\pi$$
0.784958 + 0.619548i $$0.212684\pi$$
$$258$$ −1.51377 1.91835i −0.0942429 0.119431i
$$259$$ 3.11630i 0.193637i
$$260$$ −0.109959 + 0.190454i −0.00681935 + 0.0118115i
$$261$$ −22.9347 + 6.81695i −1.41962 + 0.421958i
$$262$$ 7.22873 + 4.17351i 0.446593 + 0.257840i
$$263$$ 24.7674 14.2995i 1.52723 0.881744i 0.527749 0.849401i $$-0.323036\pi$$
0.999477 0.0323436i $$-0.0102971\pi$$
$$264$$ 3.74029 + 1.49019i 0.230199 + 0.0917149i
$$265$$ 4.09015i 0.251256i
$$266$$ −0.889349 10.5638i −0.0545295 0.647708i
$$267$$ 4.35700 + 5.52151i 0.266644 + 0.337911i
$$268$$ 6.63960 3.83338i 0.405578 0.234161i
$$269$$ 1.62587 + 2.81609i 0.0991312 + 0.171700i 0.911325 0.411687i $$-0.135060\pi$$
−0.812194 + 0.583387i $$0.801727\pi$$
$$270$$ 5.17502 + 0.468182i 0.314942 + 0.0284926i
$$271$$ −3.17133 5.49291i −0.192645 0.333670i 0.753481 0.657469i $$-0.228373\pi$$
−0.946126 + 0.323799i $$0.895040\pi$$
$$272$$ −4.43932 2.56304i −0.269173 0.155407i
$$273$$ −0.727247 + 0.573868i −0.0440150 + 0.0347321i
$$274$$ 14.6215i 0.883318i
$$275$$ −2.01311 1.16227i −0.121395 0.0700874i
$$276$$ −2.16338 14.8715i −0.130220 0.895158i
$$277$$ 22.1670 1.33189 0.665943 0.746002i $$-0.268029\pi$$
0.665943 + 0.746002i $$0.268029\pi$$
$$278$$ −11.0268 −0.661345
$$279$$ −8.31177 + 8.77523i −0.497613 + 0.525359i
$$280$$ 2.10624 1.21604i 0.125872 0.0726722i
$$281$$ 7.85570 13.6065i 0.468632 0.811694i −0.530725 0.847544i $$-0.678080\pi$$
0.999357 + 0.0358495i $$0.0114137\pi$$
$$282$$ −8.82453 3.51584i −0.525493 0.209365i
$$283$$ −10.1514 17.5827i −0.603435 1.04518i −0.992297 0.123884i $$-0.960465\pi$$
0.388861 0.921296i $$-0.372869\pi$$
$$284$$ 10.1123 0.600056
$$285$$ −2.19612 + 7.22337i −0.130087 + 0.427875i
$$286$$ 0.511206 0.0302282
$$287$$ 2.89555 + 5.01525i 0.170919 + 0.296041i
$$288$$ 2.87566 0.854742i 0.169450 0.0503661i
$$289$$ 4.63838 8.03390i 0.272846 0.472583i
$$290$$ 6.90694 3.98772i 0.405590 0.234167i
$$291$$ 1.75848 + 12.0881i 0.103084 + 0.708618i
$$292$$ 3.57004 0.208921
$$293$$ −16.1085 −0.941067 −0.470533 0.882382i $$-0.655938\pi$$
−0.470533 + 0.882382i $$0.655938\pi$$
$$294$$ −1.85971 + 0.270535i −0.108461 + 0.0157779i
$$295$$ −0.828051 0.478076i −0.0482110 0.0278346i
$$296$$ 1.28133i 0.0744760i
$$297$$ −5.07226 10.9620i −0.294322 0.636081i
$$298$$ −18.2772 10.5523i −1.05877 0.611279i
$$299$$ −0.954048 1.65246i −0.0551740 0.0955642i
$$300$$ −1.71401 + 0.249340i −0.0989584 + 0.0143956i
$$301$$ 1.71566 + 2.97160i 0.0988888 + 0.171280i
$$302$$ 20.9707 12.1074i 1.20673 0.696704i
$$303$$ 16.0756 12.6852i 0.923520 0.728747i
$$304$$ 0.365675 + 4.34353i 0.0209729 + 0.249119i
$$305$$ 8.25009i 0.472399i
$$306$$ 4.38148 + 14.7409i 0.250472 + 0.842680i
$$307$$ 6.95957 4.01811i 0.397204 0.229326i −0.288073 0.957608i $$-0.593015\pi$$
0.685277 + 0.728283i $$0.259681\pi$$
$$308$$ −4.89603 2.82672i −0.278977 0.161068i
$$309$$ −28.2820 11.2680i −1.60891 0.641015i
$$310$$ 2.01446 3.48915i 0.114414 0.198171i
$$311$$ 20.2592i 1.14879i 0.818577 + 0.574396i $$0.194763\pi$$
−0.818577 + 0.574396i $$0.805237\pi$$
$$312$$ 0.299023 0.235958i 0.0169288 0.0133585i
$$313$$ −12.0239 + 20.8260i −0.679631 + 1.17716i 0.295461 + 0.955355i $$0.404527\pi$$
−0.975092 + 0.221801i $$0.928807\pi$$
$$314$$ −6.46343 + 11.1950i −0.364752 + 0.631769i
$$315$$ −7.09623 1.69662i −0.399827 0.0955937i
$$316$$ 15.0800i 0.848313i
$$317$$ 6.26988 10.8598i 0.352152 0.609944i −0.634475 0.772944i $$-0.718783\pi$$
0.986626 + 0.162999i $$0.0521168\pi$$
$$318$$ 2.62207 6.58124i 0.147039 0.369057i
$$319$$ −16.0554 9.26961i −0.898932 0.518998i
$$320$$ −0.866025 + 0.500000i −0.0484123 + 0.0279508i
