Properties

Label 570.2.s.a.221.11
Level $570$
Weight $2$
Character 570.221
Analytic conductor $4.551$
Analytic rank $0$
Dimension $24$
CM no
Inner twists $2$

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) \(=\) \( 570 = 2 \cdot 3 \cdot 5 \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 570.s (of order \(6\), degree \(2\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(4.55147291521\)
Analytic rank: \(0\)
Dimension: \(24\)
Relative dimension: \(12\) over \(\Q(\zeta_{6})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 221.11
Character \(\chi\) \(=\) 570.221
Dual form 570.2.s.a.521.11

$q$-expansion

\(f(q)\) \(=\) \(q+(-0.500000 - 0.866025i) q^{2} +(1.62701 - 0.593994i) q^{3} +(-0.500000 + 0.866025i) q^{4} +(-0.866025 + 0.500000i) q^{5} +(-1.32792 - 1.11204i) q^{6} -0.387589 q^{7} +1.00000 q^{8} +(2.29434 - 1.93287i) q^{9} +O(q^{10})\) \(q+(-0.500000 - 0.866025i) q^{2} +(1.62701 - 0.593994i) q^{3} +(-0.500000 + 0.866025i) q^{4} +(-0.866025 + 0.500000i) q^{5} +(-1.32792 - 1.11204i) q^{6} -0.387589 q^{7} +1.00000 q^{8} +(2.29434 - 1.93287i) q^{9} +(0.866025 + 0.500000i) q^{10} +6.28666i q^{11} +(-0.299093 + 1.70603i) q^{12} +(5.96278 + 3.44261i) q^{13} +(0.193795 + 0.335662i) q^{14} +(-1.11204 + 1.32792i) q^{15} +(-0.500000 - 0.866025i) q^{16} +(4.63331 - 2.67504i) q^{17} +(-2.82109 - 1.02052i) q^{18} +(0.936449 - 4.25712i) q^{19} -1.00000i q^{20} +(-0.630613 + 0.230226i) q^{21} +(5.44441 - 3.14333i) q^{22} +(-5.57852 - 3.22076i) q^{23} +(1.62701 - 0.593994i) q^{24} +(0.500000 - 0.866025i) q^{25} -6.88523i q^{26} +(2.58481 - 4.50763i) q^{27} +(0.193795 - 0.335662i) q^{28} +(2.15245 - 3.72815i) q^{29} +(1.70603 + 0.299093i) q^{30} +5.87016i q^{31} +(-0.500000 + 0.866025i) q^{32} +(3.73424 + 10.2285i) q^{33} +(-4.63331 - 2.67504i) q^{34} +(0.335662 - 0.193795i) q^{35} +(0.526745 + 2.95339i) q^{36} +2.54580i q^{37} +(-4.15500 + 1.31757i) q^{38} +(11.7464 + 2.05932i) q^{39} +(-0.866025 + 0.500000i) q^{40} +(-1.40194 - 2.42823i) q^{41} +(0.514688 + 0.431014i) q^{42} +(-0.588721 - 1.01969i) q^{43} +(-5.44441 - 3.14333i) q^{44} +(-1.02052 + 2.82109i) q^{45} +6.44153i q^{46} +(6.74336 + 3.89328i) q^{47} +(-1.32792 - 1.11204i) q^{48} -6.84977 q^{49} -1.00000 q^{50} +(5.94949 - 7.10448i) q^{51} +(-5.96278 + 3.44261i) q^{52} +(-1.97481 + 3.42047i) q^{53} +(-5.19613 + 0.0153044i) q^{54} +(-3.14333 - 5.44441i) q^{55} -0.387589 q^{56} +(-1.00509 - 7.48263i) q^{57} -4.30489 q^{58} +(0.556791 + 0.964390i) q^{59} +(-0.593994 - 1.62701i) q^{60} +(1.28373 - 2.22348i) q^{61} +(5.08371 - 2.93508i) q^{62} +(-0.889262 + 0.749160i) q^{63} +1.00000 q^{64} -6.88523 q^{65} +(6.99100 - 8.34818i) q^{66} +(6.95760 + 4.01697i) q^{67} +5.35008i q^{68} +(-10.9894 - 1.92661i) q^{69} +(-0.335662 - 0.193795i) q^{70} +(-4.17799 - 7.23648i) q^{71} +(2.29434 - 1.93287i) q^{72} +(-0.890700 - 1.54274i) q^{73} +(2.20473 - 1.27290i) q^{74} +(0.299093 - 1.70603i) q^{75} +(3.21855 + 2.93955i) q^{76} -2.43664i q^{77} +(-4.08978 - 11.2024i) q^{78} +(-12.3862 + 7.15117i) q^{79} +(0.866025 + 0.500000i) q^{80} +(1.52801 - 8.86934i) q^{81} +(-1.40194 + 2.42823i) q^{82} +3.22583i q^{83} +(0.115925 - 0.661239i) q^{84} +(-2.67504 + 4.63331i) q^{85} +(-0.588721 + 1.01969i) q^{86} +(1.28756 - 7.34428i) q^{87} +6.28666i q^{88} +(7.49847 - 12.9877i) q^{89} +(2.95339 - 0.526745i) q^{90} +(-2.31111 - 1.33432i) q^{91} +(5.57852 - 3.22076i) q^{92} +(3.48684 + 9.55083i) q^{93} -7.78656i q^{94} +(1.31757 + 4.15500i) q^{95} +(-0.299093 + 1.70603i) q^{96} +(-5.33880 + 3.08236i) q^{97} +(3.42489 + 5.93208i) q^{98} +(12.1513 + 14.4237i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 24q - 12q^{2} + 4q^{3} - 12q^{4} - 2q^{6} - 12q^{7} + 24q^{8} - 4q^{9} + O(q^{10}) \) \( 24q - 12q^{2} + 4q^{3} - 12q^{4} - 2q^{6} - 12q^{7} + 24q^{8} - 4q^{9} - 2q^{12} + 18q^{13} + 6q^{14} - 12q^{16} + 12q^{17} + 2q^{18} + 6q^{19} - 6q^{21} + 18q^{22} + 4q^{24} + 12q^{25} + 28q^{27} + 6q^{28} - 12q^{32} - 22q^{33} - 12q^{34} + 2q^{36} + 6q^{38} + 40q^{39} + 6q^{41} - 6q^{42} - 22q^{43} - 18q^{44} + 8q^{45} + 12q^{47} - 2q^{48} + 12q^{49} - 24q^{50} - 20q^{51} - 18q^{52} + 8q^{53} + 4q^{54} - 12q^{56} + 26q^{59} + 22q^{61} - 18q^{62} + 6q^{63} + 24q^{64} + 8q^{65} + 8q^{66} - 48q^{67} - 64q^{69} + 24q^{71} - 4q^{72} - 8q^{73} + 30q^{74} + 2q^{75} - 12q^{76} - 38q^{78} + 18q^{79} - 12q^{81} + 6q^{82} + 12q^{84} - 22q^{86} - 24q^{87} + 28q^{89} + 8q^{90} + 18q^{91} + 2q^{93} - 2q^{96} + 6q^{97} - 6q^{98} + 2q^{99} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/570\mathbb{Z}\right)^\times\).

