Properties

Label 570.2.q.c.49.9
Level $570$
Weight $2$
Character 570.49
Analytic conductor $4.551$
Analytic rank $0$
Dimension $20$
CM no
Inner twists $4$

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) \(=\) \( 570 = 2 \cdot 3 \cdot 5 \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 570.q (of order \(6\), degree \(2\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(4.55147291521\)
Analytic rank: \(0\)
Dimension: \(20\)
Relative dimension: \(10\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{20} - \cdots)\)
Defining polynomial: \(x^{20} - 49 x^{16} - 8 x^{15} + 72 x^{13} + 2145 x^{12} - 648 x^{11} + 32 x^{10} - 7056 x^{9} - 11968 x^{8} + 10368 x^{7} + 9344 x^{6} + 18176 x^{5} + 56320 x^{4} + 28160 x^{3} + 8192 x^{2} + 4096 x + 1024\)
Coefficient ring: \(\Z[a_1, \ldots, a_{19}]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 49.9
Root \(-0.477979 - 1.78384i\) of defining polynomial
Character \(\chi\) \(=\) 570.49
Dual form 570.2.q.c.349.9

$q$-expansion

\(f(q)\) \(=\) \(q+(0.866025 + 0.500000i) q^{2} +(-0.866025 - 0.500000i) q^{3} +(0.500000 + 0.866025i) q^{4} +(0.919023 + 2.03848i) q^{5} +(-0.500000 - 0.866025i) q^{6} +1.07560i q^{7} +1.00000i q^{8} +(0.500000 + 0.866025i) q^{9} +O(q^{10})\) \(q+(0.866025 + 0.500000i) q^{2} +(-0.866025 - 0.500000i) q^{3} +(0.500000 + 0.866025i) q^{4} +(0.919023 + 2.03848i) q^{5} +(-0.500000 - 0.866025i) q^{6} +1.07560i q^{7} +1.00000i q^{8} +(0.500000 + 0.866025i) q^{9} +(-0.223342 + 2.22489i) q^{10} +0.410555 q^{11} -1.00000i q^{12} +(-3.30892 + 1.91041i) q^{13} +(-0.537799 + 0.931495i) q^{14} +(0.223342 - 2.22489i) q^{15} +(-0.500000 + 0.866025i) q^{16} +(-1.08642 - 0.627244i) q^{17} +1.00000i q^{18} +(3.85480 + 2.03482i) q^{19} +(-1.30586 + 1.81514i) q^{20} +(0.537799 - 0.931495i) q^{21} +(0.355551 + 0.205277i) q^{22} +(-3.23263 + 1.86636i) q^{23} +(0.500000 - 0.866025i) q^{24} +(-3.31079 + 3.74682i) q^{25} -3.82081 q^{26} -1.00000i q^{27} +(-0.931495 + 0.537799i) q^{28} +(1.18789 + 2.05749i) q^{29} +(1.30586 - 1.81514i) q^{30} +7.75919 q^{31} +(-0.866025 + 0.500000i) q^{32} +(-0.355551 - 0.205277i) q^{33} +(-0.627244 - 1.08642i) q^{34} +(-2.19258 + 0.988499i) q^{35} +(-0.500000 + 0.866025i) q^{36} -2.08017i q^{37} +(2.32094 + 3.68961i) q^{38} +3.82081 q^{39} +(-2.03848 + 0.919023i) q^{40} +(-2.80171 + 4.85270i) q^{41} +(0.931495 - 0.537799i) q^{42} +(1.92233 + 1.10986i) q^{43} +(0.205277 + 0.355551i) q^{44} +(-1.30586 + 1.81514i) q^{45} -3.73273 q^{46} +(3.58819 - 2.07164i) q^{47} +(0.866025 - 0.500000i) q^{48} +5.84309 q^{49} +(-4.74064 + 1.58945i) q^{50} +(0.627244 + 1.08642i) q^{51} +(-3.30892 - 1.91041i) q^{52} +(-4.32940 + 2.49958i) q^{53} +(0.500000 - 0.866025i) q^{54} +(0.377309 + 0.836907i) q^{55} -1.07560 q^{56} +(-2.32094 - 3.68961i) q^{57} +2.37579i q^{58} +(1.25650 - 2.17633i) q^{59} +(2.03848 - 0.919023i) q^{60} +(-3.37731 - 5.84967i) q^{61} +(6.71965 + 3.87959i) q^{62} +(-0.931495 + 0.537799i) q^{63} -1.00000 q^{64} +(-6.93529 - 4.98945i) q^{65} +(-0.205277 - 0.355551i) q^{66} +(8.07251 - 4.66066i) q^{67} -1.25449i q^{68} +3.73273 q^{69} +(-2.39308 - 0.240226i) q^{70} +(4.79760 - 8.30969i) q^{71} +(-0.866025 + 0.500000i) q^{72} +(-6.02521 - 3.47866i) q^{73} +(1.04009 - 1.80148i) q^{74} +(4.74064 - 1.58945i) q^{75} +(0.165192 + 4.35577i) q^{76} +0.441592i q^{77} +(3.30892 + 1.91041i) q^{78} +(4.47277 - 7.74707i) q^{79} +(-2.22489 - 0.223342i) q^{80} +(-0.500000 + 0.866025i) q^{81} +(-4.85270 + 2.80171i) q^{82} +9.12070i q^{83} +1.07560 q^{84} +(0.280179 - 2.79109i) q^{85} +(1.10986 + 1.92233i) q^{86} -2.37579i q^{87} +0.410555i q^{88} +(-2.72783 - 4.72474i) q^{89} +(-2.03848 + 0.919023i) q^{90} +(-2.05483 - 3.55906i) q^{91} +(-3.23263 - 1.86636i) q^{92} +(-6.71965 - 3.87959i) q^{93} +4.14328 q^{94} +(-0.605291 + 9.72798i) q^{95} +1.00000 q^{96} +(10.5315 + 6.08034i) q^{97} +(5.06026 + 2.92155i) q^{98} +(0.205277 + 0.355551i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 20q + 10q^{4} - 10q^{6} + 10q^{9} + O(q^{10}) \) \( 20q + 10q^{4} - 10q^{6} + 10q^{9} - 2q^{10} + 12q^{11} + 10q^{14} + 2q^{15} - 10q^{16} + 6q^{19} - 10q^{21} + 10q^{24} + 14q^{25} + 8q^{29} + 40q^{31} + 12q^{34} + 2q^{35} - 10q^{36} + 2q^{40} - 14q^{41} + 6q^{44} + 44q^{46} - 8q^{49} - 8q^{50} - 12q^{51} + 10q^{54} + 20q^{56} + 8q^{59} - 2q^{60} + 16q^{61} - 20q^{64} + 40q^{65} - 6q^{66} - 44q^{69} + 8q^{70} - 4q^{71} + 26q^{74} + 8q^{75} + 8q^{79} - 10q^{81} - 20q^{84} - 16q^{85} - 20q^{86} - 2q^{89} + 2q^{90} - 44q^{91} - 32q^{94} - 80q^{95} + 20q^{96} + 6q^{99} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/570\mathbb{Z}\right)^\times\).