$$321$$ 1.79781 4.51240i 0.100344 0.251858i
$$322$$ 21.1017i 1.17595i
$$323$$ −22.2653 + 1.87448i −1.23888 + 0.104299i
$$324$$ −8.02670 4.07088i −0.445928 0.226160i
$$325$$ −0.190454 + 0.109959i −0.0105645 + 0.00609941i
$$326$$ −6.81062 11.7963i −0.377205 0.653339i
$$327$$ 3.97528 + 27.3268i 0.219833 + 1.51118i
$$328$$ −1.19057 2.06213i −0.0657382 0.113862i
$$329$$ 11.5513 + 6.66915i 0.636844 + 0.367682i
$$330$$ 2.49409 + 3.16069i 0.137295 + 0.173990i
$$331$$ 5.06995i 0.278670i −0.990245 0.139335i $$-0.955504\pi$$
0.990245 0.139335i $$-0.0444965\pi$$
$$332$$ 3.77627 + 2.18023i 0.207250 + 0.119656i
$$333$$ 2.64342 2.79082i 0.144858 0.152936i
$$334$$ −10.8604 −0.594255
$$335$$ 7.66675 0.418880
$$336$$ −4.16860 + 0.606413i −0.227416 + 0.0330826i
$$337$$ 3.52448 2.03486i 0.191991 0.110846i −0.400923 0.916112i $$-0.631311\pi$$
0.592914 + 0.805266i $$0.297977\pi$$
$$338$$ −6.47582 + 11.2164i −0.352238 + 0.610094i
$$339$$ 7.80496 19.5900i 0.423907 1.06398i
$$340$$ −2.56304 4.43932i −0.139001 0.240756i
$$341$$ −9.36538 −0.507164
$$342$$ 8.16435 10.2149i 0.441477 0.552356i
$$343$$ 19.6634 1.06172
$$344$$ −0.705429 1.22184i −0.0380342 0.0658771i
$$345$$ 5.56220 13.9608i 0.299459 0.751622i
$$346$$ 6.04765 10.4748i 0.325124 0.563131i
$$347$$ 4.31415 2.49077i 0.231596 0.133712i −0.379712 0.925105i $$-0.623977\pi$$
0.611308 + 0.791393i $$0.290644\pi$$
$$348$$ −13.6700 + 1.98860i −0.732789 + 0.106600i
$$349$$ 17.2329 0.922458 0.461229 0.887281i $$-0.347409\pi$$
0.461229 + 0.887281i $$0.347409\pi$$
$$350$$ 2.43208 0.130000
$$351$$ −1.13808 0.102961i −0.0607460 0.00549566i
$$352$$ 2.01311 + 1.16227i 0.107299 + 0.0619491i
$$353$$ 26.6382i 1.41781i −0.705306 0.708903i $$-0.749190\pi$$
0.705306 0.708903i $$-0.250810\pi$$
$$354$$ 1.02589 + 1.30009i 0.0545256 + 0.0690987i
$$355$$ 8.75753 + 5.05616i 0.464802 + 0.268353i
$$356$$ 2.03041 + 3.51677i 0.107611 + 0.186388i
$$357$$ −3.10853 21.3686i −0.164521 1.13095i
$$358$$ −4.58689 7.94473i −0.242425 0.419892i
$$359$$ 25.0199 14.4453i 1.32050 0.762392i 0.336694 0.941614i $$-0.390691\pi$$
0.983809 + 0.179222i $$0.0573580\pi$$
$$360$$ 2.91776 + 0.697602i 0.153780 + 0.0367668i
$$361$$ 12.1173 + 14.6346i 0.637754 + 0.770240i
$$362$$ 9.66914i 0.508199i
$$363$$ −3.58777 + 9.00508i −0.188309 + 0.472644i
$$364$$ −0.463199 + 0.267428i −0.0242782 + 0.0140170i
$$365$$ 3.09174 + 1.78502i 0.161829 + 0.0934321i
$$366$$ 5.28889 13.2748i 0.276454 0.693883i
$$367$$ −10.1670 + 17.6098i −0.530713 + 0.919222i 0.468644 + 0.883387i $$0.344743\pi$$
−0.999358 + 0.0358355i $$0.988591\pi$$
$$368$$ 8.67642i 0.452290i
$$369$$ −1.66109 + 6.94760i −0.0864727 + 0.361678i
$$370$$ −0.640666 + 1.10967i −0.0333067 + 0.0576888i
$$371$$ −4.97377 + 8.61483i −0.258226 + 0.447260i
$$372$$ −5.47816 + 4.32279i −0.284029 + 0.224126i
$$373$$ 12.2252i 0.632997i 0.948593 + 0.316499i $$0.102507\pi$$
−0.948593 + 0.316499i $$0.897493\pi$$
$$374$$ −5.95789 + 10.3194i −0.308075 + 0.533601i
$$375$$ −1.60905 0.641070i −0.0830908 0.0331047i
$$376$$ −4.74957 2.74216i −0.244940 0.141416i
$$377$$ −1.51896 + 0.876970i −0.0782302 + 0.0451662i
$$378$$ 10.3305 + 7.27912i 0.531344 + 0.374398i
$$379$$ 37.1799i 1.90980i 0.296925 + 0.954901i $$0.404039\pi$$
−0.296925 + 0.954901i $$0.595961\pi$$
$$380$$ −1.85508 + 3.94445i −0.0951637 + 0.202346i
$$381$$ −3.83012 + 3.02234i −0.196223 + 0.154839i
$$382$$ 16.2131 9.36065i 0.829536 0.478933i
$$383$$ −2.24543 3.88919i −0.114736 0.198728i 0.802938 0.596062i $$-0.203269\pi$$
−0.917674 + 0.397334i $$0.869936\pi$$
$$384$$ 1.71401 0.249340i 0.0874677 0.0127241i
$$385$$ −2.82672 4.89603i −0.144063 0.249525i