\(n\) \(191\) \(211\) \(457\)
\(\chi(n)\) \(-1\) \(e\left(\frac{5}{6}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.500000 0.866025i −0.353553 0.612372i
\(3\) 1.62701 0.593994i 0.939356 0.342943i
\(4\) −0.500000 + 0.866025i −0.250000 + 0.433013i
\(5\) −0.866025 + 0.500000i −0.387298 + 0.223607i
\(6\) −1.32792 1.11204i −0.542121 0.453987i
\(7\) −0.387589 −0.146495 −0.0732475 0.997314i \(-0.523336\pi\)
−0.0732475 + 0.997314i \(0.523336\pi\)
\(8\) 1.00000 0.353553
\(9\) 2.29434 1.93287i 0.764781 0.644291i
\(10\) 0.866025 + 0.500000i 0.273861 + 0.158114i
\(11\) 6.28666i 1.89550i 0.319015 + 0.947750i \(0.396648\pi\)
−0.319015 + 0.947750i \(0.603352\pi\)
\(12\) −0.299093 + 1.70603i −0.0863406 + 0.492489i
\(13\) 5.96278 + 3.44261i 1.65378 + 0.954809i 0.975499 + 0.220006i \(0.0706076\pi\)
0.678280 + 0.734804i \(0.262726\pi\)
\(14\) 0.193795 + 0.335662i 0.0517938 + 0.0897095i
\(15\) −1.11204 + 1.32792i −0.287127 + 0.342868i
\(16\) −0.500000 0.866025i −0.125000 0.216506i
\(17\) 4.63331 2.67504i 1.12374 0.648793i 0.181389 0.983411i \(-0.441941\pi\)
0.942354 + 0.334619i \(0.108607\pi\)
\(18\) −2.82109 1.02052i −0.664937 0.240540i
\(19\) 0.936449 4.25712i 0.214836 0.976650i
\(20\) 1.00000i 0.223607i
\(21\) −0.630613 + 0.230226i −0.137611 + 0.0502394i
\(22\) 5.44441 3.14333i 1.16075 0.670160i
\(23\) −5.57852 3.22076i −1.16320 0.671575i −0.211133 0.977457i \(-0.567715\pi\)
−0.952069 + 0.305882i \(0.901049\pi\)
\(24\) 1.62701 0.593994i 0.332113 0.121249i
\(25\) 0.500000 0.866025i 0.100000 0.173205i
\(26\) 6.88523i 1.35030i
\(27\) 2.58481 4.50763i 0.497447 0.867494i
\(28\) 0.193795 0.335662i 0.0366237 0.0634342i
\(29\) 2.15245 3.72815i 0.399699 0.692299i −0.593989 0.804473i \(-0.702448\pi\)
0.993689 + 0.112173i \(0.0357812\pi\)
\(30\) 1.70603 + 0.299093i 0.311477 + 0.0546066i
\(31\) 5.87016i 1.05431i 0.849769 + 0.527156i \(0.176742\pi\)
−0.849769 + 0.527156i \(0.823258\pi\)
\(32\) −0.500000 + 0.866025i −0.0883883 + 0.153093i
\(33\) 3.73424 + 10.2285i 0.650047 + 1.78055i
\(34\) −4.63331 2.67504i −0.794606 0.458766i
\(35\) 0.335662 0.193795i 0.0567373 0.0327573i
\(36\) 0.526745 + 2.95339i 0.0877908 + 0.492232i
\(37\) 2.54580i 0.418527i 0.977859 + 0.209264i \(0.0671067\pi\)
−0.977859 + 0.209264i \(0.932893\pi\)
\(38\) −4.15500 + 1.31757i −0.674030 + 0.213738i
\(39\) 11.7464 + 2.05932i 1.88093 + 0.329755i
\(40\) −0.866025 + 0.500000i −0.136931 + 0.0790569i
\(41\) −1.40194 2.42823i −0.218946 0.379226i 0.735540 0.677481i \(-0.236929\pi\)
−0.954486 + 0.298256i \(0.903595\pi\)
\(42\) 0.514688 + 0.431014i 0.0794180 + 0.0665069i
\(43\) −0.588721 1.01969i −0.0897791 0.155502i 0.817639 0.575732i \(-0.195283\pi\)
−0.907418 + 0.420230i \(0.861949\pi\)
\(44\) −5.44441 3.14333i −0.820775 0.473875i
\(45\) −1.02052 + 2.82109i −0.152131 + 0.420543i
\(46\) 6.44153i 0.949751i
\(47\) 6.74336 + 3.89328i 0.983620 + 0.567893i 0.903361 0.428881i \(-0.141092\pi\)
0.0802589 + 0.996774i \(0.474425\pi\)
\(48\) −1.32792 1.11204i −0.191669 0.160509i
\(49\) −6.84977 −0.978539
\(50\) −1.00000 −0.141421
\(51\) 5.94949 7.10448i 0.833096 0.994827i
\(52\) −5.96278 + 3.44261i −0.826889 + 0.477405i
\(53\) −1.97481 + 3.42047i −0.271261 + 0.469837i −0.969185 0.246334i \(-0.920774\pi\)
0.697924 + 0.716172i \(0.254107\pi\)
\(54\) −5.19613 + 0.0153044i −0.707104 + 0.00208266i
\(55\) −3.14333 5.44441i −0.423846 0.734124i
\(56\) −0.387589 −0.0517938
\(57\) −1.00509 7.48263i −0.133127 0.991099i
\(58\) −4.30489 −0.565260
\(59\) 0.556791 + 0.964390i 0.0724880 + 0.125553i 0.899991 0.435908i \(-0.143573\pi\)
−0.827503 + 0.561461i \(0.810239\pi\)
\(60\) −0.593994 1.62701i −0.0766843 0.210046i
\(61\) 1.28373 2.22348i 0.164365 0.284688i −0.772065 0.635544i \(-0.780776\pi\)
0.936429 + 0.350856i \(0.114109\pi\)
\(62\) 5.08371 2.93508i 0.645632 0.372756i
\(63\) −0.889262 + 0.749160i −0.112037 + 0.0943853i
\(64\) 1.00000 0.125000
\(65\) −6.88523 −0.854008
\(66\) 6.99100 8.34818i 0.860533 1.02759i
\(67\) 6.95760 + 4.01697i 0.850006 + 0.490751i 0.860653 0.509192i \(-0.170056\pi\)
−0.0106470 + 0.999943i \(0.503389\pi\)
\(68\) 5.35008i 0.648793i
\(69\) −10.9894 1.92661i −1.32297 0.231937i
\(70\) −0.335662 0.193795i −0.0401193 0.0231629i
\(71\) −4.17799 7.23648i −0.495836 0.858813i 0.504153 0.863614i \(-0.331805\pi\)
−0.999988 + 0.00480188i \(0.998472\pi\)
\(72\) 2.29434 1.93287i 0.270391 0.227791i
\(73\) −0.890700 1.54274i −0.104249 0.180564i 0.809182 0.587557i \(-0.199910\pi\)
−0.913431 + 0.406994i \(0.866577\pi\)
\(74\) 2.20473 1.27290i 0.256294 0.147972i
\(75\) 0.299093 1.70603i 0.0345362 0.196996i
\(76\) 3.21855 + 2.93955i 0.369193 + 0.337189i
\(77\) 2.43664i 0.277681i
\(78\) −4.08978 11.2024i −0.463077 1.26842i
\(79\) −12.3862 + 7.15117i −1.39355 + 0.804569i −0.993707 0.112012i \(-0.964270\pi\)
−0.399848 + 0.916581i \(0.630937\pi\)
\(80\) 0.866025 + 0.500000i 0.0968246 + 0.0559017i
\(81\) 1.52801 8.86934i 0.169779 0.985482i
\(82\) −1.40194 + 2.42823i −0.154818 + 0.268153i
\(83\) 3.22583i 0.354081i 0.984204 + 0.177040i \(0.0566523\pi\)
−0.984204 + 0.177040i \(0.943348\pi\)
\(84\) 0.115925 0.661239i 0.0126485 0.0721471i
\(85\) −2.67504 + 4.63331i −0.290149 + 0.502553i
\(86\) −0.588721 + 1.01969i −0.0634834 + 0.109956i
\(87\) 1.28756 7.34428i 0.138041 0.787390i
\(88\) 6.28666i 0.670160i
\(89\) 7.49847 12.9877i 0.794836 1.37670i −0.128107 0.991760i \(-0.540890\pi\)
0.922943 0.384936i \(-0.125777\pi\)
\(90\) 2.95339 0.526745i 0.311315 0.0555238i
\(91\) −2.31111 1.33432i −0.242270 0.139875i
\(92\) 5.57852 3.22076i 0.581601 0.335788i
\(93\) 3.48684 + 9.55083i 0.361568 + 0.990375i
\(94\) 7.78656i 0.803122i
\(95\) 1.31757 + 4.15500i 0.135180 + 0.426294i
\(96\) −0.299093 + 1.70603i −0.0305260 + 0.174121i
\(97\) −5.33880 + 3.08236i −0.542073 + 0.312966i −0.745919 0.666037i \(-0.767989\pi\)
0.203846 + 0.979003i \(0.434656\pi\)
\(98\) 3.42489 + 5.93208i 0.345966 + 0.599230i
\(99\) 12.1513 + 14.4237i 1.22125 + 1.44964i
\(100\) 0.500000 + 0.866025i 0.0500000 + 0.0866025i
\(101\) 3.63539 + 2.09889i 0.361734 + 0.208847i 0.669841 0.742504i \(-0.266362\pi\)
−0.308107 + 0.951352i \(0.599695\pi\)
\(102\) −9.12741 1.60017i −0.903748 0.158441i
\(103\) 14.4685i 1.42562i 0.701356 + 0.712811i \(0.252578\pi\)
−0.701356 + 0.712811i \(0.747422\pi\)