\(n\) \(191\) \(211\) \(457\)
\(\chi(n)\) \(1\) \(e\left(\frac{2}{3}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.866025 + 0.500000i 0.612372 + 0.353553i
\(3\) −0.866025 0.500000i −0.500000 0.288675i
\(4\) 0.500000 + 0.866025i 0.250000 + 0.433013i
\(5\) 0.919023 + 2.03848i 0.411000 + 0.911635i
\(6\) −0.500000 0.866025i −0.204124 0.353553i
\(7\) 1.07560i 0.406538i 0.979123 + 0.203269i \(0.0651565\pi\)
−0.979123 + 0.203269i \(0.934843\pi\)
\(8\) 1.00000i 0.353553i
\(9\) 0.500000 + 0.866025i 0.166667 + 0.288675i
\(10\) −0.223342 + 2.22489i −0.0706269 + 0.703571i
\(11\) 0.410555 0.123787 0.0618935 0.998083i \(-0.480286\pi\)
0.0618935 + 0.998083i \(0.480286\pi\)
\(12\) 1.00000i 0.288675i
\(13\) −3.30892 + 1.91041i −0.917729 + 0.529851i −0.882910 0.469543i \(-0.844419\pi\)
−0.0348191 + 0.999394i \(0.511086\pi\)
\(14\) −0.537799 + 0.931495i −0.143733 + 0.248952i
\(15\) 0.223342 2.22489i 0.0576666 0.574463i
\(16\) −0.500000 + 0.866025i −0.125000 + 0.216506i
\(17\) −1.08642 0.627244i −0.263495 0.152129i 0.362433 0.932010i \(-0.381946\pi\)
−0.625928 + 0.779881i \(0.715280\pi\)
\(18\) 1.00000i 0.235702i
\(19\) 3.85480 + 2.03482i 0.884352 + 0.466820i
\(20\) −1.30586 + 1.81514i −0.292000 + 0.405877i
\(21\) 0.537799 0.931495i 0.117357 0.203269i
\(22\) 0.355551 + 0.205277i 0.0758037 + 0.0437653i
\(23\) −3.23263 + 1.86636i −0.674051 + 0.389164i −0.797610 0.603174i \(-0.793903\pi\)
0.123559 + 0.992337i \(0.460569\pi\)
\(24\) 0.500000 0.866025i 0.102062 0.176777i
\(25\) −3.31079 + 3.74682i −0.662158 + 0.749364i
\(26\) −3.82081 −0.749323
\(27\) 1.00000i 0.192450i
\(28\) −0.931495 + 0.537799i −0.176036 + 0.101634i
\(29\) 1.18789 + 2.05749i 0.220586 + 0.382067i 0.954986 0.296650i \(-0.0958696\pi\)
−0.734400 + 0.678717i \(0.762536\pi\)
\(30\) 1.30586 1.81514i 0.238417 0.331397i
\(31\) 7.75919 1.39359 0.696796 0.717270i \(-0.254608\pi\)
0.696796 + 0.717270i \(0.254608\pi\)
\(32\) −0.866025 + 0.500000i −0.153093 + 0.0883883i
\(33\) −0.355551 0.205277i −0.0618935 0.0357342i
\(34\) −0.627244 1.08642i −0.107571 0.186319i
\(35\) −2.19258 + 0.988499i −0.370614 + 0.167087i
\(36\) −0.500000 + 0.866025i −0.0833333 + 0.144338i
\(37\) 2.08017i 0.341978i −0.985273 0.170989i \(-0.945304\pi\)
0.985273 0.170989i \(-0.0546963\pi\)
\(38\) 2.32094 + 3.68961i 0.376507 + 0.598534i
\(39\) 3.82081 0.611819
\(40\) −2.03848 + 0.919023i −0.322312 + 0.145310i
\(41\) −2.80171 + 4.85270i −0.437554 + 0.757865i −0.997500 0.0706636i \(-0.977488\pi\)
0.559947 + 0.828529i \(0.310822\pi\)
\(42\) 0.931495 0.537799i 0.143733 0.0829841i
\(43\) 1.92233 + 1.10986i 0.293153 + 0.169252i 0.639363 0.768905i \(-0.279198\pi\)
−0.346210 + 0.938157i \(0.612531\pi\)
\(44\) 0.205277 + 0.355551i 0.0309467 + 0.0536013i
\(45\) −1.30586 + 1.81514i −0.194667 + 0.270585i
\(46\) −3.73273 −0.550360
\(47\) 3.58819 2.07164i 0.523391 0.302180i −0.214930 0.976629i \(-0.568952\pi\)
0.738321 + 0.674450i \(0.235619\pi\)
\(48\) 0.866025 0.500000i 0.125000 0.0721688i
\(49\) 5.84309 0.834727
\(50\) −4.74064 + 1.58945i −0.670428 + 0.224781i
\(51\) 0.627244 + 1.08642i 0.0878317 + 0.152129i
\(52\) −3.30892 1.91041i −0.458864 0.264926i
\(53\) −4.32940 + 2.49958i −0.594689 + 0.343344i −0.766949 0.641708i \(-0.778226\pi\)
0.172261 + 0.985051i \(0.444893\pi\)
\(54\) 0.500000 0.866025i 0.0680414 0.117851i
\(55\) 0.377309 + 0.836907i 0.0508764 + 0.112849i
\(56\) −1.07560 −0.143733
\(57\) −2.32094 3.68961i −0.307417 0.488701i
\(58\) 2.37579i 0.311956i
\(59\) 1.25650 2.17633i 0.163583 0.283334i −0.772568 0.634932i \(-0.781028\pi\)
0.936151 + 0.351598i \(0.114362\pi\)
\(60\) 2.03848 0.919023i 0.263166 0.118645i
\(61\) −3.37731 5.84967i −0.432420 0.748973i 0.564661 0.825323i \(-0.309007\pi\)
−0.997081 + 0.0763496i \(0.975674\pi\)
\(62\) 6.71965 + 3.87959i 0.853397 + 0.492709i
\(63\) −0.931495 + 0.537799i −0.117357 + 0.0677563i
\(64\) −1.00000 −0.125000
\(65\) −6.93529 4.98945i −0.860217 0.618866i
\(66\) −0.205277 0.355551i −0.0252679 0.0437653i
\(67\) 8.07251 4.66066i 0.986214 0.569391i 0.0820733 0.996626i \(-0.473846\pi\)
0.904140 + 0.427236i \(0.140512\pi\)
\(68\) 1.25449i 0.152129i
\(69\) 3.73273 0.449367
\(70\) −2.39308 0.240226i −0.286028 0.0287125i
\(71\) 4.79760 8.30969i 0.569371 0.986179i −0.427258 0.904130i \(-0.640520\pi\)
0.996628 0.0820491i \(-0.0261464\pi\)
\(72\) −0.866025 + 0.500000i −0.102062 + 0.0589256i
\(73\) −6.02521 3.47866i −0.705198 0.407146i 0.104083 0.994569i \(-0.466809\pi\)
−0.809280 + 0.587422i \(0.800143\pi\)
\(74\) 1.04009 1.80148i 0.120907 0.209418i
\(75\) 4.74064 1.58945i 0.547402 0.183533i
\(76\) 0.165192 + 4.35577i 0.0189488 + 0.499641i
\(77\) 0.441592i 0.0503240i
\(78\) 3.30892 + 1.91041i 0.374661 + 0.216311i
\(79\) 4.47277 7.74707i 0.503226 0.871613i −0.496767 0.867884i \(-0.665480\pi\)
0.999993 0.00372912i \(-0.00118702\pi\)
\(80\) −2.22489 0.223342i −0.248750 0.0249704i
\(81\) −0.500000 + 0.866025i −0.0555556 + 0.0962250i
\(82\) −4.85270 + 2.80171i −0.535892 + 0.309397i
\(83\) 9.12070i 1.00113i 0.865700 + 0.500563i \(0.166874\pi\)
−0.865700 + 0.500563i \(0.833126\pi\)
\(84\) 1.07560 0.117357
\(85\) 0.280179 2.79109i 0.0303897 0.302736i
\(86\) 1.10986 + 1.92233i 0.119679 + 0.207291i
\(87\) 2.37579i 0.254711i
\(88\) 0.410555i 0.0437653i
\(89\) −2.72783 4.72474i −0.289149 0.500821i 0.684458 0.729053i \(-0.260039\pi\)
−0.973607 + 0.228231i \(0.926706\pi\)
\(90\) −2.03848 + 0.919023i −0.214875 + 0.0968736i
\(91\) −2.05483 3.55906i −0.215404 0.373091i
\(92\) −3.23263 1.86636i −0.337025 0.194582i
\(93\) −6.71965 3.87959i −0.696796 0.402295i
\(94\) 4.14328 0.427347
\(95\) −0.605291 + 9.72798i −0.0621016 + 0.998070i
\(96\) 1.00000 0.102062
\(97\) 10.5315 + 6.08034i 1.06931 + 0.617365i 0.927992 0.372599i \(-0.121533\pi\)
0.141316 + 0.989965i \(0.454867\pi\)
\(98\) 5.06026 + 2.92155i 0.511164 + 0.295121i
\(99\) 0.205277 + 0.355551i 0.0206312 + 0.0357342i
\(100\) −4.90024 0.993820i −0.490024 0.0993820i
\(101\) −1.54404 2.67436i −0.153638 0.266109i 0.778924 0.627118i \(-0.215766\pi\)
−0.932562 + 0.361009i \(0.882432\pi\)
\(102\) 1.25449i 0.124213i
\(103\) 14.7954i 1.45784i −0.684600 0.728919i \(-0.740023\pi\)