$$386$$ 21.1958 + 12.2374i 1.07884 + 0.622867i
$$387$$ −0.984217 + 4.11655i −0.0500306 + 0.209256i
$$388$$ 7.05254i 0.358038i
$$389$$ 23.0418 + 13.3032i 1.16827 + 0.674499i 0.953271 0.302116i $$-0.0976930\pi$$
0.214996 + 0.976615i $$0.431026\pi$$
$$390$$ 0.376940 0.0548341i 0.0190871 0.00277663i
$$391$$ 44.4761 2.24925
$$392$$ −1.08501 −0.0548011
$$393$$ −2.08124 14.3069i −0.104985 0.721686i
$$394$$ −4.31146 + 2.48922i −0.217208 + 0.125405i
$$395$$ 7.53998 13.0596i 0.379377 0.657101i
$$396$$ −1.98688 6.68457i −0.0998444 0.335912i
$$397$$ −10.5922 18.3462i −0.531606 0.920769i −0.999319 0.0368887i $$-0.988255\pi$$
0.467713 0.883880i $$-0.345078\pi$$
$$398$$ −18.1690 −0.910731
$$399$$ −13.4094 + 12.5436i −0.671312 + 0.627964i
$$400$$ −1.00000 −0.0500000
$$401$$ 11.5551 + 20.0141i 0.577036 + 0.999456i 0.995817 + 0.0913687i $$0.0291242\pi$$
−0.418781 + 0.908087i $$0.637542\pi$$
$$402$$ −12.3362 4.91493i −0.615272 0.245134i
$$403$$ −0.443015 + 0.767325i −0.0220682 + 0.0382232i
$$404$$ 10.2389 5.91143i 0.509404 0.294105i
$$405$$ −4.91589 7.53883i −0.244273 0.374608i
$$406$$ 19.3969 0.962652
$$407$$ 2.97850 0.147639
$$408$$ 1.27814 + 8.78616i 0.0632772 + 0.434980i
$$409$$ 8.26190 + 4.77001i 0.408525 + 0.235862i 0.690156 0.723661i $$-0.257542\pi$$
−0.281631 + 0.959523i $$0.590875\pi$$
$$410$$ 2.38114i 0.117596i
$$411$$ −19.8810 + 15.6880i −0.980656 + 0.773832i
$$412$$ −15.2220 8.78844i −0.749935 0.432975i
$$413$$ −1.16272 2.01388i −0.0572135 0.0990967i
$$414$$ −17.8997 + 18.8978i −0.879721 + 0.928774i
$$415$$ 2.18023 + 3.77627i 0.107023 + 0.185370i
$$416$$ 0.190454 0.109959i 0.00933778 0.00539117i
$$417$$ 11.8311 + 14.9933i 0.579373 + 0.734223i
$$418$$ 10.0967 0.850025i 0.493846 0.0415761i
$$419$$ 0.961723i 0.0469832i −0.999724 0.0234916i $$-0.992522\pi$$
0.999724 0.0234916i $$-0.00747830\pi$$
$$420$$ −3.91332 1.55913i −0.190951 0.0760778i
$$421$$ −14.4170 + 8.32365i −0.702641 + 0.405670i −0.808330 0.588729i $$-0.799628\pi$$
0.105689 + 0.994399i $$0.466295\pi$$
$$422$$ 2.49731 + 1.44183i 0.121567 + 0.0701870i
$$423$$ 4.68768 + 15.7711i 0.227923 + 0.766815i
$$424$$ 2.04507 3.54217i 0.0993176 0.172023i
$$425$$ 5.12609i 0.248652i
$$426$$ −10.8499 13.7498i −0.525680 0.666180i
$$427$$ −10.0324 + 17.3767i −0.485503 + 0.840915i
$$428$$ 1.40220 2.42868i 0.0677777 0.117394i
$$429$$ −0.548493 0.695090i −0.0264815 0.0335592i
$$430$$ 1.41086i 0.0680376i
$$431$$ 5.03639 8.72328i 0.242594 0.420185i −0.718858 0.695157i $$-0.755335\pi$$
0.961452 + 0.274971i $$0.0886683\pi$$
$$432$$ −4.24761 2.99297i −0.204363 0.143999i
$$433$$ 5.91643 + 3.41585i 0.284326 + 0.164155i 0.635380 0.772200i $$-0.280843\pi$$
−0.351054 + 0.936355i $$0.614177\pi$$
$$434$$ 8.48588 4.89933i 0.407335 0.235175i
$$435$$ −12.8329 5.11282i −0.615289 0.245141i
$$436$$ 15.9432i 0.763542i
$$437$$ −21.5909 31.0510i −1.03283 1.48537i
$$438$$ −3.83043 4.85420i −0.183025 0.231943i
$$439$$ 9.27371 5.35418i 0.442610 0.255541i −0.262094 0.965042i $$-0.584413\pi$$
0.704704 + 0.709501i $$0.251080\pi$$
$$440$$ 1.16227 + 2.01311i 0.0554090 + 0.0959711i
$$441$$ 2.36321 + 2.23839i 0.112534 + 0.106590i
$$442$$ 0.563658 + 0.976283i 0.0268105 + 0.0464371i
$$443$$ −6.87406 3.96874i −0.326596 0.188560i 0.327733 0.944771i $$-0.393715\pi$$
−0.654329 + 0.756210i $$0.727049\pi$$
$$444$$ 1.74224 1.37479i 0.0826829 0.0652448i
$$445$$ 4.06081i 0.192501i
$$446$$ 12.7294 + 7.34931i 0.602754 + 0.348000i
$$447$$ 5.26222 + 36.1736i 0.248895 + 1.71095i
$$448$$ −2.43208 −0.114905
$$449$$ 16.3905 0.773515 0.386757 0.922181i $$-0.373595\pi$$
0.386757 + 0.922181i $$0.373595\pi$$