\(104\) 5.96278 + 3.44261i 0.584699 + 0.337576i
\(105\) 0.431014 0.514688i 0.0420626 0.0502284i
\(106\) 3.94962 0.383621
\(107\) −2.46390 −0.238194 −0.119097 0.992883i \(-0.538000\pi\)
−0.119097 + 0.992883i \(0.538000\pi\)
\(108\) 2.61132 + 4.49233i 0.251274 + 0.432274i
\(109\) 2.32388 1.34169i 0.222587 0.128511i −0.384561 0.923100i \(-0.625647\pi\)
0.607148 + 0.794589i \(0.292314\pi\)
\(110\) −3.14333 + 5.44441i −0.299705 + 0.519104i
\(111\) 1.51219 + 4.14205i 0.143531 + 0.393146i
\(112\) 0.193795 + 0.335662i 0.0183119 + 0.0317171i
\(113\) −0.146598 −0.0137908 −0.00689539 0.999976i \(-0.502195\pi\)
−0.00689539 + 0.999976i \(0.502195\pi\)
\(114\) −5.97761 + 4.61175i −0.559854 + 0.431930i
\(115\) 6.44153 0.600675
\(116\) 2.15245 + 3.72815i 0.199850 + 0.346150i
\(117\) 20.3348 3.62676i 1.87995 0.335294i
\(118\) 0.556791 0.964390i 0.0512567 0.0887793i
\(119\) −1.79582 + 1.03682i −0.164623 + 0.0950449i
\(120\) −1.11204 + 1.32792i −0.101515 + 0.121222i
\(121\) −28.5221 −2.59292
\(122\) −2.56746 −0.232447
\(123\) −3.72333 3.11802i −0.335721 0.281142i
\(124\) −5.08371 2.93508i −0.456530 0.263578i
\(125\) 1.00000i 0.0894427i
\(126\) 1.09342 + 0.395544i 0.0974099 + 0.0352378i
\(127\) −14.1674 8.17952i −1.25715 0.725815i −0.284630 0.958638i \(-0.591871\pi\)
−0.972519 + 0.232822i \(0.925204\pi\)
\(128\) −0.500000 0.866025i −0.0441942 0.0765466i
\(129\) −1.56355 1.30936i −0.137663 0.115283i
\(130\) 3.44261 + 5.96278i 0.301937 + 0.522971i
\(131\) 2.32705 1.34352i 0.203316 0.117384i −0.394886 0.918730i \(-0.629216\pi\)
0.598201 + 0.801346i \(0.295882\pi\)
\(132\) −10.7252 1.88029i −0.933512 0.163659i
\(133\) −0.362957 + 1.65001i −0.0314724 + 0.143074i
\(134\) 8.03394i 0.694027i
\(135\) 0.0153044 + 5.19613i 0.00131719 + 0.447212i
\(136\) 4.63331 2.67504i 0.397303 0.229383i
\(137\) −11.8037 6.81488i −1.00846 0.582234i −0.0977189 0.995214i \(-0.531155\pi\)
−0.910740 + 0.412980i \(0.864488\pi\)
\(138\) 3.82623 + 10.4804i 0.325710 + 0.892155i
\(139\) 11.3319 19.6275i 0.961162 1.66478i 0.241572 0.970383i \(-0.422337\pi\)
0.719590 0.694399i \(-0.244330\pi\)
\(140\) 0.387589i 0.0327573i
\(141\) 13.2841 + 2.32890i 1.11872 + 0.196129i
\(142\) −4.17799 + 7.23648i −0.350609 + 0.607272i
\(143\) −21.6425 + 37.4860i −1.80984 + 3.13474i
\(144\) −2.82109 1.02052i −0.235091 0.0850436i
\(145\) 4.30489i 0.357502i
\(146\) −0.890700 + 1.54274i −0.0737148 + 0.127678i
\(147\) −11.1447 + 4.06872i −0.919197 + 0.335583i
\(148\) −2.20473 1.27290i −0.181228 0.104632i
\(149\) −2.36838 + 1.36738i −0.194025 + 0.112020i −0.593866 0.804564i \(-0.702399\pi\)
0.399840 + 0.916585i \(0.369066\pi\)
\(150\) −1.62701 + 0.593994i −0.132845 + 0.0484994i
\(151\) 5.03506i 0.409747i −0.978788 0.204874i \(-0.934322\pi\)
0.978788 0.204874i \(-0.0656784\pi\)
\(152\) 0.936449 4.25712i 0.0759560 0.345298i
\(153\) 5.45988 15.0931i 0.441405 1.22020i
\(154\) −2.11019 + 1.21832i −0.170044 + 0.0981751i
\(155\) −2.93508 5.08371i −0.235751 0.408333i
\(156\) −7.65663 + 9.14304i −0.613021 + 0.732029i
\(157\) 0.931580 + 1.61354i 0.0743482 + 0.128775i 0.900803 0.434229i \(-0.142979\pi\)
−0.826454 + 0.563004i \(0.809646\pi\)
\(158\) 12.3862 + 7.15117i 0.985392 + 0.568916i
\(159\) −1.18130 + 6.73817i −0.0936833 + 0.534372i
\(160\) 1.00000i 0.0790569i
\(161\) 2.16218 + 1.24833i 0.170403 + 0.0983824i
\(162\) −8.44508 + 3.11137i −0.663508 + 0.244452i
\(163\) −15.6424 −1.22521 −0.612604 0.790390i \(-0.709878\pi\)
−0.612604 + 0.790390i \(0.709878\pi\)
\(164\) 2.80388 0.218946
\(165\) −8.34818 6.99100i −0.649905 0.544249i
\(166\) 2.79365 1.61291i 0.216829 0.125186i
\(167\) −2.58979 + 4.48565i −0.200404 + 0.347110i −0.948659 0.316302i \(-0.897559\pi\)
0.748255 + 0.663412i \(0.230892\pi\)
\(168\) −0.630613 + 0.230226i −0.0486528 + 0.0177623i
\(169\) 17.2032 + 29.7968i 1.32332 + 2.29206i
\(170\) 5.35008 0.410333
\(171\) −6.07993 11.5773i −0.464944 0.885340i
\(172\) 1.17744 0.0897791
\(173\) 4.91408 + 8.51144i 0.373611 + 0.647113i 0.990118 0.140236i \(-0.0447862\pi\)
−0.616507 + 0.787349i \(0.711453\pi\)
\(174\) −7.00412 + 2.55708i −0.530981 + 0.193852i
\(175\) −0.193795 + 0.335662i −0.0146495 + 0.0253737i
\(176\) 5.44441 3.14333i 0.410388 0.236937i
\(177\) 1.47875 + 1.23834i 0.111149 + 0.0930797i
\(178\) −14.9969 −1.12407
\(179\) −19.6374 −1.46777 −0.733884 0.679275i \(-0.762294\pi\)
−0.733884 + 0.679275i \(0.762294\pi\)
\(180\) −1.93287 2.29434i −0.144068 0.171010i
\(181\) −19.3105 11.1489i −1.43534 0.828691i −0.437815 0.899065i \(-0.644247\pi\)
−0.997521 + 0.0703737i \(0.977581\pi\)
\(182\) 2.66864i 0.197813i
\(183\) 0.767908 4.38017i 0.0567654 0.323791i
\(184\) −5.57852 3.22076i −0.411254 0.237438i
\(185\) −1.27290 2.20473i −0.0935855 0.162095i
\(186\) 6.52784 7.79511i 0.478644 0.571565i
\(187\) 16.8171 + 29.1280i 1.22979 + 2.13005i
\(188\) −6.74336 + 3.89328i −0.491810 + 0.283947i
\(189\) −1.00184 + 1.74711i −0.0728735 + 0.127084i
\(190\) 2.93955 3.21855i 0.213257 0.233498i
\(191\) 17.2742i 1.24992i −0.780658 0.624958i \(-0.785116\pi\)
0.780658 0.624958i \(-0.214884\pi\)
\(192\) 1.62701 0.593994i 0.117420 0.0428678i
\(193\) 8.44254 4.87430i 0.607707 0.350860i −0.164360 0.986400i \(-0.552556\pi\)
0.772068 + 0.635540i \(0.219223\pi\)
\(194\) 5.33880 + 3.08236i 0.383304 + 0.221300i
\(195\) −11.2024 + 4.08978i −0.802217 + 0.292876i
\(196\) 3.42489 5.93208i 0.244635 0.423720i
\(197\) 7.99412i 0.569557i 0.958593 + 0.284779i \(0.0919201\pi\)
−0.958593 + 0.284779i \(0.908080\pi\)
\(198\) 6.41568 17.7352i 0.455943 1.26039i
\(199\) 2.50783 4.34368i 0.177775 0.307915i −0.763343 0.645993i \(-0.776443\pi\)
0.941118 + 0.338078i \(0.109777\pi\)
\(200\) 0.500000 0.866025i 0.0353553 0.0612372i
\(201\) 13.7062 + 2.40289i 0.966758 + 0.169487i
\(202\) 4.19778i 0.295355i
\(203\) −0.834265 + 1.44499i −0.0585539 + 0.101418i
\(204\) 3.17792 + 8.70465i 0.222499 + 0.609448i
\(205\) 2.42823 + 1.40194i 0.169595 + 0.0979157i
\(206\) 12.5301 7.23425i 0.873012 0.504034i
\(207\) −19.0244 + 3.39304i −1.32228 + 0.235833i
\(208\) 6.88523i 0.477405i
\(209\) 26.7631 + 5.88714i 1.85124 + 0.407222i
\(210\) −0.661239 0.115925i −0.0456299 0.00799959i
\(211\) −0.901047 + 0.520219i −0.0620306 + 0.0358134i −0.530695 0.847563i \(-0.678069\pi\)
0.468664 + 0.883377i \(0.344736\pi\)
\(212\) −1.97481 3.42047i −0.135630 0.234919i