0.684600 0.728919i \(-0.259977\pi\)
\(104\) −1.91041 3.30892i −0.187331 0.324466i
\(105\) 2.39308 + 0.240226i 0.233541 + 0.0234436i
\(106\) −4.99916 −0.485561
\(107\) 5.37650i 0.519766i −0.965640 0.259883i \(-0.916316\pi\)
0.965640 0.259883i \(-0.0836840\pi\)
\(108\) 0.866025 0.500000i 0.0833333 0.0481125i
\(109\) 8.16051 14.1344i 0.781636 1.35383i −0.149353 0.988784i \(-0.547719\pi\)
0.930988 0.365049i \(-0.118948\pi\)
\(110\) −0.0916940 + 0.913438i −0.00874268 + 0.0870929i
\(111\) −1.04009 + 1.80148i −0.0987205 + 0.170989i
\(112\) −0.931495 0.537799i −0.0880180 0.0508172i
\(113\) 9.79888i 0.921801i −0.887452 0.460900i \(-0.847527\pi\)
0.887452 0.460900i \(-0.152473\pi\)
\(114\) −0.165192 4.35577i −0.0154716 0.407955i
\(115\) −6.77541 4.87443i −0.631810 0.454543i
\(116\) −1.18789 + 2.05749i −0.110293 + 0.191033i
\(117\) −3.30892 1.91041i −0.305910 0.176617i
\(118\) 2.17633 1.25650i 0.200347 0.115670i
\(119\) 0.674662 1.16855i 0.0618461 0.107121i
\(120\) 2.22489 + 0.223342i 0.203103 + 0.0203882i
\(121\) −10.8314 −0.984677
\(122\) 6.75461i 0.611534i
\(123\) 4.85270 2.80171i 0.437554 0.252622i
\(124\) 3.87959 + 6.71965i 0.348398 + 0.603443i
\(125\) −10.6805 3.30556i −0.955294 0.295659i
\(126\) −1.07560 −0.0958218
\(127\) 15.8129 9.12955i 1.40316 0.810117i 0.408448 0.912782i \(-0.366070\pi\)
0.994716 + 0.102665i \(0.0327369\pi\)
\(128\) −0.866025 0.500000i −0.0765466 0.0441942i
\(129\) −1.10986 1.92233i −0.0977177 0.169252i
\(130\) −3.51141 7.78864i −0.307971 0.683109i
\(131\) −9.70176 + 16.8039i −0.847647 + 1.46817i 0.0356553 + 0.999364i \(0.488648\pi\)
−0.883302 + 0.468804i \(0.844685\pi\)
\(132\) 0.410555i 0.0357342i
\(133\) −2.18865 + 4.14621i −0.189780 + 0.359522i
\(134\) 9.32133 0.805240
\(135\) 2.03848 0.919023i 0.175444 0.0790969i
\(136\) 0.627244 1.08642i 0.0537857 0.0931596i
\(137\) −7.65772 + 4.42119i −0.654244 + 0.377728i −0.790080 0.613004i \(-0.789961\pi\)
0.135837 + 0.990731i \(0.456628\pi\)
\(138\) 3.23263 + 1.86636i 0.275180 + 0.158875i
\(139\) 5.28333 + 9.15100i 0.448127 + 0.776178i 0.998264 0.0588961i \(-0.0187581\pi\)
−0.550138 + 0.835074i \(0.685425\pi\)
\(140\) −1.95236 1.40458i −0.165004 0.118709i
\(141\) −4.14328 −0.348927
\(142\) 8.30969 4.79760i 0.697334 0.402606i
\(143\) −1.35849 + 0.784326i −0.113603 + 0.0655886i
\(144\) −1.00000 −0.0833333
\(145\) −3.10245 + 4.31238i −0.257645 + 0.358124i
\(146\) −3.47866 6.02521i −0.287896 0.498650i
\(147\) −5.06026 2.92155i −0.417364 0.240965i
\(148\) 1.80148 1.04009i 0.148081 0.0854945i
\(149\) 1.18192 2.04715i 0.0968267 0.167709i −0.813543 0.581505i \(-0.802464\pi\)
0.910370 + 0.413796i \(0.135797\pi\)
\(150\) 4.90024 + 0.993820i 0.400103 + 0.0811451i
\(151\) −4.02935 −0.327904 −0.163952 0.986468i \(-0.552424\pi\)
−0.163952 + 0.986468i \(0.552424\pi\)
\(152\) −2.03482 + 3.85480i −0.165046 + 0.312666i
\(153\) 1.25449i 0.101419i
\(154\) −0.220796 + 0.382430i −0.0177922 + 0.0308171i
\(155\) 7.13088 + 15.8169i 0.572766 + 1.27045i
\(156\) 1.91041 + 3.30892i 0.152955 + 0.264926i
\(157\) 16.8513 + 9.72912i 1.34488 + 0.776469i 0.987520 0.157497i \(-0.0503424\pi\)
0.357364 + 0.933965i \(0.383676\pi\)
\(158\) 7.74707 4.47277i 0.616324 0.355835i
\(159\) 4.99916 0.396459
\(160\) −1.81514 1.30586i −0.143499 0.103238i
\(161\) −2.00745 3.47701i −0.158210 0.274027i
\(162\) −0.866025 + 0.500000i −0.0680414 + 0.0392837i
\(163\) 13.4340i 1.05223i −0.850412 0.526117i \(-0.823647\pi\)
0.850412 0.526117i \(-0.176353\pi\)
\(164\) −5.60342 −0.437554
\(165\) 0.0916940 0.913438i 0.00713837 0.0711110i
\(166\) −4.56035 + 7.89876i −0.353952 + 0.613063i
\(167\) −3.38132 + 1.95221i −0.261655 + 0.151066i −0.625089 0.780553i \(-0.714937\pi\)
0.363435 + 0.931620i \(0.381604\pi\)
\(168\) 0.931495 + 0.537799i 0.0718664 + 0.0414921i
\(169\) 0.799296 1.38442i 0.0614843 0.106494i
\(170\) 1.63819 2.27707i 0.125643 0.174643i
\(171\) 0.165192 + 4.35577i 0.0126325 + 0.333094i
\(172\) 2.21972i 0.169252i
\(173\) 13.1394 + 7.58604i 0.998970 + 0.576756i 0.907943 0.419093i \(-0.137652\pi\)
0.0910267 + 0.995848i \(0.470985\pi\)
\(174\) 1.18789 2.05749i 0.0900540 0.155978i
\(175\) −4.03007 3.56108i −0.304645 0.269192i
\(176\) −0.205277 + 0.355551i −0.0154734 + 0.0268007i
\(177\) −2.17633 + 1.25650i −0.163583 + 0.0944445i
\(178\) 5.45566i 0.408919i
\(179\) −8.91162 −0.666085 −0.333043 0.942912i \(-0.608075\pi\)
−0.333043 + 0.942912i \(0.608075\pi\)
\(180\) −2.22489 0.223342i −0.165833 0.0166469i
\(181\) 4.61274 + 7.98950i 0.342862 + 0.593855i 0.984963 0.172765i \(-0.0552702\pi\)
−0.642101 + 0.766620i \(0.721937\pi\)
\(182\) 4.10965i 0.304628i
\(183\) 6.75461i 0.499315i
\(184\) −1.86636 3.23263i −0.137590 0.238313i
\(185\) 4.24038 1.91173i 0.311759 0.140553i
\(186\) −3.87959 6.71965i −0.284466 0.492709i
\(187\) −0.446034 0.257518i −0.0326172 0.0188316i
\(188\) 3.58819 + 2.07164i 0.261695 + 0.151090i
\(189\) 1.07560 0.0782382
\(190\) −5.38819 + 8.12203i −0.390900 + 0.589234i
\(191\) 19.7445 1.42867 0.714333 0.699806i \(-0.246730\pi\)
0.714333 + 0.699806i \(0.246730\pi\)
\(192\) 0.866025 + 0.500000i 0.0625000 + 0.0360844i
\(193\) 11.9562 + 6.90289i 0.860623 + 0.496881i 0.864221 0.503113i \(-0.167812\pi\)
−0.00359794 + 0.999994i \(0.501145\pi\)
\(194\) 6.08034 + 10.5315i 0.436543 + 0.756115i
\(195\) 3.51141 + 7.78864i 0.251458 + 0.557756i
\(196\) 2.92155 + 5.06026i 0.208682 + 0.361447i
\(197\) 8.42005i 0.599904i 0.953954 + 0.299952i \(0.0969706\pi\)
−0.953954 + 0.299952i \(0.903029\pi\)
\(198\) 0.410555i 0.0291769i
\(199\) 3.33252 + 5.77210i 0.236236 + 0.409173i 0.959631 0.281261i \(-0.0907528\pi\)
−0.723395 + 0.690434i \(0.757419\pi\)
\(200\) −3.74682 3.31079i −0.264940 0.234108i
\(201\) −9.32133 −0.657476
\(202\) 3.08809i 0.217277i
\(203\) −2.21303 + 1.27769i −0.155324 + 0.0896766i
\(204\) −0.627244 + 1.08642i −0.0439159 + 0.0760645i
\(205\) −12.4670 1.25148i −0.870731 0.0874070i
\(206\) 7.39772 12.8132i 0.515424 0.892740i
\(207\) −3.23263 1.86636i −0.224684 0.129721i
\(208\) 3.82081i 0.264926i
\(209\) 1.58261 + 0.835406i 0.109471 + 0.0577863i
\(210\) 1.95236 + 1.40458i 0.134725 + 0.0969254i