$$450$$ 2.17806 + 2.06302i 0.102675 + 0.0972519i
$$451$$ −4.79348 + 2.76752i −0.225716 + 0.130317i
$$452$$ 6.08745 10.5438i 0.286329 0.495937i
$$453$$ −38.9628 15.5234i −1.83063 0.729354i
$$454$$ 5.53375 + 9.58473i 0.259712 + 0.449834i
$$455$$ −0.534856 −0.0250744
$$456$$ 5.51358 5.15756i 0.258197 0.241525i
$$457$$ −19.8202 −0.927152 −0.463576 0.886057i $$-0.653434\pi$$
−0.463576 + 0.886057i $$0.653434\pi$$
$$458$$ −1.59769 2.76728i −0.0746553 0.129307i
$$459$$ 15.3422 21.7736i 0.716113 1.01630i
$$460$$ 4.33821 7.51400i 0.202270 0.350342i
$$461$$ 35.9630 20.7632i 1.67496 0.967040i 0.710170 0.704030i $$-0.248618\pi$$
0.964793 0.263010i $$-0.0847152\pi$$
$$462$$ 1.40963 + 9.69007i 0.0655819 + 0.450823i
$$463$$ 20.2445 0.940843 0.470422 0.882442i $$-0.344102\pi$$
0.470422 + 0.882442i $$0.344102\pi$$
$$464$$ −7.97545 −0.370251
$$465$$ −6.90562 + 1.00457i −0.320240 + 0.0465859i
$$466$$ 6.96020 + 4.01848i 0.322425 + 0.186152i
$$467$$ 10.1496i 0.469667i 0.972036 + 0.234833i $$0.0754544\pi$$
−0.972036 + 0.234833i $$0.924546\pi$$
$$468$$ −0.641667 0.153415i −0.0296611 0.00709160i
$$469$$ 16.1480 + 9.32306i 0.745646 + 0.430499i
$$470$$ −2.74216 4.74957i −0.126487 0.219081i
$$471$$ 22.1567 3.22318i 1.02093 0.148516i
$$472$$ 0.478076 + 0.828051i 0.0220052 + 0.0381142i
$$473$$ −2.84021 + 1.63980i −0.130593 + 0.0753979i
$$474$$ −20.5043 + 16.1799i −0.941794 + 0.743166i
$$475$$ −3.57877 + 2.48845i −0.164205 + 0.114178i
$$476$$ 12.4670i 0.571425i
$$477$$ −11.7619 + 3.49602i −0.538539 + 0.160072i
$$478$$ −4.48081 + 2.58700i −0.204947 + 0.118326i
$$479$$ 35.2374 + 20.3443i 1.61004 + 0.929555i 0.989360 + 0.145488i $$0.0464751\pi$$
0.620676 + 0.784067i $$0.286858\pi$$
$$480$$ 1.60905 + 0.641070i 0.0734426 + 0.0292607i
$$481$$ 0.140894 0.244035i 0.00642420 0.0111270i
$$482$$ 29.3904i 1.33870i
$$483$$ 28.6921 22.6409i 1.30554 1.03020i
$$484$$ −2.79827 + 4.84674i −0.127194 + 0.220306i
$$485$$ −3.52627 + 6.10768i −0.160120 + 0.277335i
$$486$$ 3.07697 + 15.2818i 0.139574 + 0.693195i
$$487$$ 14.4557i 0.655048i −0.944843 0.327524i $$-0.893786\pi$$
0.944843 0.327524i $$-0.106214\pi$$
$$488$$ 4.12504 7.14478i 0.186732 0.323429i
$$489$$ −8.73217 + 21.9172i −0.394883 + 0.991130i
$$490$$ −0.939644 0.542503i −0.0424488 0.0245078i
$$491$$ −13.6141 + 7.86008i −0.614394 + 0.354721i −0.774683 0.632350i $$-0.782091\pi$$
0.160289 + 0.987070i $$0.448757\pi$$
$$492$$ −1.52648 + 3.83136i −0.0688189 + 0.172731i
$$493$$ 40.8828i 1.84127i
$$494$$ 0.407965 0.867452i 0.0183552 0.0390285i
$$495$$ 1.62160 6.78245i 0.0728855 0.304848i
$$496$$ −3.48915 + 2.01446i −0.156668 + 0.0904521i
$$497$$ 12.2970 + 21.2990i 0.551595 + 0.955390i
$$498$$ −1.08724 7.47388i −0.0487203 0.334913i
$$499$$ −16.7701 29.0466i −0.750731 1.30030i −0.947469 0.319848i $$-0.896368\pi$$
0.196738 0.980456i $$-0.436965\pi$$
$$500$$ −0.866025 0.500000i −0.0387298 0.0223607i
$$501$$ 11.6526 + 14.7670i 0.520598 + 0.659739i
$$502$$ 25.0670i 1.11879i
$$503$$ −7.23726 4.17843i −0.322694 0.186307i 0.329899 0.944016i $$-0.392985\pi$$
−0.652593 + 0.757709i $$0.726319\pi$$
$$504$$ 5.29720 + 5.01743i 0.235956 + 0.223494i
$$505$$ 11.8229 0.526110
$$506$$ −20.1687 −0.896606
$$507$$ 22.1992 3.22936i 0.985903 0.143421i
$$508$$ −2.43948 + 1.40844i −0.108235 + 0.0624893i
$$509$$ −14.3398 + 24.8373i −0.635602 + 1.10090i 0.350785 + 0.936456i $$0.385915\pi$$
−0.986387 + 0.164440i $$0.947418\pi$$
$$510$$ −3.28618 + 8.24811i −0.145515 + 0.365232i
$$511$$ 4.34130 + 7.51935i 0.192048 + 0.332636i
$$512$$ 1.00000 0.0441942
$$513$$ −22.6491 0.141188i −0.999981 0.00623360i
$$514$$ 4.61909 0.203739