\(213\) −11.0961 9.29215i −0.760290 0.636688i
\(214\) 1.23195 + 2.13380i 0.0842144 + 0.145864i
\(215\) 1.01969 + 0.588721i 0.0695426 + 0.0401504i
\(216\) 2.58481 4.50763i 0.175874 0.306706i
\(217\) 2.27521i 0.154451i
\(218\) −2.32388 1.34169i −0.157393 0.0908708i
\(219\) −2.36556 1.98098i −0.159849 0.133862i
\(220\) 6.28666 0.423846
\(221\) 36.8365 2.47789
\(222\) 2.83103 3.38062i 0.190006 0.226892i
\(223\) −3.44225 + 1.98738i −0.230510 + 0.133085i −0.610807 0.791779i \(-0.709155\pi\)
0.380297 + 0.924864i \(0.375822\pi\)
\(224\) 0.193795 0.335662i 0.0129484 0.0224274i
\(225\) −0.526745 2.95339i −0.0351163 0.196893i
\(226\) 0.0732990 + 0.126958i 0.00487578 + 0.00844509i
\(227\) −20.9613 −1.39125 −0.695626 0.718404i \(-0.744873\pi\)
−0.695626 + 0.718404i \(0.744873\pi\)
\(228\) 6.98269 + 2.87088i 0.462440 + 0.190129i
\(229\) −8.17578 −0.540271 −0.270135 0.962822i \(-0.587068\pi\)
−0.270135 + 0.962822i \(0.587068\pi\)
\(230\) −3.22076 5.57852i −0.212371 0.367837i
\(231\) −1.44735 3.96445i −0.0952287 0.260841i
\(232\) 2.15245 3.72815i 0.141315 0.244765i
\(233\) 3.05627 1.76454i 0.200223 0.115599i −0.396537 0.918019i \(-0.629788\pi\)
0.596759 + 0.802420i \(0.296455\pi\)
\(234\) −13.3083 15.7971i −0.869988 1.03269i
\(235\) −7.78656 −0.507939
\(236\) −1.11358 −0.0724880
\(237\) −15.9047 + 18.9924i −1.03312 + 1.23369i
\(238\) 1.79582 + 1.03682i 0.116406 + 0.0672069i
\(239\) 15.8539i 1.02550i −0.858537 0.512751i \(-0.828626\pi\)
0.858537 0.512751i \(-0.171374\pi\)
\(240\) 1.70603 + 0.299093i 0.110124 + 0.0193063i
\(241\) 3.16963 + 1.82999i 0.204174 + 0.117880i 0.598601 0.801047i \(-0.295724\pi\)
−0.394427 + 0.918927i \(0.629057\pi\)
\(242\) 14.2610 + 24.7009i 0.916735 + 1.58783i
\(243\) −2.78223 15.3382i −0.178480 0.983943i
\(244\) 1.28373 + 2.22348i 0.0821823 + 0.142344i
\(245\) 5.93208 3.42489i 0.378987 0.218808i
\(246\) −0.838620 + 4.78351i −0.0534684 + 0.304985i
\(247\) 20.2395 22.1604i 1.28781 1.41004i
\(248\) 5.87016i 0.372756i
\(249\) 1.91612 + 5.24846i 0.121429 + 0.332608i
\(250\) 0.866025 0.500000i 0.0547723 0.0316228i
\(251\) −9.75160 5.63009i −0.615516 0.355368i 0.159605 0.987181i \(-0.448978\pi\)
−0.775121 + 0.631813i \(0.782311\pi\)
\(252\) −0.204161 1.14470i −0.0128609 0.0721096i
\(253\) 20.2478 35.0703i 1.27297 2.20485i
\(254\) 16.3590i 1.02646i
\(255\) −1.60017 + 9.12741i −0.100207 + 0.571581i
\(256\) −0.500000 + 0.866025i −0.0312500 + 0.0541266i
\(257\) 13.6499 23.6423i 0.851456 1.47477i −0.0284374 0.999596i \(-0.509053\pi\)
0.879894 0.475170i \(-0.157614\pi\)
\(258\) −0.352164 + 2.00875i −0.0219248 + 0.125059i
\(259\) 0.986725i 0.0613121i
\(260\) 3.44261 5.96278i 0.213502 0.369796i
\(261\) −2.26758 12.7140i −0.140360 0.786980i
\(262\) −2.32705 1.34352i −0.143766 0.0830032i
\(263\) −16.4659 + 9.50659i −1.01533 + 0.586202i −0.912748 0.408523i \(-0.866044\pi\)
−0.102583 + 0.994724i \(0.532711\pi\)
\(264\) 3.73424 + 10.2285i 0.229826 + 0.629519i
\(265\) 3.94962i 0.242623i
\(266\) 1.61043 0.510676i 0.0987419 0.0313116i
\(267\) 4.48547 25.5853i 0.274507 1.56579i
\(268\) −6.95760 + 4.01697i −0.425003 + 0.245376i
\(269\) −9.43473 16.3414i −0.575246 0.996355i −0.996015 0.0891869i \(-0.971573\pi\)
0.420769 0.907168i \(-0.361760\pi\)
\(270\) 4.49233 2.61132i 0.273394 0.158920i
\(271\) 9.90543 + 17.1567i 0.601712 + 1.04220i 0.992562 + 0.121741i \(0.0388478\pi\)
−0.390850 + 0.920454i \(0.627819\pi\)
\(272\) −4.63331 2.67504i −0.280936 0.162198i
\(273\) −4.55278 0.798171i −0.275547 0.0483075i
\(274\) 13.6298i 0.823403i
\(275\) 5.44441 + 3.14333i 0.328310 + 0.189550i
\(276\) 7.16322 8.55383i 0.431175 0.514880i
\(277\) 13.1915 0.792598 0.396299 0.918121i \(-0.370294\pi\)
0.396299 + 0.918121i \(0.370294\pi\)
\(278\) −22.6639 −1.35929
\(279\) 11.3463 + 13.4682i 0.679283 + 0.806318i
\(280\) 0.335662 0.193795i 0.0200596 0.0115814i
\(281\) −8.39558 + 14.5416i −0.500838 + 0.867477i 0.499161 + 0.866509i \(0.333641\pi\)
−1.00000 0.000967983i \(0.999692\pi\)
\(282\) −4.62517 12.6688i −0.275425 0.754418i
\(283\) 3.98624 + 6.90437i 0.236958 + 0.410422i 0.959840 0.280549i \(-0.0905164\pi\)
−0.722882 + 0.690971i \(0.757183\pi\)
\(284\) 8.35597 0.495836
\(285\) 4.61175 + 5.97761i 0.273176 + 0.354083i
\(286\) 43.2851 2.55950
\(287\) 0.543377 + 0.941156i 0.0320745 + 0.0555547i
\(288\) 0.526745 + 2.95339i 0.0310387 + 0.174030i
\(289\) 5.81170 10.0662i 0.341864 0.592127i
\(290\) 3.72815 2.15245i 0.218924 0.126396i
\(291\) −6.85540 + 8.18625i −0.401871 + 0.479887i
\(292\) 1.78140 0.104249
\(293\) −4.52893 −0.264583 −0.132292 0.991211i \(-0.542234\pi\)
−0.132292 + 0.991211i \(0.542234\pi\)
\(294\) 9.09595 + 7.61721i 0.530487 + 0.444245i
\(295\) −0.964390 0.556791i −0.0561489 0.0324176i
\(296\) 2.54580i 0.147972i
\(297\) 28.3380 + 16.2498i 1.64433 + 0.942911i
\(298\) 2.36838 + 1.36738i 0.137196 + 0.0792104i
\(299\) −22.1757 38.4094i −1.28245 2.22127i
\(300\) 1.32792 + 1.11204i 0.0766675 + 0.0642035i
\(301\) 0.228182 + 0.395223i 0.0131522 + 0.0227802i
\(302\) −4.36049 + 2.51753i −0.250918 + 0.144868i
\(303\) 7.16155 + 1.25553i 0.411420 + 0.0721281i
\(304\) −4.15500 + 1.31757i −0.238305 + 0.0755679i
\(305\) 2.56746i 0.147012i
\(306\) −15.8009 + 2.81813i −0.903278 + 0.161102i
\(307\) 20.5036 11.8378i 1.17020 0.675618i 0.216476 0.976288i \(-0.430544\pi\)
0.953728 + 0.300670i \(0.0972104\pi\)
\(308\) 2.11019 + 1.21832i 0.120239 + 0.0694203i
\(309\) 8.59420 + 23.5404i 0.488907 + 1.33917i
\(310\) −2.93508 + 5.08371i −0.166701 + 0.288735i
\(311\) 21.2557i 1.20530i 0.798006 + 0.602650i \(0.205888\pi\)
−0.798006 + 0.602650i \(0.794112\pi\)
\(312\) 11.7464 + 2.05932i 0.665010 + 0.116586i
\(313\) 16.1860 28.0351i 0.914889 1.58463i 0.107826 0.994170i \(-0.465611\pi\)
0.807063 0.590465i \(-0.201056\pi\)
\(314\) 0.931580 1.61354i 0.0525721 0.0910575i
\(315\) 0.395544 1.09342i 0.0222864 0.0616074i
\(316\) 14.3023i 0.804569i
\(317\) 0.273517 0.473746i 0.0153623 0.0266082i −0.858242 0.513245i \(-0.828443\pi\)
0.873604 + 0.486637i \(0.161777\pi\)
\(318\) 6.42608 2.34605i 0.360357 0.131560i
\(319\) 23.4376 + 13.5317i 1.31225 + 0.757630i
\(320\) −0.866025 + 0.500000i −0.0484123 + 0.0279508i
\(321\) −4.00880 + 1.46354i −0.223749 + 0.0816869i
\(322\) 2.49667i 0.139134i
\(323\) −7.04911 22.2296i −0.392223 1.23689i