\(211\) −6.10606 + 10.5760i −0.420359 + 0.728083i −0.995974 0.0896377i \(-0.971429\pi\)
0.575616 + 0.817720i \(0.304762\pi\)
\(212\) −4.32940 2.49958i −0.297344 0.171672i
\(213\) −8.30969 + 4.79760i −0.569371 + 0.328726i
\(214\) 2.68825 4.65618i 0.183765 0.318290i
\(215\) −0.495756 + 4.93862i −0.0338103 + 0.336811i
\(216\) 1.00000 0.0680414
\(217\) 8.34576i 0.566547i
\(218\) 14.1344 8.16051i 0.957304 0.552700i
\(219\) 3.47866 + 6.02521i 0.235066 + 0.407146i
\(220\) −0.536128 + 0.745213i −0.0361458 + 0.0502423i
\(221\) 4.79316 0.322423
\(222\) −1.80148 + 1.04009i −0.120907 + 0.0698060i
\(223\) −0.493682 0.285027i −0.0330594 0.0190868i 0.483379 0.875411i \(-0.339409\pi\)
−0.516439 + 0.856324i \(0.672743\pi\)
\(224\) −0.537799 0.931495i −0.0359332 0.0622381i
\(225\) −4.90024 0.993820i −0.326682 0.0662547i
\(226\) 4.89944 8.48608i 0.325906 0.564485i
\(227\) 2.46316i 0.163486i −0.996653 0.0817428i \(-0.973951\pi\)
0.996653 0.0817428i \(-0.0260486\pi\)
\(228\) 2.03482 3.85480i 0.134759 0.255290i
\(229\) 11.0250 0.728553 0.364276 0.931291i \(-0.381316\pi\)
0.364276 + 0.931291i \(0.381316\pi\)
\(230\) −3.43046 7.60908i −0.226198 0.501728i
\(231\) 0.220796 0.382430i 0.0145273 0.0251620i
\(232\) −2.05749 + 1.18789i −0.135081 + 0.0779890i
\(233\) −14.9579 8.63595i −0.979925 0.565760i −0.0776772 0.996979i \(-0.524750\pi\)
−0.902247 + 0.431219i \(0.858084\pi\)
\(234\) −1.91041 3.30892i −0.124887 0.216311i
\(235\) 7.52062 + 5.41055i 0.490591 + 0.352946i
\(236\) 2.51301 0.163583
\(237\) −7.74707 + 4.47277i −0.503226 + 0.290538i
\(238\) 1.16855 0.674662i 0.0757457 0.0437318i
\(239\) −6.90743 −0.446805 −0.223402 0.974726i \(-0.571716\pi\)
−0.223402 + 0.974726i \(0.571716\pi\)
\(240\) 1.81514 + 1.30586i 0.117167 + 0.0842931i
\(241\) −11.0140 19.0767i −0.709471 1.22884i −0.965053 0.262053i \(-0.915600\pi\)
0.255582 0.966787i \(-0.417733\pi\)
\(242\) −9.38031 5.41572i −0.602989 0.348136i
\(243\) 0.866025 0.500000i 0.0555556 0.0320750i
\(244\) 3.37731 5.84967i 0.216210 0.374487i
\(245\) 5.36994 + 11.9110i 0.343073 + 0.760967i
\(246\) 5.60342 0.357261
\(247\) −16.6426 + 0.631167i −1.05894 + 0.0401602i
\(248\) 7.75919i 0.492709i
\(249\) 4.56035 7.89876i 0.289000 0.500563i
\(250\) −7.59681 8.20296i −0.480464 0.518800i
\(251\) 10.5663 + 18.3014i 0.666940 + 1.15517i 0.978755 + 0.205032i \(0.0657298\pi\)
−0.311815 + 0.950143i \(0.600937\pi\)
\(252\) −0.931495 0.537799i −0.0586786 0.0338781i
\(253\) −1.32717 + 0.766244i −0.0834387 + 0.0481734i
\(254\) 18.2591 1.14568
\(255\) −1.63819 + 2.27707i −0.102587 + 0.142595i
\(256\) −0.500000 0.866025i −0.0312500 0.0541266i
\(257\) −22.8775 + 13.2083i −1.42706 + 0.823913i −0.996888 0.0788341i \(-0.974880\pi\)
−0.430172 + 0.902747i \(0.641547\pi\)
\(258\) 2.21972i 0.138194i
\(259\) 2.23743 0.139027
\(260\) 0.853346 8.50087i 0.0529223 0.527201i
\(261\) −1.18789 + 2.05749i −0.0735287 + 0.127356i
\(262\) −16.8039 + 9.70176i −1.03815 + 0.599377i
\(263\) −20.7173 11.9611i −1.27748 0.737555i −0.301097 0.953593i \(-0.597353\pi\)
−0.976385 + 0.216039i \(0.930686\pi\)
\(264\) 0.205277 0.355551i 0.0126340 0.0218826i
\(265\) −9.07416 6.52821i −0.557421 0.401025i
\(266\) −3.96853 + 2.49640i −0.243326 + 0.153064i
\(267\) 5.45566i 0.333881i
\(268\) 8.07251 + 4.66066i 0.493107 + 0.284695i
\(269\) −3.89266 + 6.74229i −0.237340 + 0.411085i −0.959950 0.280171i \(-0.909609\pi\)
0.722610 + 0.691256i \(0.242942\pi\)
\(270\) 2.22489 + 0.223342i 0.135402 + 0.0135921i
\(271\) −0.421189 + 0.729521i −0.0255854 + 0.0443152i −0.878535 0.477679i \(-0.841478\pi\)
0.852949 + 0.521994i \(0.174812\pi\)
\(272\) 1.08642 0.627244i 0.0658738 0.0380322i
\(273\) 4.10965i 0.248728i
\(274\) −8.84238 −0.534188
\(275\) −1.35926 + 1.53827i −0.0819665 + 0.0927615i
\(276\) 1.86636 + 3.23263i 0.112342 + 0.194582i
\(277\) 5.55485i 0.333758i 0.985977 + 0.166879i \(0.0533690\pi\)
−0.985977 + 0.166879i \(0.946631\pi\)
\(278\) 10.5667i 0.633747i
\(279\) 3.87959 + 6.71965i 0.232265 + 0.402295i
\(280\) −0.988499 2.19258i −0.0590741 0.131032i
\(281\) −8.05993 13.9602i −0.480815 0.832796i 0.518943 0.854809i \(-0.326326\pi\)
−0.999758 + 0.0220130i \(0.992992\pi\)
\(282\) −3.58819 2.07164i −0.213673 0.123364i
\(283\) −4.78552 2.76292i −0.284469 0.164239i 0.350976 0.936385i \(-0.385850\pi\)
−0.635445 + 0.772146i \(0.719183\pi\)
\(284\) 9.59521 0.569371
\(285\) 5.38819 8.12203i 0.319169 0.481108i
\(286\) −1.56865 −0.0927563
\(287\) −5.21956 3.01351i −0.308101 0.177882i
\(288\) −0.866025 0.500000i −0.0510310 0.0294628i
\(289\) −7.71313 13.3595i −0.453714 0.785855i
\(290\) −4.84299 + 2.18340i −0.284390 + 0.128214i
\(291\) −6.08034 10.5315i −0.356436 0.617365i
\(292\) 6.95732i 0.407146i
\(293\) 0.546541i 0.0319293i 0.999873 + 0.0159646i \(0.00508192\pi\)
−0.999873 + 0.0159646i \(0.994918\pi\)
\(294\) −2.92155 5.06026i −0.170388 0.295121i
\(295\) 5.59115 + 0.561259i 0.325529 + 0.0326778i
\(296\) 2.08017 0.120907
\(297\) 0.410555i 0.0238228i
\(298\) 2.04715 1.18192i 0.118588 0.0684668i
\(299\) 7.13102 12.3513i 0.412397 0.714293i
\(300\) 3.74682 + 3.31079i 0.216323 + 0.191149i
\(301\) −1.19376 + 2.06766i −0.0688073 + 0.119178i
\(302\) −3.48952 2.01468i −0.200799 0.115932i
\(303\) 3.08809i 0.177406i
\(304\) −3.68961 + 2.32094i −0.211614 + 0.133115i
\(305\) 8.82060 12.2606i 0.505066 0.702037i
\(306\) 0.627244 1.08642i 0.0358571 0.0621064i
\(307\) 21.2877 + 12.2904i 1.21495 + 0.701452i 0.963834 0.266505i \(-0.0858688\pi\)
0.251117 + 0.967957i \(0.419202\pi\)
\(308\) −0.382430 + 0.220796i −0.0217909 + 0.0125810i
\(309\) −7.39772 + 12.8132i −0.420842 + 0.728919i
\(310\) −1.73295 + 17.2633i −0.0984250 + 0.980490i
\(311\) 21.5698 1.22311 0.611556 0.791201i \(-0.290544\pi\)
0.611556 + 0.791201i \(0.290544\pi\)
\(312\) 3.82081i 0.216311i
\(313\) −25.3785 + 14.6523i −1.43447 + 0.828194i −0.997458 0.0712588i \(-0.977298\pi\)
−0.437017 + 0.899453i \(0.643965\pi\)
\(314\) 9.72912 + 16.8513i 0.549046 + 0.950976i
\(315\) −1.95236 1.40458i −0.110003 0.0791392i
\(316\) 8.94554 0.503226
\(317\) 7.10418 4.10160i 0.399011 0.230369i −0.287046 0.957917i \(-0.592673\pi\)
0.686057 + 0.727548i \(0.259340\pi\)