$$515$$ −8.78844 15.2220i −0.387265 0.670762i
$$516$$ −0.904459 + 2.27014i −0.0398166 + 0.0999371i
$$517$$ −6.37426 + 11.0405i −0.280340 + 0.485562i
$$518$$ −2.69879 + 1.55815i −0.118578 + 0.0684612i
$$519$$ −20.7315 + 3.01584i −0.910010 + 0.132381i
$$520$$ 0.219917 0.00964401
$$521$$ 22.1970 0.972468 0.486234 0.873829i $$-0.338370\pi$$
0.486234 + 0.873829i $$0.338370\pi$$
$$522$$ 17.3710 + 16.4535i 0.760307 + 0.720152i
$$523$$ 22.4245 + 12.9468i 0.980554 + 0.566123i 0.902437 0.430821i $$-0.141776\pi$$
0.0781167 + 0.996944i $$0.475109\pi$$
$$524$$ 8.34702i 0.364641i
$$525$$ −2.60947 3.30691i −0.113887 0.144325i
$$526$$ −24.7674 14.2995i −1.07991 0.623487i
$$527$$ −10.3263 17.8857i −0.449821 0.779113i
$$528$$ −0.579599 3.98428i −0.0252238 0.173393i
$$529$$ 26.1402 + 45.2761i 1.13653 + 1.96853i
$$530$$ 3.54217 2.04507i 0.153862 0.0888323i
$$531$$ 0.667013 2.78983i 0.0289459 0.121068i
$$532$$ −8.70385 + 6.05210i −0.377360 + 0.262392i
$$533$$ 0.523653i 0.0226819i
$$534$$ 2.60327 6.53403i 0.112654 0.282755i
$$535$$ 2.42868 1.40220i 0.105001 0.0606223i
$$536$$ −6.63960 3.83338i −0.286787 0.165577i
$$537$$ −5.88104 + 14.7610i −0.253786 + 0.636986i
$$538$$ 1.62587 2.81609i 0.0700963 0.121410i
$$539$$ 2.52214i 0.108636i
$$540$$ −2.18205 4.71579i −0.0939006 0.202935i
$$541$$ −5.15671 + 8.93169i −0.221704 + 0.384003i −0.955326 0.295555i $$-0.904495\pi$$
0.733621 + 0.679559i $$0.237829\pi$$
$$542$$ −3.17133 + 5.49291i −0.136220 + 0.235940i
$$543$$ 13.1472 10.3744i 0.564200 0.445208i
$$544$$ 5.12609i 0.219779i
$$545$$ −7.97161 + 13.8072i −0.341466 + 0.591437i
$$546$$ 0.860607 + 0.342880i 0.0368306 + 0.0146739i
$$547$$ −6.35260 3.66767i −0.271618 0.156818i 0.358005 0.933720i $$-0.383457\pi$$
−0.629622 + 0.776901i $$0.716790\pi$$
$$548$$ −12.6626 + 7.31076i −0.540920 + 0.312300i
$$549$$ −23.7244 + 7.05169i −1.01253 + 0.300959i
$$550$$ 2.32454i 0.0991185i
$$551$$ −28.5423 + 19.8465i −1.21594 + 0.845490i
$$552$$ −11.7974 + 9.30928i −0.502130 + 0.396229i
$$553$$ 31.7620 18.3378i 1.35066 0.779802i
$$554$$ −11.0835 19.1972i −0.470893 0.815611i
$$555$$ 2.19622 0.319487i 0.0932242 0.0135615i
$$556$$ 5.51342 + 9.54952i 0.233821 + 0.404990i
$$557$$ −12.9817 7.49498i −0.550051 0.317572i 0.199091 0.979981i $$-0.436201\pi$$
−0.749143 + 0.662409i $$0.769534\pi$$
$$558$$ 11.7555 + 2.81059i 0.497648 + 0.118982i
$$559$$ 0.310272i 0.0131231i
$$560$$ −2.10624 1.21604i −0.0890049 0.0513870i
$$561$$ 20.4237 2.97108i 0.862291 0.125439i
$$562$$ −15.7114 −0.662746
$$563$$ −19.5385 −0.823450 −0.411725 0.911308i $$-0.635074\pi$$
−0.411725 + 0.911308i $$0.635074\pi$$
$$564$$ 1.36746 + 9.40019i 0.0575805 + 0.395819i
$$565$$ 10.5438 6.08745i 0.443580 0.256101i
$$566$$ −10.1514 + 17.5827i −0.426693 + 0.739054i
$$567$$ −1.18654 21.8565i −0.0498298 0.917887i
$$568$$ −5.05616 8.75753i −0.212152 0.367458i
$$569$$ −43.9934 −1.84430 −0.922149 0.386835i $$-0.873568\pi$$
−0.922149 + 0.386835i $$0.873568\pi$$
$$570$$ 7.35368 1.70979i 0.308012 0.0716151i
$$571$$ −17.0307 −0.712711 −0.356356 0.934350i $$-0.615981\pi$$
−0.356356 + 0.934350i $$0.615981\pi$$
$$572$$ −0.255603 0.442717i −0.0106873 0.0185109i
$$573$$ −30.1234 12.0017i −1.25842 0.501377i
$$574$$ 2.89555 5.01525i 0.120858 0.209332i
$$575$$ 7.51400 4.33821i 0.313356 0.180916i
$$576$$ −2.17806 2.06302i −0.0907524 0.0859593i
$$577$$ −13.3602 −0.556192 −0.278096 0.960553i $$-0.589703\pi$$
−0.278096 + 0.960553i $$0.589703\pi$$
$$578$$ −9.27675 −0.385862
$$579$$ −6.10254 41.9500i −0.253613 1.74338i
$$580$$ −6.90694 3.98772i −0.286795 0.165581i
$$581$$ 10.6050i 0.439969i
$$582$$ 9.58938 7.56695i 0.397493 0.313660i