\(324\) 6.91707 + 5.75797i 0.384281 + 0.319887i
\(325\) 5.96278 3.44261i 0.330756 0.190962i
\(326\) 7.82120 + 13.5467i 0.433176 + 0.750284i
\(327\) 2.98402 3.56332i 0.165017 0.197052i
\(328\) −1.40194 2.42823i −0.0774091 0.134077i
\(329\) −2.61365 1.50899i −0.144095 0.0831935i
\(330\) −1.88029 + 10.7252i −0.103507 + 0.590405i
\(331\) 12.2880i 0.675410i −0.941252 0.337705i \(-0.890349\pi\)
0.941252 0.337705i \(-0.109651\pi\)
\(332\) −2.79365 1.61291i −0.153321 0.0885202i
\(333\) 4.92071 + 5.84094i 0.269653 + 0.320082i
\(334\) 5.17958 0.283414
\(335\) −8.03394 −0.438941
\(336\) 0.514688 + 0.431014i 0.0280785 + 0.0235137i
\(337\) 12.8425 7.41464i 0.699577 0.403901i −0.107613 0.994193i \(-0.534321\pi\)
0.807190 + 0.590292i \(0.200987\pi\)
\(338\) 17.2032 29.7968i 0.935730 1.62073i
\(339\) −0.238517 + 0.0870783i −0.0129545 + 0.00472944i
\(340\) −2.67504 4.63331i −0.145074 0.251276i
\(341\) −36.9037 −1.99845
\(342\) −6.98629 + 11.0540i −0.377775 + 0.597734i
\(343\) 5.36802 0.289846
\(344\) −0.588721 1.01969i −0.0317417 0.0549782i
\(345\) 10.4804 3.82623i 0.564248 0.205997i
\(346\) 4.91408 8.51144i 0.264183 0.457578i
\(347\) 8.34699 4.81914i 0.448090 0.258705i −0.258933 0.965895i \(-0.583371\pi\)
0.707023 + 0.707190i \(0.250038\pi\)
\(348\) 5.71655 + 4.78720i 0.306439 + 0.256621i
\(349\) −25.2299 −1.35053 −0.675263 0.737577i \(-0.735970\pi\)
−0.675263 + 0.737577i \(0.735970\pi\)
\(350\) 0.387589 0.0207175
\(351\) 30.9307 17.9795i 1.65096 0.959676i
\(352\) −5.44441 3.14333i −0.290188 0.167540i
\(353\) 10.0563i 0.535241i −0.963524 0.267620i \(-0.913763\pi\)
0.963524 0.267620i \(-0.0862373\pi\)
\(354\) 0.333064 1.89980i 0.0177022 0.100973i
\(355\) 7.23648 + 4.17799i 0.384073 + 0.221744i
\(356\) 7.49847 + 12.9877i 0.397418 + 0.688348i
\(357\) −2.30596 + 2.75362i −0.122044 + 0.145737i
\(358\) 9.81870 + 17.0065i 0.518934 + 0.898821i
\(359\) −9.76791 + 5.63951i −0.515531 + 0.297642i −0.735104 0.677954i \(-0.762867\pi\)
0.219573 + 0.975596i \(0.429533\pi\)
\(360\) −1.02052 + 2.82109i −0.0537863 + 0.148684i
\(361\) −17.2461 7.97315i −0.907691 0.419639i
\(362\) 22.2978i 1.17195i
\(363\) −46.4058 + 16.9419i −2.43567 + 0.889222i
\(364\) 2.31111 1.33432i 0.121135 0.0699374i
\(365\) 1.54274 + 0.890700i 0.0807505 + 0.0466213i
\(366\) −4.17729 + 1.52505i −0.218350 + 0.0797159i
\(367\) −13.2097 + 22.8799i −0.689540 + 1.19432i 0.282447 + 0.959283i \(0.408854\pi\)
−0.971987 + 0.235036i \(0.924479\pi\)
\(368\) 6.44153i 0.335788i
\(369\) −7.90999 2.86142i −0.411777 0.148960i
\(370\) −1.27290 + 2.20473i −0.0661750 + 0.114618i
\(371\) 0.765414 1.32574i 0.0397383 0.0688288i
\(372\) −10.0147 1.75572i −0.519237 0.0910299i
\(373\) 9.42090i 0.487796i −0.969801 0.243898i \(-0.921574\pi\)
0.969801 0.243898i \(-0.0784262\pi\)
\(374\) 16.8171 29.1280i 0.869590 1.50617i
\(375\) 0.593994 + 1.62701i 0.0306737 + 0.0840186i
\(376\) 6.74336 + 3.89328i 0.347762 + 0.200781i
\(377\) 25.6691 14.8201i 1.32203 0.763273i
\(378\) 2.01396 0.00593182i 0.103587 0.000305100i
\(379\) 18.4868i 0.949601i −0.880093 0.474801i \(-0.842520\pi\)
0.880093 0.474801i \(-0.157480\pi\)
\(380\) −4.25712 0.936449i −0.218386 0.0480388i
\(381\) −27.9091 4.89287i −1.42982 0.250669i
\(382\) −14.9599 + 8.63710i −0.765415 + 0.441912i
\(383\) 8.39580 + 14.5419i 0.429005 + 0.743059i 0.996785 0.0801217i \(-0.0255309\pi\)
−0.567780 + 0.823180i \(0.692198\pi\)
\(384\) −1.32792 1.11204i −0.0677651 0.0567484i
\(385\) 1.21832 + 2.11019i 0.0620914 + 0.107545i
\(386\) −8.44254 4.87430i −0.429714 0.248096i
\(387\) −3.32167 1.20161i −0.168850 0.0610811i
\(388\) 6.16472i 0.312966i
\(389\) 3.31963 + 1.91659i 0.168312 + 0.0971748i 0.581790 0.813339i \(-0.302353\pi\)
−0.413478 + 0.910514i \(0.635686\pi\)
\(390\) 9.14304 + 7.65663i 0.462976 + 0.387709i
\(391\) −34.4627 −1.74285
\(392\) −6.84977 −0.345966
\(393\) 2.98810 3.56819i 0.150730 0.179991i
\(394\) 6.92311 3.99706i 0.348781 0.201369i
\(395\) 7.15117 12.3862i 0.359814 0.623217i
\(396\) −18.5670 + 3.31146i −0.933026 + 0.166407i
\(397\) 6.16028 + 10.6699i 0.309176 + 0.535508i 0.978182 0.207748i \(-0.0666135\pi\)
−0.669007 + 0.743257i \(0.733280\pi\)
\(398\) −5.01565 −0.251412
\(399\) 0.389561 + 2.90019i 0.0195025 + 0.145191i
\(400\) −1.00000 −0.0500000
\(401\) −3.20325 5.54818i −0.159962 0.277063i 0.774892 0.632093i \(-0.217804\pi\)
−0.934855 + 0.355030i \(0.884471\pi\)
\(402\) −4.77211 13.0713i −0.238011 0.651939i
\(403\) −20.2087 + 35.0025i −1.00667 + 1.74360i
\(404\) −3.63539 + 2.09889i −0.180867 + 0.104424i
\(405\) 3.11137 + 8.44508i 0.154605 + 0.419639i
\(406\) 1.66853 0.0828078
\(407\) −16.0046 −0.793318
\(408\) 5.94949 7.10448i 0.294544 0.351724i
\(409\) −28.7986 16.6269i −1.42400 0.822147i −0.427363 0.904080i \(-0.640557\pi\)
−0.996638 + 0.0819327i \(0.973891\pi\)
\(410\) 2.80388i 0.138474i
\(411\) −23.2528 4.07656i −1.14698 0.201082i
\(412\) −12.5301 7.23425i −0.617313 0.356406i
\(413\) −0.215806 0.373787i −0.0106191 0.0183929i
\(414\) 12.4506 + 14.7791i 0.611916 + 0.726351i
\(415\) −1.61291 2.79365i −0.0791748 0.137135i
\(416\) −5.96278 + 3.44261i −0.292349 + 0.168788i
\(417\) 6.77860 38.6653i 0.331949 1.89345i
\(418\) −8.28312 26.1211i −0.405141 1.27762i
\(419\) 26.2177i 1.28082i 0.768034 + 0.640409i \(0.221235\pi\)
−0.768034 + 0.640409i \(0.778765\pi\)
\(420\) 0.230226 + 0.630613i 0.0112339 + 0.0307707i
\(421\) 16.2792 9.39883i 0.793402 0.458071i −0.0477568 0.998859i \(-0.515207\pi\)
0.841159 + 0.540788i \(0.181874\pi\)
\(422\) 0.901047 + 0.520219i 0.0438623 + 0.0253239i
\(423\) 22.9968 4.10153i 1.11814 0.199423i
\(424\) −1.97481 + 3.42047i −0.0959052 + 0.166113i
\(425\) 5.35008i 0.259517i
\(426\) −2.49921 + 14.2556i −0.121087 + 0.690684i
\(427\) −0.497560 + 0.861799i −0.0240786 + 0.0417054i
\(428\) 1.23195 2.13380i 0.0595485 0.103141i
\(429\) −12.9463 + 73.8457i −0.625051 + 3.56531i
\(430\) 1.17744i 0.0567813i
\(431\) −16.8907 + 29.2555i −0.813595 + 1.40919i 0.0967380 + 0.995310i \(0.469159\pi\)
−0.910333 + 0.413877i \(0.864174\pi\)
\(432\) −5.19613 + 0.0153044i −0.249999 + 0.000736333i
\(433\) 18.8094 + 10.8596i 0.903920 + 0.521879i 0.878470 0.477797i \(-0.158565\pi\)
0.0254504 + 0.999676i \(0.491898\pi\)
\(434\) −1.97039 + 1.13761i −0.0945818 + 0.0546068i
\(435\) 2.55708 + 7.00412i 0.122603 + 0.335822i