\(318\) 4.32940 + 2.49958i 0.242781 + 0.140169i
\(319\) 0.487695 + 0.844713i 0.0273057 + 0.0472948i
\(320\) −0.919023 2.03848i −0.0513750 0.113954i
\(321\) −2.68825 + 4.65618i −0.150043 + 0.259883i
\(322\) 4.01491i 0.223742i
\(323\) −2.91160 4.62857i −0.162006 0.257540i
\(324\) −1.00000 −0.0555556
\(325\) 3.79720 18.7229i 0.210631 1.03856i
\(326\) 6.71701 11.6342i 0.372021 0.644359i
\(327\) −14.1344 + 8.16051i −0.781636 + 0.451277i
\(328\) −4.85270 2.80171i −0.267946 0.154699i
\(329\) 2.22825 + 3.85944i 0.122847 + 0.212778i
\(330\) 0.536128 0.745213i 0.0295129 0.0410226i
\(331\) −27.0826 −1.48860 −0.744298 0.667847i \(-0.767216\pi\)
−0.744298 + 0.667847i \(0.767216\pi\)
\(332\) −7.89876 + 4.56035i −0.433501 + 0.250282i
\(333\) 1.80148 1.04009i 0.0987205 0.0569963i
\(334\) −3.90441 −0.213640
\(335\) 16.9195 + 12.1724i 0.924410 + 0.665048i
\(336\) 0.537799 + 0.931495i 0.0293393 + 0.0508172i
\(337\) 23.9964 + 13.8543i 1.30717 + 0.754693i 0.981622 0.190834i \(-0.0611192\pi\)
0.325544 + 0.945527i \(0.394453\pi\)
\(338\) 1.38442 0.799296i 0.0753026 0.0434760i
\(339\) −4.89944 + 8.48608i −0.266101 + 0.460900i
\(340\) 2.55725 1.15290i 0.138686 0.0625250i
\(341\) 3.18557 0.172508
\(342\) −2.03482 + 3.85480i −0.110031 + 0.208444i
\(343\) 13.8140i 0.745885i
\(344\) −1.10986 + 1.92233i −0.0598396 + 0.103645i
\(345\) 3.43046 + 7.60908i 0.184690 + 0.409659i
\(346\) 7.58604 + 13.1394i 0.407828 + 0.706379i
\(347\) −2.04836 1.18262i −0.109962 0.0634865i 0.444010 0.896022i \(-0.353555\pi\)
−0.553972 + 0.832535i \(0.686889\pi\)
\(348\) 2.05749 1.18789i 0.110293 0.0636778i
\(349\) −16.7894 −0.898718 −0.449359 0.893351i \(-0.648348\pi\)
−0.449359 + 0.893351i \(0.648348\pi\)
\(350\) −1.70960 5.09902i −0.0913821 0.272554i
\(351\) 1.91041 + 3.30892i 0.101970 + 0.176617i
\(352\) −0.355551 + 0.205277i −0.0189509 + 0.0109413i
\(353\) 23.0018i 1.22426i −0.790756 0.612132i \(-0.790312\pi\)
0.790756 0.612132i \(-0.209688\pi\)
\(354\) −2.51301 −0.133565
\(355\) 21.3482 + 2.14301i 1.13305 + 0.113739i
\(356\) 2.72783 4.72474i 0.144575 0.250411i
\(357\) −1.16855 + 0.674662i −0.0618461 + 0.0357069i
\(358\) −7.71769 4.45581i −0.407892 0.235497i
\(359\) 1.84432 3.19445i 0.0973393 0.168597i −0.813243 0.581924i \(-0.802300\pi\)
0.910583 + 0.413327i \(0.135633\pi\)
\(360\) −1.81514 1.30586i −0.0956661 0.0688250i
\(361\) 10.7190 + 15.6877i 0.564157 + 0.825667i
\(362\) 9.22548i 0.484881i
\(363\) 9.38031 + 5.41572i 0.492338 + 0.284252i
\(364\) 2.05483 3.55906i 0.107702 0.186546i
\(365\) 1.55386 15.4792i 0.0813327 0.810220i
\(366\) −3.37731 + 5.84967i −0.176535 + 0.305767i
\(367\) −9.72280 + 5.61346i −0.507526 + 0.293020i −0.731816 0.681502i \(-0.761327\pi\)
0.224290 + 0.974522i \(0.427994\pi\)
\(368\) 3.73273i 0.194582i
\(369\) −5.60342 −0.291702
\(370\) 4.62814 + 0.464589i 0.240606 + 0.0241528i
\(371\) −2.68854 4.65669i −0.139582 0.241763i
\(372\) 7.75919i 0.402295i
\(373\) 2.73993i 0.141868i −0.997481 0.0709340i \(-0.977402\pi\)
0.997481 0.0709340i \(-0.0225980\pi\)
\(374\) −0.257518 0.446034i −0.0133159 0.0230639i
\(375\) 7.59681 + 8.20296i 0.392298 + 0.423599i
\(376\) 2.07164 + 3.58819i 0.106837 + 0.185047i
\(377\) −7.86129 4.53872i −0.404877 0.233756i
\(378\) 0.931495 + 0.537799i 0.0479109 + 0.0276614i
\(379\) −36.3082 −1.86503 −0.932515 0.361132i \(-0.882390\pi\)
−0.932515 + 0.361132i \(0.882390\pi\)
\(380\) −8.72732 + 4.33979i −0.447702 + 0.222627i
\(381\) −18.2591 −0.935442
\(382\) 17.0993 + 9.87227i 0.874875 + 0.505109i
\(383\) 9.30230 + 5.37069i 0.475326 + 0.274429i 0.718466 0.695562i \(-0.244844\pi\)
−0.243141 + 0.969991i \(0.578178\pi\)
\(384\) 0.500000 + 0.866025i 0.0255155 + 0.0441942i
\(385\) −0.900175 + 0.405833i −0.0458772 + 0.0206832i
\(386\) 6.90289 + 11.9562i 0.351348 + 0.608552i
\(387\) 2.21972i 0.112835i
\(388\) 12.1607i 0.617365i
\(389\) 3.04431 + 5.27291i 0.154353 + 0.267347i 0.932823 0.360334i \(-0.117337\pi\)
−0.778470 + 0.627681i \(0.784004\pi\)
\(390\) −0.853346 + 8.50087i −0.0432109 + 0.430458i
\(391\) 4.68266 0.236812
\(392\) 5.84309i 0.295121i
\(393\) 16.8039 9.70176i 0.847647 0.489389i
\(394\) −4.21002 + 7.29198i −0.212098 + 0.367364i
\(395\) 19.9028 + 1.99791i 1.00142 + 0.100526i
\(396\) −0.205277 + 0.355551i −0.0103156 + 0.0178671i
\(397\) 19.8802 + 11.4778i 0.997759 + 0.576056i 0.907584 0.419870i \(-0.137924\pi\)
0.0901743 + 0.995926i \(0.471258\pi\)
\(398\) 6.66504i 0.334088i
\(399\) 3.96853 2.49640i 0.198675 0.124976i
\(400\) −1.58945 4.74064i −0.0794723 0.237032i
\(401\) 9.06197 15.6958i 0.452533 0.783810i −0.546010 0.837779i \(-0.683854\pi\)
0.998543 + 0.0539687i \(0.0171871\pi\)
\(402\) −8.07251 4.66066i −0.402620 0.232453i
\(403\) −25.6745 + 14.8232i −1.27894 + 0.738396i
\(404\) 1.54404 2.67436i 0.0768190 0.133054i
\(405\) −2.22489 0.223342i −0.110555 0.0110979i
\(406\) −2.55539 −0.126822
\(407\) 0.854024i 0.0423324i
\(408\) −1.08642 + 0.627244i −0.0537857 + 0.0310532i
\(409\) 19.7968 + 34.2890i 0.978888 + 1.69548i 0.666457 + 0.745543i \(0.267810\pi\)
0.312431 + 0.949941i \(0.398857\pi\)
\(410\) −10.1710 7.31730i −0.502309 0.361376i
\(411\) 8.84238 0.436162
\(412\) 12.8132 7.39772i 0.631263 0.364460i
\(413\) 2.34085 + 1.35149i 0.115186 + 0.0665025i
\(414\) −1.86636 3.23263i −0.0917267 0.158875i
\(415\) −18.5924 + 8.38214i −0.912663 + 0.411463i
\(416\) 1.91041 3.30892i 0.0936653 0.162233i
\(417\) 10.5667i 0.517452i
\(418\) 0.952875 + 1.51479i 0.0466066 + 0.0740906i
\(419\) 27.5268 1.34477 0.672385 0.740201i \(-0.265270\pi\)
0.672385 + 0.740201i \(0.265270\pi\)
\(420\) 0.988499 + 2.19258i 0.0482338 + 0.106987i
\(421\) 0.443296 0.767812i 0.0216049 0.0374209i −0.855021 0.518594i \(-0.826456\pi\)
0.876626 + 0.481173i \(0.159789\pi\)
\(422\) −10.5760 + 6.10606i −0.514832 + 0.297239i
\(423\) 3.58819 + 2.07164i 0.174464 + 0.100727i
\(424\) −2.49958 4.32940i −0.121390 0.210254i
\(425\) 5.94707 1.99394i 0.288475 0.0967203i
\(426\) −9.59521 −0.464889
\(427\) 6.29189 3.63262i 0.304486 0.175795i
\(428\) 4.65618 2.68825i 0.225065 0.129941i
\(429\) 1.56865 0.0757352
\(430\) −2.89865 + 4.02909i −0.139785 + 0.194300i
\(431\) −4.26551 7.38807i −0.205462 0.355871i 0.744818 0.667268i \(-0.232536\pi\)