$$583$$ −8.23391 4.75385i −0.341014 0.196884i
$$584$$ −1.78502 3.09174i −0.0738646 0.127937i
$$585$$ −0.478993 0.453695i −0.0198039 0.0187580i
$$586$$ 8.05424 + 13.9503i 0.332717 + 0.576283i
$$587$$ −23.1836 + 13.3851i −0.956891 + 0.552461i −0.895215 0.445635i $$-0.852978\pi$$
−0.0616763 + 0.998096i $$0.519645\pi$$
$$588$$ 1.16415 + 1.47529i 0.0480086 + 0.0608400i
$$589$$ −7.47399 + 15.8919i −0.307960 + 0.654814i
$$590$$ 0.956151i 0.0393641i
$$591$$ 8.01055 + 3.19153i 0.329510 + 0.131282i
$$592$$ 1.10967 0.640666i 0.0456070 0.0263312i
$$593$$ −8.48127 4.89666i −0.348284 0.201082i 0.315645 0.948877i $$-0.397779\pi$$
−0.663929 + 0.747795i $$0.731112\pi$$
$$594$$ −6.95726 + 9.87371i −0.285460 + 0.405123i
$$595$$ 6.23351 10.7968i 0.255549 0.442624i
$$596$$ 21.1046i 0.864480i
$$597$$ 19.4943 + 24.7045i 0.797847 + 1.01109i
$$598$$ −0.954048 + 1.65246i −0.0390139 + 0.0675741i
$$599$$ 13.4316 23.2641i 0.548799 0.950547i −0.449559 0.893251i $$-0.648419\pi$$
0.998357 0.0572961i $$-0.0182479\pi$$
$$600$$ 1.07294 + 1.35971i 0.0438026 + 0.0555098i
$$601$$ 26.9483i 1.09925i 0.835413 + 0.549623i $$0.185229\pi$$
−0.835413 + 0.549623i $$0.814771\pi$$
$$602$$ 1.71566 2.97160i 0.0699250 0.121114i
$$603$$ 6.55309 + 22.0470i 0.266863 + 0.897822i
$$604$$ −20.9707 12.1074i −0.853285 0.492644i
$$605$$ −4.84674 + 2.79827i −0.197048 + 0.113766i
$$606$$ −19.0235 7.57929i −0.772778 0.307887i
$$607$$ 24.9777i 1.01381i 0.862001 + 0.506906i $$0.169211\pi$$
−0.862001 + 0.506906i $$0.830789\pi$$
$$608$$ 3.57877 2.48845i 0.145138 0.100920i
$$609$$ −20.8117 26.3741i −0.843332 1.06873i
$$610$$ 7.14478 4.12504i 0.289284 0.167018i
$$611$$ 0.603049 + 1.04451i 0.0243968 + 0.0422564i
$$612$$ 10.5752 11.1649i 0.427479 0.451315i
$$613$$ 5.51510 + 9.55243i 0.222753 + 0.385819i 0.955643 0.294528i $$-0.0951624\pi$$
−0.732890 + 0.680347i $$0.761829\pi$$
$$614$$ −6.95957 4.01811i −0.280865 0.162158i
$$615$$ −3.23765 + 2.55482i −0.130555 + 0.103020i
$$616$$ 5.65345i 0.227784i
$$617$$ 16.4524 + 9.49880i 0.662349 + 0.382407i 0.793171 0.608999i $$-0.208429\pi$$
−0.130823 + 0.991406i $$0.541762\pi$$
$$618$$ 4.38261 + 30.1269i 0.176295 + 1.21188i
$$619$$ −39.2407 −1.57722 −0.788608 0.614896i $$-0.789198\pi$$
−0.788608 + 0.614896i $$0.789198\pi$$
$$620$$ −4.02893 −0.161806
$$621$$ 44.9007 + 4.06214i 1.80180 + 0.163008i
$$622$$ 17.5450 10.1296i 0.703489 0.406159i
$$623$$ −4.93810 + 8.55304i −0.197841 + 0.342670i
$$624$$ −0.353857 0.140982i −0.0141656 0.00564382i
$$625$$ −0.500000 0.866025i −0.0200000 0.0346410i
$$626$$ 24.0478 0.961144
$$627$$ −11.9889 12.8165i −0.478792 0.511843i
$$628$$ 12.9269 0.515837
$$629$$ 3.28411 + 5.68825i 0.130946 + 0.226805i
$$630$$ 2.07880 + 6.99382i 0.0828212 + 0.278641i
$$631$$ 9.58134 16.5954i 0.381427 0.660651i −0.609840 0.792525i $$-0.708766\pi$$
0.991266 + 0.131874i $$0.0420994\pi$$
$$632$$ −13.0596 + 7.53998i −0.519484 + 0.299924i
$$633$$ −0.719009 4.94261i −0.0285780 0.196451i
$$634$$ −12.5398 −0.498017
$$635$$ −2.81687 −0.111784
$$636$$ −7.01055 + 1.01984i −0.277987 + 0.0404391i
$$637$$ 0.206644 + 0.119306i 0.00818753 + 0.00472707i
$$638$$ 18.5392i 0.733975i
$$639$$ −7.05438 + 29.5054i −0.279067 + 1.16722i
$$640$$ 0.866025 + 0.500000i 0.0342327 + 0.0197642i
$$641$$ 15.7483 + 27.2768i 0.622020 + 1.07737i 0.989109 + 0.147184i $$0.0470209\pi$$
−0.367090 + 0.930186i $$0.619646\pi$$
$$642$$ −4.80676 + 0.699247i −0.189708 + 0.0275971i
$$643$$ 4.48834 + 7.77403i 0.177003 + 0.306578i 0.940853 0.338816i $$-0.110027\pi$$
−0.763850 + 0.645394i $$0.776693\pi$$
$$644$$ 18.2746 10.5509i 0.720121 0.415762i