\(436\) 2.68338i 0.128511i
\(437\) −18.9352 + 20.7324i −0.905792 + 0.991763i
\(438\) −0.532803 + 3.03912i −0.0254583 + 0.145215i
\(439\) −4.46634 + 2.57864i −0.213167 + 0.123072i −0.602782 0.797906i \(-0.705941\pi\)
0.389616 + 0.920978i \(0.372608\pi\)
\(440\) −3.14333 5.44441i −0.149852 0.259552i
\(441\) −15.7157 + 13.2397i −0.748368 + 0.630464i
\(442\) −18.4183 31.9014i −0.876068 1.51739i
\(443\) 28.7183 + 16.5805i 1.36445 + 0.787765i 0.990212 0.139568i \(-0.0445714\pi\)
0.374237 + 0.927333i \(0.377905\pi\)
\(444\) −4.34322 0.761431i −0.206120 0.0361359i
\(445\) 14.9969i 0.710923i
\(446\) 3.44225 + 1.98738i 0.162995 + 0.0941053i
\(447\) −3.04117 + 3.63155i −0.143842 + 0.171767i
\(448\) −0.387589 −0.0183119
\(449\) 28.6061 1.35001 0.675004 0.737815i \(-0.264142\pi\)
0.675004 + 0.737815i \(0.264142\pi\)
\(450\) −2.29434 + 1.93287i −0.108156 + 0.0911164i
\(451\) 15.2655 8.81352i 0.718822 0.415012i
\(452\) 0.0732990 0.126958i 0.00344769 0.00597158i
\(453\) −2.99080 8.19211i −0.140520 0.384899i
\(454\) 10.4807 + 18.1530i 0.491882 + 0.851964i
\(455\) 2.66864 0.125108
\(456\) −1.00509 7.48263i −0.0470676 0.350406i
\(457\) 12.0944 0.565752 0.282876 0.959156i \(-0.408711\pi\)
0.282876 + 0.959156i \(0.408711\pi\)
\(458\) 4.08789 + 7.08043i 0.191015 + 0.330847i
\(459\) −0.0818798 27.7997i −0.00382182 1.29758i
\(460\) −3.22076 + 5.57852i −0.150169 + 0.260100i
\(461\) 23.9736 13.8412i 1.11656 0.644647i 0.176040 0.984383i \(-0.443671\pi\)
0.940521 + 0.339736i \(0.110338\pi\)
\(462\) −2.70964 + 3.23567i −0.126064 + 0.150537i
\(463\) 22.5239 1.04678 0.523388 0.852094i \(-0.324668\pi\)
0.523388 + 0.852094i \(0.324668\pi\)
\(464\) −4.30489 −0.199850
\(465\) −7.79511 6.52784i −0.361489 0.302721i
\(466\) −3.05627 1.76454i −0.141579 0.0817407i
\(467\) 22.4617i 1.03940i 0.854348 + 0.519701i \(0.173957\pi\)
−0.854348 + 0.519701i \(0.826043\pi\)
\(468\) −7.02653 + 19.4238i −0.324802 + 0.897867i
\(469\) −2.69669 1.55693i −0.124522 0.0718926i
\(470\) 3.89328 + 6.74336i 0.179584 + 0.311048i
\(471\) 2.47413 + 2.07190i 0.114002 + 0.0954683i
\(472\) 0.556791 + 0.964390i 0.0256284 + 0.0443896i
\(473\) 6.41047 3.70109i 0.294754 0.170176i
\(474\) 24.4002 + 4.27772i 1.12074 + 0.196482i
\(475\) −3.21855 2.93955i −0.147677 0.134876i
\(476\) 2.07363i 0.0950449i
\(477\) 2.08044 + 11.6648i 0.0952568 + 0.534093i
\(478\) −13.7299 + 7.92694i −0.627989 + 0.362570i
\(479\) 14.0462 + 8.10959i 0.641788 + 0.370537i 0.785303 0.619111i \(-0.212507\pi\)
−0.143515 + 0.989648i \(0.545840\pi\)
\(480\) −0.593994 1.62701i −0.0271120 0.0742626i
\(481\) −8.76421 + 15.1801i −0.399614 + 0.692151i
\(482\) 3.65997i 0.166707i
\(483\) 4.25939 + 0.746734i 0.193809 + 0.0339776i
\(484\) 14.2610 24.7009i 0.648229 1.12277i
\(485\) 3.08236 5.33880i 0.139963 0.242423i
\(486\) −11.8921 + 10.0786i −0.539438 + 0.457173i
\(487\) 26.2560i 1.18977i −0.803809 0.594887i \(-0.797197\pi\)
0.803809 0.594887i \(-0.202803\pi\)
\(488\) 1.28373 2.22348i 0.0581117 0.100652i
\(489\) −25.4504 + 9.29150i −1.15091 + 0.420176i
\(490\) −5.93208 3.42489i −0.267984 0.154721i
\(491\) −20.1138 + 11.6127i −0.907723 + 0.524074i −0.879698 0.475533i \(-0.842255\pi\)
−0.0280250 + 0.999607i \(0.508922\pi\)
\(492\) 4.56195 1.66549i 0.205668 0.0750859i
\(493\) 23.0315i 1.03729i
\(494\) −29.3112 6.44766i −1.31878 0.290094i
\(495\) −17.7352 6.41568i −0.797139 0.288363i
\(496\) 5.08371 2.93508i 0.228265 0.131789i
\(497\) 1.61934 + 2.80478i 0.0726374 + 0.125812i
\(498\) 3.58724 4.28364i 0.160748 0.191955i
\(499\) −5.68385 9.84472i −0.254444 0.440710i 0.710300 0.703899i \(-0.248559\pi\)
−0.964744 + 0.263189i \(0.915226\pi\)
\(500\) −0.866025 0.500000i −0.0387298 0.0223607i
\(501\) −1.54917 + 8.83653i −0.0692120 + 0.394787i
\(502\) 11.2602i 0.502567i
\(503\) 11.7374 + 6.77660i 0.523346 + 0.302154i 0.738302 0.674470i \(-0.235628\pi\)
−0.214957 + 0.976624i \(0.568961\pi\)
\(504\) −0.889262 + 0.749160i −0.0396109 + 0.0333702i
\(505\) −4.19778 −0.186799
\(506\) −40.4957 −1.80025
\(507\) 45.6889 + 38.2612i 2.02912 + 1.69924i
\(508\) 14.1674 8.17952i 0.628575 0.362908i
\(509\) 15.5217 26.8843i 0.687986 1.19163i −0.284502 0.958675i \(-0.591828\pi\)
0.972488 0.232951i \(-0.0748383\pi\)
\(510\) 8.70465 3.17792i 0.385449 0.140721i
\(511\) 0.345226 + 0.597948i 0.0152719 + 0.0264517i
\(512\) 1.00000 0.0441942
\(513\) −16.7690 15.2250i −0.740369 0.672201i
\(514\) −27.2998 −1.20414
\(515\) −7.23425 12.5301i −0.318779 0.552141i
\(516\) 1.91571 0.699393i 0.0843345 0.0307891i
\(517\) −24.4757 + 42.3932i −1.07644 + 1.86445i
\(518\) −0.854529 + 0.493363i −0.0375459 + 0.0216771i
\(519\) 13.0510 + 10.9293i 0.572876 + 0.479743i
\(520\) −6.88523 −0.301937
\(521\) −7.63094 −0.334317 −0.167159 0.985930i \(-0.553459\pi\)
−0.167159 + 0.985930i \(0.553459\pi\)
\(522\) −9.87690 + 8.32080i −0.432300 + 0.364192i
\(523\) −14.6044 8.43187i −0.638607 0.368700i 0.145471 0.989363i \(-0.453530\pi\)
−0.784078 + 0.620663i \(0.786864\pi\)
\(524\) 2.68705i 0.117384i
\(525\) −0.115925 + 0.661239i −0.00505939 + 0.0288589i
\(526\) 16.4659 + 9.50659i 0.717948 + 0.414507i
\(527\) 15.7029 + 27.1983i 0.684030 + 1.18477i
\(528\) 6.99100 8.34818i 0.304244 0.363308i
\(529\) 9.24662 + 16.0156i 0.402027 + 0.696331i
\(530\) −3.42047 + 1.97481i −0.148576 + 0.0857802i
\(531\) 3.14151 + 1.13644i 0.136330 + 0.0493171i
\(532\) −1.24747 1.13934i −0.0540849 0.0493965i
\(533\) 19.3053i 0.836207i
\(534\) −24.4002 + 8.90809i −1.05590 + 0.385491i
\(535\) 2.13380 1.23195i 0.0922522 0.0532618i
\(536\) 6.95760 + 4.01697i 0.300522 + 0.173507i
\(537\) −31.9503 + 11.6645i −1.37876 + 0.503360i
\(538\) −9.43473 + 16.3414i −0.406760 + 0.704529i
\(539\) 43.0622i 1.85482i
\(540\) −4.50763 2.58481i −0.193978 0.111233i
\(541\) −11.3322 + 19.6279i −0.487208 + 0.843869i −0.999892 0.0147085i \(-0.995318\pi\)
0.512684 + 0.858577i \(0.328651\pi\)
\(542\) 9.90543 17.1567i 0.425475 0.736944i
\(543\) −38.0408 6.66911i −1.63249 0.286199i
\(544\) 5.35008i 0.229383i
\(545\) −1.34169 + 2.32388i −0.0574717 + 0.0995440i
\(546\) 1.58516 + 4.34191i 0.0678384 + 0.185817i
\(547\) −1.44092 0.831914i −0.0616091 0.0355701i 0.468879 0.883262i \(-0.344658\pi\)
−0.530488 + 0.847692i \(0.677991\pi\)
\(548\) 11.8037 6.81488i 0.504230 0.291117i
\(549\) −1.35240 7.58272i −0.0577188 0.323623i