−0.950280 + 0.311397i \(0.899203\pi\)
\(432\) 0.866025 + 0.500000i 0.0416667 + 0.0240563i
\(433\) −12.5809 + 7.26356i −0.604597 + 0.349064i −0.770848 0.637019i \(-0.780167\pi\)
0.166251 + 0.986084i \(0.446834\pi\)
\(434\) −4.17288 + 7.22764i −0.200305 + 0.346938i
\(435\) 4.84299 2.18340i 0.232204 0.104686i
\(436\) 16.3210 0.781636
\(437\) −16.2589 + 0.616616i −0.777768 + 0.0294968i
\(438\) 6.95732i 0.332433i
\(439\) 6.98935 12.1059i 0.333583 0.577784i −0.649628 0.760252i \(-0.725075\pi\)
0.983212 + 0.182469i \(0.0584088\pi\)
\(440\) −0.836907 + 0.377309i −0.0398980 + 0.0179875i
\(441\) 2.92155 + 5.06026i 0.139121 + 0.240965i
\(442\) 4.15100 + 2.39658i 0.197443 + 0.113994i
\(443\) 19.1733 11.0697i 0.910951 0.525938i 0.0302139 0.999543i \(-0.490381\pi\)
0.880737 + 0.473606i \(0.157048\pi\)
\(444\) −2.08017 −0.0987205
\(445\) 7.12434 9.90277i 0.337726 0.469436i
\(446\) −0.285027 0.493682i −0.0134964 0.0233765i
\(447\) −2.04715 + 1.18192i −0.0968267 + 0.0559029i
\(448\) 1.07560i 0.0508172i
\(449\) −33.0859 −1.56142 −0.780711 0.624892i \(-0.785143\pi\)
−0.780711 + 0.624892i \(0.785143\pi\)
\(450\) −3.74682 3.31079i −0.176627 0.156072i
\(451\) −1.15026 + 1.99230i −0.0541634 + 0.0938138i
\(452\) 8.48608 4.89944i 0.399151 0.230450i
\(453\) 3.48952 + 2.01468i 0.163952 + 0.0946577i
\(454\) 1.23158 2.13316i 0.0578009 0.100114i
\(455\) 5.36664 7.45958i 0.251592 0.349711i
\(456\) 3.68961 2.32094i 0.172782 0.108688i
\(457\) 29.1810i 1.36503i 0.730871 + 0.682515i \(0.239114\pi\)
−0.730871 + 0.682515i \(0.760886\pi\)
\(458\) 9.54793 + 5.51250i 0.446145 + 0.257582i
\(459\) −0.627244 + 1.08642i −0.0292772 + 0.0507097i
\(460\) 0.833673 8.30489i 0.0388702 0.387217i
\(461\) 10.1373 17.5583i 0.472141 0.817773i −0.527350 0.849648i \(-0.676814\pi\)
0.999492 + 0.0318749i \(0.0101478\pi\)
\(462\) 0.382430 0.220796i 0.0177922 0.0102724i
\(463\) 15.3688i 0.714251i −0.934057 0.357125i \(-0.883757\pi\)
0.934057 0.357125i \(-0.116243\pi\)
\(464\) −2.37579 −0.110293
\(465\) 1.73295 17.2633i 0.0803637 0.800567i
\(466\) −8.63595 14.9579i −0.400053 0.692911i
\(467\) 38.1609i 1.76587i −0.469491 0.882937i \(-0.655563\pi\)
0.469491 0.882937i \(-0.344437\pi\)
\(468\) 3.82081i 0.176617i
\(469\) 5.01300 + 8.68277i 0.231479 + 0.400933i
\(470\) 3.80777 + 8.44599i 0.175639 + 0.389584i
\(471\) −9.72912 16.8513i −0.448294 0.776469i
\(472\) 2.17633 + 1.25650i 0.100174 + 0.0578352i
\(473\) 0.789223 + 0.455658i 0.0362885 + 0.0209512i
\(474\) −8.94554 −0.410882
\(475\) −20.3866 + 7.70637i −0.935400 + 0.353592i
\(476\) 1.34932 0.0618461
\(477\) −4.32940 2.49958i −0.198230 0.114448i
\(478\) −5.98201 3.45372i −0.273611 0.157969i
\(479\) −15.1215 26.1912i −0.690918 1.19670i −0.971538 0.236886i \(-0.923873\pi\)
0.280620 0.959819i \(-0.409460\pi\)
\(480\) 0.919023 + 2.03848i 0.0419475 + 0.0930434i
\(481\) 3.97397 + 6.88312i 0.181197 + 0.313843i
\(482\) 22.0279i 1.00334i
\(483\) 4.01491i 0.182685i
\(484\) −5.41572 9.38031i −0.246169 0.426378i
\(485\) −2.71599 + 27.0561i −0.123327 + 1.22856i
\(486\) 1.00000 0.0453609
\(487\) 37.7499i 1.71061i −0.518125 0.855305i \(-0.673370\pi\)
0.518125 0.855305i \(-0.326630\pi\)
\(488\) 5.84967 3.37731i 0.264802 0.152884i
\(489\) −6.71701 + 11.6342i −0.303754 + 0.526117i
\(490\) −1.30501 + 13.0002i −0.0589542 + 0.587290i
\(491\) −10.6495 + 18.4456i −0.480607 + 0.832436i −0.999752 0.0222498i \(-0.992917\pi\)
0.519145 + 0.854686i \(0.326250\pi\)
\(492\) 4.85270 + 2.80171i 0.218777 + 0.126311i
\(493\) 2.98039i 0.134230i
\(494\) −14.7285 7.77467i −0.662665 0.349799i
\(495\) −0.536128 + 0.745213i −0.0240972 + 0.0334948i
\(496\) −3.87959 + 6.71965i −0.174199 + 0.301721i
\(497\) 8.93788 + 5.16029i 0.400919 + 0.231471i
\(498\) 7.89876 4.56035i 0.353952 0.204354i
\(499\) −10.2460 + 17.7466i −0.458674 + 0.794447i −0.998891 0.0470789i \(-0.985009\pi\)
0.540217 + 0.841526i \(0.318342\pi\)
\(500\) −2.47755 10.9024i −0.110799 0.487569i
\(501\) 3.90441 0.174436
\(502\) 21.1326i 0.943196i
\(503\) 3.26234 1.88351i 0.145461 0.0839817i −0.425503 0.904957i \(-0.639903\pi\)
0.570964 + 0.820975i \(0.306570\pi\)
\(504\) −0.537799 0.931495i −0.0239555 0.0414921i
\(505\) 4.03262 5.60530i 0.179449 0.249432i
\(506\) −1.53249 −0.0681274
\(507\) −1.38442 + 0.799296i −0.0614843 + 0.0354980i
\(508\) 15.8129 + 9.12955i 0.701582 + 0.405058i
\(509\) −4.50733 7.80693i −0.199784 0.346036i 0.748674 0.662938i \(-0.230691\pi\)
−0.948458 + 0.316902i \(0.897357\pi\)
\(510\) −2.55725 + 1.15290i −0.113237 + 0.0510514i
\(511\) 3.74164 6.48070i 0.165520 0.286689i
\(512\) 1.00000i 0.0441942i
\(513\) 2.03482 3.85480i 0.0898396 0.170194i
\(514\) −26.4167 −1.16519
\(515\) 30.1602 13.5974i 1.32902 0.599171i
\(516\) 1.10986 1.92233i 0.0488588 0.0846260i
\(517\) 1.47315 0.850522i 0.0647889 0.0374059i
\(518\) 1.93767 + 1.11871i 0.0851362 + 0.0491534i
\(519\) −7.58604 13.1394i −0.332990 0.576756i
\(520\) 4.98945 6.93529i 0.218802 0.304133i
\(521\) 7.99789 0.350394 0.175197 0.984533i \(-0.443944\pi\)
0.175197 + 0.984533i \(0.443944\pi\)
\(522\) −2.05749 + 1.18789i −0.0900540 + 0.0519927i
\(523\) −10.1372 + 5.85269i −0.443267 + 0.255920i −0.704982 0.709225i \(-0.749045\pi\)
0.261716 + 0.965145i \(0.415712\pi\)
\(524\) −19.4035 −0.847647
\(525\) 1.70960 + 5.09902i 0.0746132 + 0.222539i
\(526\) −11.9611 20.7173i −0.521530 0.903316i
\(527\) −8.42972 4.86690i −0.367204 0.212006i
\(528\) 0.355551 0.205277i 0.0154734 0.00893355i
\(529\) −4.53338 + 7.85205i −0.197104 + 0.341393i
\(530\) −4.59434 10.1907i −0.199566 0.442655i
\(531\) 2.51301 0.109055
\(532\) −4.68505 + 0.177680i −0.203123 + 0.00770341i
\(533\) 21.4096i 0.927353i
\(534\) −2.72783 + 4.72474i −0.118045 + 0.204459i
\(535\) 10.9599 4.94113i 0.473837 0.213624i
\(536\) 4.66066 + 8.07251i 0.201310 + 0.348679i
\(537\) 7.71769 + 4.45581i 0.333043 + 0.192282i
\(538\) −6.74229 + 3.89266i −0.290681 + 0.167825i
\(539\) 2.39891 0.103328
\(540\) 1.81514 + 1.30586i 0.0781111 + 0.0561954i
\(541\) −12.3595 21.4072i −0.531375 0.920369i −0.999329 0.0366163i \(-0.988342\pi\)
0.467954 0.883753i \(-0.344991\pi\)