$$645$$ −1.91835 + 1.51377i −0.0755350 + 0.0596044i
$$646$$ 12.7560 + 18.3451i 0.501879 + 0.721778i
$$647$$ 4.22420i 0.166071i −0.996547 0.0830353i $$-0.973539\pi$$
0.996547 0.0830353i $$-0.0264614\pi$$
$$648$$ 0.487870 + 8.98677i 0.0191653 + 0.353034i
$$649$$ 1.92484 1.11130i 0.0755564 0.0436225i
$$650$$ 0.190454 + 0.109959i 0.00747022 + 0.00431293i
$$651$$ −15.7665 6.28163i −0.617937 0.246196i
$$652$$ −6.81062 + 11.7963i −0.266724 + 0.461980i
$$653$$ 20.4175i 0.798999i 0.916733 + 0.399499i $$0.130816\pi$$
−0.916733 + 0.399499i $$0.869184\pi$$
$$654$$ 21.6781 17.1061i 0.847681 0.668902i
$$655$$ 4.17351 7.22873i 0.163073 0.282450i
$$656$$ −1.19057 + 2.06213i −0.0464839 + 0.0805125i
$$657$$ −2.49046 + 10.4165i −0.0971622 + 0.406387i
$$658$$ 13.3383i 0.519981i
$$659$$ 20.4046 35.3417i 0.794849 1.37672i −0.128086 0.991763i $$-0.540883\pi$$
0.922935 0.384955i $$-0.125783\pi$$
$$660$$ 1.49019 3.74029i 0.0580056 0.145590i
$$661$$ −6.66358 3.84722i −0.259183 0.149640i 0.364779 0.931094i $$-0.381145\pi$$
−0.623962 + 0.781455i $$0.714478\pi$$
$$662$$ −4.39071 + 2.53498i −0.170650 + 0.0985247i
$$663$$ 0.722688 1.81390i 0.0280669 0.0704461i
$$664$$ 4.36047i 0.169219i
$$665$$ −10.5638 + 0.889349i −0.409647 + 0.0344875i
$$666$$ −3.73863 0.893860i −0.144869 0.0346364i
$$667$$ 59.9276 34.5992i 2.32040 1.33969i
$$668$$ 5.43020 + 9.40538i 0.210101 + 0.363905i
$$669$$ −3.66495 25.1936i −0.141695 0.974040i
$$670$$ −3.83338 6.63960i −0.148096 0.256510i
$$671$$ −16.6083 9.58881i −0.641157 0.370172i
$$672$$ 2.60947 + 3.30691i 0.100662 + 0.127567i
$$673$$ 10.6822i 0.411770i 0.978576 + 0.205885i $$0.0660073\pi$$
−0.978576 + 0.205885i $$0.933993\pi$$
$$674$$ −3.52448 2.03486i −0.135758 0.0783798i
$$675$$ 0.468182 5.17502i 0.0180203 0.199187i
$$676$$ 12.9516 0.498140
$$677$$ 12.9215 0.496612 0.248306 0.968682i $$-0.420126\pi$$
0.248306 + 0.968682i $$0.420126\pi$$
$$678$$ −20.8679 + 3.03568i −0.801426 + 0.116585i
$$679$$ −14.8543 + 8.57615i −0.570057 + 0.329123i
$$680$$ −2.56304 + 4.43932i −0.0982882 + 0.170240i
$$681$$ 7.09504 17.8081i 0.271883 0.682408i
$$682$$ 4.68269 + 8.11066i 0.179310 + 0.310573i
$$683$$ −39.7388 −1.52056 −0.760282 0.649593i $$-0.774939\pi$$
−0.760282 + 0.649593i $$0.774939\pi$$
$$684$$ −12.9285 1.96310i −0.494334 0.0750611i
$$685$$ −14.6215 −0.558660
$$686$$ −9.83168 17.0290i −0.375375 0.650169i
$$687$$ −2.04847 + 5.14152i −0.0781539 + 0.196161i
$$688$$ −0.705429 + 1.22184i −0.0268942 + 0.0465822i
$$689$$ −0.778985 + 0.449747i −0.0296770 + 0.0171340i
$$690$$ −14.8715 + 2.16338i −0.566147 + 0.0823584i
$$691$$ −9.39689 −0.357474 −0.178737 0.983897i $$-0.557201\pi$$
−0.178737 + 0.983897i $$0.557201\pi$$
$$692$$ −12.0953 −0.459794
$$693$$ 11.6632 12.3135i 0.443048 0.467753i
$$694$$ −4.31415 2.49077i −0.163763 0.0945485i
$$695$$ 11.0268i 0.418272i
$$696$$ 8.55717 + 10.8443i 0.324359 + 0.411051i
$$697$$ −10.5706 6.10296i −0.400391 0.231166i
$$698$$ −8.61647 14.9242i −0.326138 0.564888i
$$699$$ −2.00393 13.7754i −0.0757956 0.521034i
$$700$$ −1.21604 2.10624i −0.0459619 0.0796084i
$$701$$ 21.4383 12.3774i 0.809713 0.467488i −0.0371431 0.999310i $$-0.511826\pi$$
0.846856 + 0.531822i $$0.178492\pi$$
$$702$$ 0.479871 + 1.03708i 0.0181116 + 0.0391422i
$$703$$ 2.37698 5.05415i 0.0896494 0.190621i
$$704$$ 2.32454i 0.0876092i
$$705$$ −3.51584 + 8.82453i −0.132414 + 0.332351i
$$706$$ −23.0693 + 13.3191i −0.868226 + 0.501270i
$$707$$ 24.9018 + 14.3770i 0.936528 + 0.540705i
$$708$$ 0.612960 1.53849i 0.0230365 0.0578201i
$$709$$ 6.84044 11.8480i 0.256898 0.444960i −0.708511 0.705699i $$-0.750633\pi$$
0.965409 + 0.260739i $$0.0839662\pi$$