\(550\) 6.28666i 0.268064i
\(551\) −13.8555 12.6544i −0.590264 0.539097i
\(552\) −10.9894 1.92661i −0.467742 0.0820021i
\(553\) 4.80075 2.77172i 0.204149 0.117865i
\(554\) −6.59573 11.4241i −0.280226 0.485365i
\(555\) −3.38062 2.83103i −0.143499 0.120170i
\(556\) 11.3319 + 19.6275i 0.480581 + 0.832391i
\(557\) −7.03591 4.06218i −0.298121 0.172120i 0.343477 0.939161i \(-0.388395\pi\)
−0.641599 + 0.767041i \(0.721728\pi\)
\(558\) 5.99063 16.5602i 0.253604 0.701051i
\(559\) 8.10695i 0.342888i
\(560\) −0.335662 0.193795i −0.0141843 0.00818932i
\(561\) 44.6635 + 37.4024i 1.88569 + 1.57913i
\(562\) 16.7912 0.708292
\(563\) 6.21069 0.261749 0.130875 0.991399i \(-0.458221\pi\)
0.130875 + 0.991399i \(0.458221\pi\)
\(564\) −8.65895 + 10.3399i −0.364608 + 0.435390i
\(565\) 0.126958 0.0732990i 0.00534114 0.00308371i
\(566\) 3.98624 6.90437i 0.167554 0.290213i
\(567\) −0.592242 + 3.43766i −0.0248718 + 0.144368i
\(568\) −4.17799 7.23648i −0.175304 0.303636i
\(569\) 24.7474 1.03747 0.518733 0.854936i \(-0.326404\pi\)
0.518733 + 0.854936i \(0.326404\pi\)
\(570\) 2.87088 6.98269i 0.120248 0.292473i
\(571\) −2.91055 −0.121803 −0.0609014 0.998144i \(-0.519398\pi\)
−0.0609014 + 0.998144i \(0.519398\pi\)
\(572\) −21.6425 37.4860i −0.904920 1.56737i
\(573\) −10.2608 28.1053i −0.428650 1.17412i
\(574\) 0.543377 0.941156i 0.0226801 0.0392831i
\(575\) −5.57852 + 3.22076i −0.232641 + 0.134315i
\(576\) 2.29434 1.93287i 0.0955976 0.0805363i
\(577\) 11.1520 0.464264 0.232132 0.972684i \(-0.425430\pi\)
0.232132 + 0.972684i \(0.425430\pi\)
\(578\) −11.6234 −0.483469
\(579\) 10.8408 12.9454i 0.450529 0.537991i
\(580\) −3.72815 2.15245i −0.154803 0.0893755i
\(581\) 1.25030i 0.0518710i
\(582\) 10.5172 + 1.84382i 0.435952 + 0.0764289i
\(583\) −21.5033 12.4149i −0.890577 0.514175i
\(584\) −0.890700 1.54274i −0.0368574 0.0638389i
\(585\) −15.7971 + 13.3083i −0.653129 + 0.550229i
\(586\) 2.26447 + 3.92217i 0.0935443 + 0.162023i
\(587\) 28.0297 16.1829i 1.15691 0.667942i 0.206348 0.978479i \(-0.433842\pi\)
0.950561 + 0.310537i \(0.100509\pi\)
\(588\) 2.04872 11.6859i 0.0844877 0.481920i
\(589\) 24.9900 + 5.49711i 1.02969 + 0.226504i
\(590\) 1.11358i 0.0458454i
\(591\) 4.74846 + 13.0065i 0.195325 + 0.535017i
\(592\) 2.20473 1.27290i 0.0906138 0.0523159i
\(593\) 11.3927 + 6.57758i 0.467842 + 0.270109i 0.715336 0.698781i \(-0.246274\pi\)
−0.247494 + 0.968889i \(0.579607\pi\)
\(594\) −0.0962135 32.6663i −0.00394769 1.34031i
\(595\) 1.03682 1.79582i 0.0425054 0.0736215i
\(596\) 2.73477i 0.112020i
\(597\) 1.50014 8.55686i 0.0613968 0.350209i
\(598\) −22.1757 + 38.4094i −0.906831 + 1.57068i
\(599\) −19.9168 + 34.4969i −0.813777 + 1.40950i 0.0964255 + 0.995340i \(0.469259\pi\)
−0.910203 + 0.414163i \(0.864074\pi\)
\(600\) 0.299093 1.70603i 0.0122104 0.0696484i
\(601\) 2.09040i 0.0852692i −0.999091 0.0426346i \(-0.986425\pi\)
0.999091 0.0426346i \(-0.0135751\pi\)
\(602\) 0.228182 0.395223i 0.00930000 0.0161081i
\(603\) 23.7274 4.23184i 0.966255 0.172334i
\(604\) 4.36049 + 2.51753i 0.177426 + 0.102437i
\(605\) 24.7009 14.2610i 1.00423 0.579794i
\(606\) −2.49346 6.82984i −0.101290 0.277443i
\(607\) 5.53538i 0.224674i 0.993670 + 0.112337i \(0.0358336\pi\)
−0.993670 + 0.112337i \(0.964166\pi\)
\(608\) 3.21855 + 2.93955i 0.130529 + 0.119214i
\(609\) −0.499045 + 2.84656i −0.0202223 + 0.115349i
\(610\) 2.22348 1.28373i 0.0900263 0.0519767i
\(611\) 26.8061 + 46.4296i 1.08446 + 1.87834i
\(612\) 10.3410 + 12.2749i 0.418011 + 0.496184i
\(613\) −10.6274 18.4073i −0.429238 0.743462i 0.567568 0.823327i \(-0.307885\pi\)
−0.996806 + 0.0798646i \(0.974551\pi\)
\(614\) −20.5036 11.8378i −0.827459 0.477734i
\(615\) 4.78351 + 0.838620i 0.192890 + 0.0338164i
\(616\) 2.43664i 0.0981751i
\(617\) 3.00091 + 1.73258i 0.120812 + 0.0697509i 0.559188 0.829041i \(-0.311113\pi\)
−0.438376 + 0.898792i \(0.644446\pi\)
\(618\) 16.0895 19.2130i 0.647215 0.772860i
\(619\) 20.0769 0.806960 0.403480 0.914989i \(-0.367801\pi\)
0.403480 + 0.914989i \(0.367801\pi\)
\(620\) 5.87016 0.235751
\(621\) −28.9374 + 16.8209i −1.16122 + 0.674999i
\(622\) 18.4080 10.6278i 0.738092 0.426138i
\(623\) −2.90633 + 5.03390i −0.116440 + 0.201679i
\(624\) −4.08978 11.2024i −0.163722 0.448453i
\(625\) −0.500000 0.866025i −0.0200000 0.0346410i
\(626\) −32.3721 −1.29385
\(627\) 47.0408 6.31865i 1.87863 0.252343i
\(628\) −1.86316 −0.0743482
\(629\) 6.81012 + 11.7955i 0.271537 + 0.470317i
\(630\) −1.14470 + 0.204161i −0.0456061 + 0.00813395i
\(631\) −3.03717 + 5.26053i −0.120908 + 0.209418i −0.920126 0.391623i \(-0.871914\pi\)
0.799218 + 0.601041i \(0.205247\pi\)
\(632\) −12.3862 + 7.15117i −0.492696 + 0.284458i
\(633\) −1.15701 + 1.38162i −0.0459869 + 0.0549145i
\(634\) −0.547035 −0.0217255
\(635\) 16.3590 0.649189
\(636\) −5.24478 4.39212i −0.207969 0.174159i
\(637\) −40.8437 23.5811i −1.61829 0.934319i
\(638\) 27.0634i 1.07145i
\(639\) −23.5729 8.52746i −0.932530 0.337341i
\(640\) 0.866025 + 0.500000i 0.0342327 + 0.0197642i
\(641\) −2.26142 3.91689i −0.0893206 0.154708i 0.817904 0.575355i \(-0.195136\pi\)
−0.907224 + 0.420648i \(0.861803\pi\)
\(642\) 3.27186 + 2.73995i 0.129130 + 0.108137i
\(643\) 5.12601 + 8.87852i 0.202150 + 0.350135i 0.949221 0.314610i \(-0.101874\pi\)
−0.747071 + 0.664745i \(0.768540\pi\)
\(644\) −2.16218 + 1.24833i −0.0852017 + 0.0491912i
\(645\) 2.00875 + 0.352164i 0.0790945 + 0.0138664i
\(646\) −15.7268 + 17.2195i −0.618764 + 0.677492i
\(647\) 32.4311i 1.27500i −0.770451 0.637500i \(-0.779969\pi\)
0.770451 0.637500i \(-0.220031\pi\)
\(648\) 1.52801 8.86934i 0.0600261 0.348421i
\(649\) −6.06279 + 3.50035i −0.237985 + 0.137401i
\(650\) −5.96278 3.44261i −0.233880 0.135030i
\(651\) −1.35146 3.70180i −0.0529680 0.145085i
\(652\) 7.82120 13.5467i 0.306302 0.530531i
\(653\) 34.6967i 1.35778i 0.734238 + 0.678892i \(0.237540\pi\)
−0.734238 + 0.678892i \(0.762460\pi\)
\(654\) −4.57793 0.802580i −0.179011 0.0313834i
\(655\) −1.34352 + 2.32705i −0.0524958 + 0.0909255i
\(656\) −1.40194 + 2.42823i −0.0547365 + 0.0948065i
\(657\) −5.02548 1.81796i −0.196063 0.0709253i
\(658\) 3.01799i 0.117653i
\(659\) 3.29288 5.70344i 0.128272 0.222174i −0.794735 0.606957i \(-0.792390\pi\)
0.923007 + 0.384782i \(0.125723\pi\)
\(660\) 10.2285 3.73424i 0.398143 0.145355i