\(542\) −0.729521 + 0.421189i −0.0313356 + 0.0180916i
\(543\) 9.22548i 0.395903i
\(544\) 1.25449 0.0537857
\(545\) 36.3124 + 3.64517i 1.55545 + 0.156142i
\(546\) −2.05483 + 3.55906i −0.0879385 + 0.152314i
\(547\) 27.0571 15.6214i 1.15688 0.667924i 0.206324 0.978484i \(-0.433850\pi\)
0.950554 + 0.310560i \(0.100516\pi\)
\(548\) −7.65772 4.42119i −0.327122 0.188864i
\(549\) 3.37731 5.84967i 0.144140 0.249658i
\(550\) −1.94629 + 0.652554i −0.0829902 + 0.0278250i
\(551\) 0.392461 + 10.3484i 0.0167194 + 0.440856i
\(552\) 3.73273i 0.158875i
\(553\) 8.33272 + 4.81090i 0.354343 + 0.204580i
\(554\) −2.77742 + 4.81064i −0.118001 + 0.204384i
\(555\) −4.62814 0.464589i −0.196454 0.0197207i
\(556\) −5.28333 + 9.15100i −0.224063 + 0.388089i
\(557\) −1.27137 + 0.734027i −0.0538698 + 0.0311017i −0.526693 0.850056i \(-0.676568\pi\)
0.472823 + 0.881157i \(0.343235\pi\)
\(558\) 7.75919i 0.328473i
\(559\) −8.48113 −0.358713
\(560\) 0.240226 2.39308i 0.0101514 0.101126i
\(561\) 0.257518 + 0.446034i 0.0108724 + 0.0188316i
\(562\) 16.1199i 0.679975i
\(563\) 9.14417i 0.385381i 0.981260 + 0.192690i \(0.0617213\pi\)
−0.981260 + 0.192690i \(0.938279\pi\)
\(564\) −2.07164 3.58819i −0.0872318 0.151090i
\(565\) 19.9748 9.00540i 0.840346 0.378860i
\(566\) −2.76292 4.78552i −0.116134 0.201150i
\(567\) −0.931495 0.537799i −0.0391191 0.0225854i
\(568\) 8.30969 + 4.79760i 0.348667 + 0.201303i
\(569\) −26.6371 −1.11668 −0.558342 0.829611i \(-0.688562\pi\)
−0.558342 + 0.829611i \(0.688562\pi\)
\(570\) 8.72732 4.33979i 0.365547 0.181774i
\(571\) 37.9441 1.58791 0.793957 0.607974i \(-0.208018\pi\)
0.793957 + 0.607974i \(0.208018\pi\)
\(572\) −1.35849 0.784326i −0.0568014 0.0327943i
\(573\) −17.0993 9.87227i −0.714333 0.412420i
\(574\) −3.01351 5.21956i −0.125782 0.217860i
\(575\) 3.70966 18.2912i 0.154703 0.762797i
\(576\) −0.500000 0.866025i −0.0208333 0.0360844i
\(577\) 11.2059i 0.466508i −0.972416 0.233254i \(-0.925063\pi\)
0.972416 0.233254i \(-0.0749373\pi\)
\(578\) 15.4263i 0.641648i
\(579\) −6.90289 11.9562i −0.286874 0.496881i
\(580\) −5.28585 0.530612i −0.219483 0.0220325i
\(581\) −9.81020 −0.406996
\(582\) 12.1607i 0.504077i
\(583\) −1.77745 + 1.02621i −0.0736147 + 0.0425014i
\(584\) 3.47866 6.02521i 0.143948 0.249325i
\(585\) 0.853346 8.50087i 0.0352815 0.351468i
\(586\) −0.273271 + 0.473319i −0.0112887 + 0.0195526i
\(587\) 17.3126 + 9.99543i 0.714567 + 0.412555i 0.812750 0.582613i \(-0.197970\pi\)
−0.0981828 + 0.995168i \(0.531303\pi\)
\(588\) 5.84309i 0.240965i
\(589\) 29.9101 + 15.7886i 1.23243 + 0.650557i
\(590\) 4.56145 + 3.28164i 0.187792 + 0.135103i
\(591\) 4.21002 7.29198i 0.173177 0.299952i
\(592\) 1.80148 + 1.04009i 0.0740404 + 0.0427472i
\(593\) −18.6911 + 10.7913i −0.767552 + 0.443146i −0.832001 0.554775i \(-0.812804\pi\)
0.0644489 + 0.997921i \(0.479471\pi\)
\(594\) 0.205277 0.355551i 0.00842263 0.0145884i
\(595\) 3.00209 + 0.301360i 0.123074 + 0.0123546i
\(596\) 2.36384 0.0968267
\(597\) 6.66504i 0.272782i
\(598\) 12.3513 7.13102i 0.505082 0.291609i
\(599\) −22.0781 38.2403i −0.902085 1.56246i −0.824783 0.565449i \(-0.808703\pi\)
−0.0773019 0.997008i \(-0.524631\pi\)
\(600\) 1.58945 + 4.74064i 0.0648888 + 0.193536i
\(601\) 22.7911 0.929667 0.464834 0.885398i \(-0.346114\pi\)
0.464834 + 0.885398i \(0.346114\pi\)
\(602\) −2.06766 + 1.19376i −0.0842714 + 0.0486541i
\(603\) 8.07251 + 4.66066i 0.328738 + 0.189797i
\(604\) −2.01468 3.48952i −0.0819760 0.141987i
\(605\) −9.95435 22.0797i −0.404702 0.897666i
\(606\) −1.54404 + 2.67436i −0.0627224 + 0.108638i
\(607\) 15.8927i 0.645064i −0.946559 0.322532i \(-0.895466\pi\)
0.946559 0.322532i \(-0.104534\pi\)
\(608\) −4.35577 + 0.165192i −0.176650 + 0.00669942i
\(609\) 2.55539 0.103550
\(610\) 13.7691 6.20765i 0.557496 0.251340i
\(611\) −7.91534 + 13.7098i −0.320221 + 0.554638i
\(612\) 1.08642 0.627244i 0.0439159 0.0253548i
\(613\) −33.0003 19.0527i −1.33287 0.769532i −0.347130 0.937817i \(-0.612844\pi\)
−0.985738 + 0.168285i \(0.946177\pi\)
\(614\) 12.2904 + 21.2877i 0.496001 + 0.859100i
\(615\) 10.1710 + 7.31730i 0.410133 + 0.295062i
\(616\) −0.441592 −0.0177922
\(617\) 30.0827 17.3683i 1.21109 0.699221i 0.248090 0.968737i \(-0.420197\pi\)
0.962996 + 0.269516i \(0.0868638\pi\)
\(618\) −12.8132 + 7.39772i −0.515424 + 0.297580i
\(619\) −19.6805 −0.791027 −0.395513 0.918460i \(-0.629433\pi\)
−0.395513 + 0.918460i \(0.629433\pi\)
\(620\) −10.1324 + 14.0840i −0.406928 + 0.565627i
\(621\) 1.86636 + 3.23263i 0.0748946 + 0.129721i
\(622\) 18.6800 + 10.7849i 0.749000 + 0.432435i
\(623\) 5.08192 2.93405i 0.203603 0.117550i
\(624\) −1.91041 + 3.30892i −0.0764774 + 0.132463i
\(625\) −3.07732 24.8099i −0.123093 0.992395i
\(626\) −29.3045 −1.17124
\(627\) −0.952875 1.51479i −0.0380542 0.0604948i
\(628\) 19.4582i 0.776469i
\(629\) −1.30477 + 2.25994i −0.0520248 + 0.0901095i
\(630\) −0.988499 2.19258i −0.0393827 0.0873546i
\(631\) −10.0442 17.3970i −0.399851 0.692563i 0.593856 0.804571i \(-0.297605\pi\)
−0.993707 + 0.112008i \(0.964272\pi\)
\(632\) 7.74707 + 4.47277i 0.308162 + 0.177917i
\(633\) 10.5760 6.10606i 0.420359 0.242694i
\(634\) 8.20320 0.325791
\(635\) 33.1428 + 23.8439i 1.31523 + 0.946216i
\(636\) 2.49958 + 4.32940i 0.0991148 + 0.171672i
\(637\) −19.3343 + 11.1627i −0.766053 + 0.442281i
\(638\) 0.975391i 0.0386161i
\(639\) 9.59521 0.379581
\(640\) 0.223342 2.22489i 0.00882836 0.0879463i
\(641\) 10.1096 17.5104i 0.399306 0.691618i −0.594335 0.804218i \(-0.702585\pi\)
0.993640 + 0.112600i \(0.0359179\pi\)
\(642\) −4.65618 + 2.68825i −0.183765 + 0.106097i
\(643\) −11.6160 6.70652i −0.458092 0.264479i 0.253150 0.967427i \(-0.418533\pi\)
−0.711241 + 0.702948i \(0.751867\pi\)
\(644\) 2.00745 3.47701i 0.0791048 0.137014i
\(645\) 2.89865 4.02909i 0.114134 0.158645i
\(646\) −0.207231 5.46426i −0.00815341 0.214988i
\(647\) 36.1642i 1.42176i −0.703313 0.710880i \(-0.748297\pi\)
0.703313 0.710880i \(-0.251703\pi\)
\(648\) −0.866025 0.500000i −0.0340207 0.0196419i
\(649\) 0.515863 0.893501i 0.0202494 0.0350730i
\(650\) 12.6499 14.3159i 0.496170 0.561515i
\(651\) 4.17288 7.22764i 0.163548 0.283274i
\(652\) 11.6342 6.71701i 0.455631 0.263058i