$$710$$ 10.1123i 0.379509i
$$711$$ 43.9997 + 10.5198i 1.65012 + 0.394523i
$$712$$ 2.03041 3.51677i 0.0760927 0.131796i
$$713$$ 17.4783 30.2734i 0.654569 1.13375i
$$714$$ −16.9515 + 13.3764i −0.634394 + 0.500598i
$$715$$ 0.511206i 0.0191180i
$$716$$ −4.58689 + 7.94473i −0.171420 + 0.296908i
$$717$$ 8.32519 + 3.31689i 0.310910 + 0.123872i
$$718$$ −25.0199 14.4453i −0.933736 0.539093i
$$719$$ 16.2403 9.37635i 0.605661 0.349679i −0.165604 0.986192i $$-0.552957\pi$$
0.771265 + 0.636514i $$0.219624\pi$$
$$720$$ −0.854742 2.87566i −0.0318543 0.107169i
$$721$$ 42.7483i 1.59203i
$$722$$ 6.61523 17.8112i 0.246193 0.662864i
$$723$$ 39.9623 31.5341i 1.48621 1.17277i
$$724$$ 8.37372 4.83457i 0.311207 0.179675i
$$725$$ −3.98772 6.90694i −0.148100 0.256517i
$$726$$ 9.59251 1.39544i 0.356011 0.0517896i
$$727$$ 24.9453 + 43.2065i 0.925170 + 1.60244i 0.791287 + 0.611445i $$0.209411\pi$$
0.133883 + 0.990997i $$0.457255\pi$$
$$728$$ 0.463199 + 0.267428i 0.0171673 + 0.00991153i
$$729$$ 17.4773 20.5802i 0.647307 0.762229i
$$730$$ 3.57004i 0.132133i
$$731$$ −6.26325 3.61609i −0.231655 0.133746i
$$732$$ −14.1407 + 2.05707i −0.522656 + 0.0760317i
$$733$$ 28.7958 1.06360 0.531799 0.846870i $$-0.321516\pi$$
0.531799 + 0.846870i $$0.321516\pi$$
$$734$$ 20.3340 0.750542
$$735$$ 0.270535 + 1.85971i 0.00997885 + 0.0685965i
$$736$$ −7.51400 + 4.33821i −0.276970 + 0.159909i
$$737$$ −8.91082 + 15.4340i −0.328234 + 0.568519i
$$738$$ 6.84734 2.03526i 0.252054 0.0749188i
$$739$$ −11.8821 20.5805i −0.437092 0.757065i 0.560372 0.828241i $$-0.310658\pi$$
−0.997464 + 0.0711761i $$0.977325\pi$$
$$740$$ 1.28133 0.0471027
$$741$$ −1.61720 + 0.376012i −0.0594094 + 0.0138131i
$$742$$ 9.94755 0.365186
$$743$$ −3.44798 5.97208i −0.126494 0.219094i 0.795822 0.605531i $$-0.207039\pi$$
−0.922316 + 0.386437i $$0.873706\pi$$
$$744$$ 6.48273 + 2.58282i 0.237668 + 0.0946910i
$$745$$ −10.5523 + 18.2772i −0.386607 + 0.669623i
$$746$$ 10.5873 6.11260i 0.387630 0.223798i
$$747$$ −8.99574 + 9.49735i −0.329137 + 0.347490i
$$748$$ 11.9158 0.435684
$$749$$ 6.82050 0.249216
$$750$$ 0.249340 + 1.71401i 0.00910460 + 0.0625868i
$$751$$ −36.8595 21.2808i −1.34502 0.776548i −0.357482 0.933920i $$-0.616365\pi$$
−0.987539 + 0.157372i $$0.949698\pi$$
$$752$$ 5.48433i 0.199993i
$$753$$ 34.0837 26.8953i 1.24208 0.980121i
$$754$$ 1.51896 + 0.876970i 0.0553171 + 0.0319373i
$$755$$ −12.1074 20.9707i −0.440634 0.763201i
$$756$$ 1.13865 12.5860i 0.0414124 0.457750i
$$757$$ −15.7761 27.3249i −0.573391 0.993142i −0.996214 0.0869297i $$-0.972294\pi$$
0.422824 0.906212i $$-0.361039\pi$$
$$758$$ 32.1987 18.5899i 1.16951 0.675217i
$$759$$ 21.6398 + 27.4235i 0.785473 + 0.995408i
$$760$$ 4.34353 0.365675i 0.157557 0.0132644i
$$761$$ 22.6385i 0.820646i −0.911940 0.410323i $$-0.865416\pi$$
0.911940 0.410323i $$-0.134584\pi$$
$$762$$ 4.53248 + 1.80581i 0.164194 + 0.0654177i
$$763$$ −33.5803 + 19.3876i −1.21569 + 0.701877i
$$764$$ −16.2131 9.36065i −0.586570 0.338656i
$$765$$ 14.7409 4.38148i 0.532958 0.158413i
$$766$$ −2.24543 + 3.88919i −0.0811305 + 0.140522i
$$767$$ 0.210274i 0.00759256i
$$768$$ −1.07294 1.35971i −0.0387164 0.0490642i
$$769$$ 0.580659 1.00573i 0.0209391 0.0362676i −0.855366 0.518024i $$-0.826668\pi$$
0.876305 + 0.481757i $$0.160001\pi$$
$$770$$ −2.82672 + 4.89603i −0.101868 + 0.176441i
$$771$$ −4.95601 6.28061i −0.178486 0.226191i
$$772$$ 24.4748i 0.880867i
$$773$$ −7.13678 + 12.3613i −0.256692 + 0.444604i −0.965354 0.260945i $$-0.915966\pi$$
0.708661 + 0.705549i $$0.249299\pi$$
$$774$$ 4.05715 1.20592i 0.145831 0.0433459i
$$775$$ −3.48915 2.01446i −0.125334 &minu