\(661\) 33.4091 + 19.2887i 1.29946 + 0.750245i 0.980311 0.197458i \(-0.0632687\pi\)
0.319152 + 0.947704i \(0.396602\pi\)
\(662\) −10.6417 + 6.14400i −0.413602 + 0.238793i
\(663\) 59.9335 21.8807i 2.32763 0.849775i
\(664\) 3.22583i 0.125186i
\(665\) −0.510676 1.61043i −0.0198032 0.0624499i
\(666\) 2.59805 7.18193i 0.100672 0.278294i
\(667\) −24.0149 + 13.8650i −0.929862 + 0.536856i
\(668\) −2.58979 4.48565i −0.100202 0.173555i
\(669\) −4.42009 + 5.27817i −0.170890 + 0.204066i
\(670\) 4.01697 + 6.95760i 0.155189 + 0.268795i
\(671\) 13.9783 + 8.07037i 0.539626 + 0.311553i
\(672\) 0.115925 0.661239i 0.00447191 0.0255079i
\(673\) 27.8104i 1.07201i 0.844214 + 0.536006i \(0.180068\pi\)
−0.844214 + 0.536006i \(0.819932\pi\)
\(674\) −12.8425 7.41464i −0.494676 0.285601i
\(675\) −2.61132 4.49233i −0.100510 0.172910i
\(676\) −34.4064 −1.32332
\(677\) −20.4612 −0.786387 −0.393193 0.919456i \(-0.628630\pi\)
−0.393193 + 0.919456i \(0.628630\pi\)
\(678\) 0.194670 + 0.163022i 0.00747627 + 0.00626084i
\(679\) 2.06926 1.19469i 0.0794110 0.0458480i
\(680\) −2.67504 + 4.63331i −0.102583 + 0.177679i
\(681\) −34.1044 + 12.4509i −1.30688 + 0.477120i
\(682\) 18.4518 + 31.9595i 0.706558 + 1.22379i
\(683\) 6.27342 0.240046 0.120023 0.992771i \(-0.461703\pi\)
0.120023 + 0.992771i \(0.461703\pi\)
\(684\) 13.0662 + 0.523288i 0.499600 + 0.0200084i
\(685\) 13.6298 0.520766
\(686\) −2.68401 4.64884i −0.102476 0.177494i
\(687\) −13.3021 + 4.85636i −0.507507 + 0.185282i
\(688\) −0.588721 + 1.01969i −0.0224448 + 0.0388755i
\(689\) −23.5507 + 13.5970i −0.897211 + 0.518005i
\(690\) −8.55383 7.16322i −0.325639 0.272699i
\(691\) −39.8978 −1.51778 −0.758891 0.651217i \(-0.774259\pi\)
−0.758891 + 0.651217i \(0.774259\pi\)
\(692\) −9.82817 −0.373611
\(693\) −4.70972 5.59049i −0.178907 0.212365i
\(694\) −8.34699 4.81914i −0.316847 0.182932i
\(695\) 22.6639i 0.859690i
\(696\) 1.28756 7.34428i 0.0488049 0.278384i
\(697\) −12.9912 7.50049i −0.492078 0.284101i
\(698\) 12.6150 + 21.8497i 0.477483 + 0.827025i
\(699\) 3.92447 4.68633i 0.148437 0.177253i
\(700\) −0.193795 0.335662i −0.00732475 0.0126868i
\(701\) −8.46297 + 4.88610i −0.319642 + 0.184545i −0.651233 0.758878i \(-0.725748\pi\)
0.331591 + 0.943423i \(0.392415\pi\)
\(702\) −31.0361 17.7970i −1.17138 0.671705i
\(703\) 10.8378 + 2.38401i 0.408755 + 0.0899147i
\(704\) 6.28666i 0.236937i
\(705\) −12.6688 + 4.62517i −0.477136 + 0.174194i
\(706\) −8.70898 + 5.02813i −0.327767 + 0.189236i
\(707\) −1.40904 0.813507i −0.0529923 0.0305951i
\(708\) −1.81181 + 0.661461i −0.0680920 + 0.0248592i
\(709\) −9.26925 + 16.0548i −0.348114 + 0.602951i −0.985914 0.167251i \(-0.946511\pi\)
0.637800 + 0.770202i \(0.279844\pi\)
\(710\) 8.35597i 0.313594i
\(711\) −14.5959 + 40.3481i −0.547388 + 1.51317i
\(712\) 7.49847 12.9877i 0.281017 0.486736i
\(713\) 18.9064 32.7468i 0.708050 1.22638i
\(714\) 3.53769 + 0.620209i 0.132395 + 0.0232107i
\(715\) 43.2851i 1.61877i
\(716\) 9.81870 17.0065i 0.366942 0.635562i
\(717\) −9.41711 25.7945i −0.351688 0.963312i
\(718\) 9.76791 + 5.63951i 0.364535 + 0.210465i
\(719\) 29.2721 16.9002i 1.09166 0.630273i 0.157645 0.987496i \(-0.449610\pi\)
0.934019 + 0.357223i \(0.116276\pi\)
\(720\) 2.95339 0.526745i 0.110067 0.0196306i
\(721\) 5.60783i 0.208847i
\(722\) 1.71811 + 18.9222i 0.0639416 + 0.704210i
\(723\) 6.24403 + 1.09467i 0.232218 + 0.0407113i
\(724\) 19.3105 11.1489i 0.717668 0.414346i
\(725\) −2.15245 3.72815i −0.0799398 0.138460i
\(726\) 37.8751 + 31.7176i 1.40568 + 1.17715i
\(727\) −15.8883 27.5193i −0.589264 1.02064i −0.994329 0.106347i \(-0.966084\pi\)
0.405065 0.914288i \(-0.367249\pi\)
\(728\) −2.31111 1.33432i −0.0856555 0.0494532i
\(729\) −13.6375 23.3028i −0.505093 0.863065i
\(730\) 1.78140i 0.0659325i
\(731\) −5.45545 3.14971i −0.201777 0.116496i
\(732\) 3.40938 + 2.85511i 0.126014 + 0.105528i
\(733\) 24.0223 0.887283 0.443642 0.896204i \(-0.353686\pi\)
0.443642 + 0.896204i \(0.353686\pi\)
\(734\) 26.4194 0.975157
\(735\) 7.61721 9.09595i 0.280965 0.335509i
\(736\) 5.57852 3.22076i 0.205627 0.118719i
\(737\) −25.2533 + 43.7400i −0.930218 + 1.61119i
\(738\) 1.47693 + 8.28096i 0.0543665 + 0.304826i
\(739\) −12.2978 21.3005i −0.452384 0.783551i 0.546150 0.837687i \(-0.316093\pi\)
−0.998534 + 0.0541361i \(0.982760\pi\)
\(740\) 2.54580 0.0935855
\(741\) 19.7667 48.0774i 0.726148 1.76617i
\(742\) −1.53083 −0.0561985
\(743\) −1.48071 2.56467i −0.0543220 0.0940885i 0.837586 0.546306i \(-0.183966\pi\)
−0.891908 + 0.452217i \(0.850633\pi\)
\(744\) 3.48684 + 9.55083i 0.127834 + 0.350150i
\(745\) 1.36738 2.36838i 0.0500971 0.0867707i
\(746\) −8.15874 + 4.71045i −0.298713 + 0.172462i
\(747\) 6.23511 + 7.40115i 0.228131 + 0.270794i
\(748\) −33.6342 −1.22979
\(749\) 0.954981 0.0348942
\(750\) 1.11204 1.32792i 0.0406059 0.0484888i
\(751\) 8.92680 + 5.15389i 0.325744 + 0.188068i 0.653950 0.756538i \(-0.273111\pi\)
−0.328206 + 0.944606i \(0.606444\pi\)
\(752\) 7.78656i 0.283947i
\(753\) −19.2102 3.36784i −0.700060 0.122731i
\(754\) −25.6691 14.8201i −0.934815 0.539716i
\(755\) 2.51753 + 4.36049i 0.0916223 + 0.158695i
\(756\) −1.01212 1.74118i −0.0368104 0.0633260i
\(757\) 9.26031 + 16.0393i 0.336572 + 0.582959i 0.983785 0.179349i \(-0.0573993\pi\)
−0.647214 + 0.762308i \(0.724066\pi\)
\(758\) −16.0100 + 9.24338i −0.581510 + 0.335735i
\(759\) 12.1120 69.0869i 0.439636 2.50770i
\(760\) 1.31757 + 4.15500i 0.0477933 + 0.150718i
\(761\) 50.2106i 1.82013i 0.414462 + 0.910067i \(0.363970\pi\)
−0.414462 + 0.910067i \(0.636030\pi\)
\(762\) 9.71717 + 26.6164i 0.352016 + 0.964210i
\(763\) −0.900710 + 0.520025i −0.0326079 + 0.0188262i
\(764\) 14.9599 + 8.63710i 0.541230 + 0.312479i
\(765\) 2.81813 + 15.8009i 0.101890 + 0.571283i
\(766\) 8.39580 14.5419i 0.303352 0.525422i
\(767\) 7.66726i 0.276849i
\(768\) −0.299093 + 1.70603i −0.0107926 + 0.0615611i
\(769\) −17.5253 + 30.3547i −0.631979 + 1.09462i 0.355168 + 0.934802i \(0.384424\pi\)
−0.987147 + 0.159817i \(0.948910\pi\)
\(770\) 1.21832 2.11019i 0.0439052 0.0760461i
\(771\) 8.16516 46.5743i 0.294061 1.67733i
\(772\) 9.74861i 0.350860i
\(773\) 20.0359 34.7031i 0.720640 1.24818i −0.240104 0.970747i \(-0.577181\pi\)
0.960744 0.277438i \(-0.0894852\pi\)
\(774\) 0.620211 + 3.47745i 0.0222930 + 0.124994i
\(775\) 5.08371 + 2.93508i 0.182612 + 0.105431i