\(653\) 28.2889i 1.10703i 0.832839 + 0.553515i \(0.186714\pi\)
−0.832839 + 0.553515i \(0.813286\pi\)
\(654\) −16.3210 −0.638203
\(655\) −43.1706 4.33362i −1.68682 0.169328i
\(656\) −2.80171 4.85270i −0.109388 0.189466i
\(657\) 6.95732i 0.271431i
\(658\) 4.45650i 0.173732i
\(659\) −3.15825 5.47025i −0.123028 0.213091i 0.797932 0.602747i \(-0.205927\pi\)
−0.920960 + 0.389656i \(0.872594\pi\)
\(660\) 0.836907 0.377309i 0.0325766 0.0146868i
\(661\) 12.4189 + 21.5102i 0.483039 + 0.836649i 0.999810 0.0194748i \(-0.00619942\pi\)
−0.516771 + 0.856124i \(0.672866\pi\)
\(662\) −23.4543 13.5413i −0.911575 0.526298i
\(663\) −4.15100 2.39658i −0.161211 0.0930754i
\(664\) −9.12070 −0.353952
\(665\) −10.4634 0.651050i −0.405753 0.0252466i
\(666\) 2.08017 0.0806050
\(667\) −7.68005 4.43408i −0.297373 0.171688i
\(668\) −3.38132 1.95221i −0.130827 0.0755331i
\(669\) 0.285027 + 0.493682i 0.0110198 + 0.0190868i
\(670\) 8.56652 + 19.0013i 0.330954 + 0.734085i
\(671\) −1.38657 2.40161i −0.0535279 0.0927131i
\(672\) 1.07560i 0.0414921i
\(673\) 28.1903i 1.08665i −0.839521 0.543327i \(-0.817164\pi\)
0.839521 0.543327i \(-0.182836\pi\)
\(674\) 13.8543 + 23.9964i 0.533648 + 0.924306i
\(675\) 3.74682 + 3.31079i 0.144215 + 0.127432i
\(676\) 1.59859 0.0614843
\(677\) 16.9194i 0.650266i 0.945668 + 0.325133i \(0.105409\pi\)
−0.945668 + 0.325133i \(0.894591\pi\)
\(678\) −8.48608 + 4.89944i −0.325906 + 0.188162i
\(679\) −6.54000 + 11.3276i −0.250982 + 0.434714i
\(680\) 2.79109 + 0.280179i 0.107033 + 0.0107444i
\(681\) −1.23158 + 2.13316i −0.0471942 + 0.0817428i
\(682\) 2.75879 + 1.59279i 0.105639 + 0.0609909i
\(683\) 46.8587i 1.79300i 0.443044 + 0.896500i \(0.353899\pi\)
−0.443044 + 0.896500i \(0.646101\pi\)
\(684\) −3.68961 + 2.32094i −0.141076 + 0.0887435i
\(685\) −16.0501 11.5469i −0.613244 0.441186i
\(686\) −6.90700 + 11.9633i −0.263710 + 0.456760i
\(687\) −9.54793 5.51250i −0.364276 0.210315i
\(688\) −1.92233 + 1.10986i −0.0732883 + 0.0423130i
\(689\) 9.55042 16.5418i 0.363842 0.630193i
\(690\) −0.833673 + 8.30489i −0.0317374 + 0.316162i
\(691\) −19.4802 −0.741061 −0.370531 0.928820i \(-0.620824\pi\)
−0.370531 + 0.928820i \(0.620824\pi\)
\(692\) 15.1721i 0.576756i
\(693\) −0.382430 + 0.220796i −0.0145273 + 0.00838734i
\(694\) −1.18262 2.04836i −0.0448917 0.0777547i
\(695\) −13.7986 + 19.1800i −0.523411 + 0.727537i
\(696\) 2.37579 0.0900540
\(697\) 6.08766 3.51471i 0.230586 0.133129i
\(698\) −14.5401 8.39471i −0.550350 0.317745i
\(699\) 8.63595 + 14.9579i 0.326642 + 0.565760i
\(700\) 1.06895 5.27068i 0.0404025 0.199213i
\(701\) −24.8870 + 43.1055i −0.939968 + 1.62807i −0.174441 + 0.984668i \(0.555812\pi\)
−0.765527 + 0.643404i \(0.777522\pi\)
\(702\) 3.82081i 0.144207i
\(703\) 4.23278 8.01865i 0.159642 0.302429i
\(704\) −0.410555 −0.0154734
\(705\) −3.80777 8.44599i −0.143409 0.318094i
\(706\) 11.5009 19.9202i 0.432843 0.749706i
\(707\) 2.87653 1.66077i 0.108183 0.0624596i
\(708\) −2.17633 1.25650i −0.0817914 0.0472223i
\(709\) −12.3260 21.3493i −0.462913 0.801790i 0.536191 0.844097i \(-0.319863\pi\)
−0.999105 + 0.0423070i \(0.986529\pi\)
\(710\) 17.4166 + 12.5300i 0.653634 + 0.470243i
\(711\) 8.94554 0.335484
\(712\) 4.72474 2.72783i 0.177067 0.102230i
\(713\) −25.0826 + 14.4815i −0.939352 + 0.542335i
\(714\) −1.34932 −0.0504972
\(715\) −2.84732 2.04844i −0.106484 0.0766075i
\(716\) −4.45581 7.71769i −0.166521 0.288423i
\(717\) 5.98201 + 3.45372i 0.223402 + 0.128981i
\(718\) 3.19445 1.84432i 0.119216 0.0688293i
\(719\) −16.3306 + 28.2854i −0.609027 + 1.05487i 0.382374 + 0.924008i \(0.375107\pi\)
−0.991401 + 0.130858i \(0.958227\pi\)
\(720\) −0.919023 2.03848i −0.0342500 0.0759696i
\(721\) 15.9139 0.592666
\(722\) 1.43908 + 18.9454i 0.0535569 + 0.705076i
\(723\) 22.0279i 0.819227i
\(724\) −4.61274 + 7.98950i −0.171431 + 0.296927i
\(725\) −11.6419 2.36110i −0.432370 0.0876892i
\(726\) 5.41572 + 9.38031i 0.200996 + 0.348136i
\(727\) −9.05449 5.22761i −0.335813 0.193881i 0.322606 0.946533i \(-0.395441\pi\)
−0.658419 + 0.752652i \(0.728774\pi\)
\(728\) 3.55906 2.05483i 0.131908 0.0761569i
\(729\) −1.00000 −0.0370370
\(730\) 9.08530 12.6285i 0.336262 0.467401i
\(731\) −1.39231 2.41154i −0.0514963 0.0891942i
\(732\) −5.84967 + 3.37731i −0.216210 + 0.124829i
\(733\) 20.8146i 0.768804i −0.923166 0.384402i \(-0.874408\pi\)
0.923166 0.384402i \(-0.125592\pi\)
\(734\) −11.2269 −0.414393
\(735\) 1.30501 13.0002i 0.0481359 0.479520i
\(736\) 1.86636 3.23263i 0.0687950 0.119157i
\(737\) 3.31421 1.91346i 0.122080 0.0704831i
\(738\) −4.85270 2.80171i −0.178631 0.103132i
\(739\) 1.61058 2.78961i 0.0592461 0.102617i −0.834881 0.550430i \(-0.814464\pi\)
0.894127 + 0.447813i \(0.147797\pi\)
\(740\) 3.77580 + 2.71642i 0.138801 + 0.0998575i
\(741\) 14.7285 + 7.77467i 0.541064 + 0.285610i
\(742\) 5.37708i 0.197399i
\(743\) 36.4504 + 21.0447i 1.33724 + 0.772054i 0.986397 0.164381i \(-0.0525628\pi\)
0.350840 + 0.936435i \(0.385896\pi\)
\(744\) 3.87959 6.71965i 0.142233 0.246354i
\(745\) 5.25928 + 0.527944i 0.192685 + 0.0193424i
\(746\) 1.36996 2.37285i 0.0501579 0.0868761i
\(747\) −7.89876 + 4.56035i −0.289000 + 0.166854i
\(748\) 0.515036i 0.0188316i
\(749\) 5.78295 0.211304
\(750\) 2.47755 + 10.9024i 0.0904674 + 0.398098i
\(751\) −15.3356 26.5620i −0.559602 0.969259i −0.997529 0.0702491i \(-0.977621\pi\)
0.437927 0.899010i \(-0.355713\pi\)
\(752\) 4.14328i 0.151090i
\(753\) 21.1326i 0.770116i
\(754\) −4.53872 7.86129i −0.165290 0.286291i
\(755\) −3.70307 8.21375i −0.134768 0.298929i
\(756\) 0.537799 + 0.931495i 0.0195595 + 0.0338781i
\(757\) 24.7684 + 14.3000i 0.900221 + 0.519743i 0.877272 0.479994i \(-0.159361\pi\)
0.0229494 + 0.999737i \(0.492694\pi\)
\(758\) −31.4439 18.1541i −1.14209 0.659387i
\(759\) 1.53249 0.0556258
\(760\) −9.72798 0.605291i −0.352871 0.0219562i
\(761\) 35.0855 1.27185 0.635924 0.771752i \(-0.280619\pi\)
0.635924 + 0.771752i \(0.280619\pi\)
\(762\) −15.8129 9.12955i −0.572839 0.330729i
\(763\) 15.2029 + 8.77743i 0.550384 + 0.317764i
\(764\) 9.87227 + 17.0993i 0.357166 + 0.618630i
\(765\) 2.55725 1.15290i 0.0924574 0.0416833i
\(766\) 5.37069 + 9.30230i 0.194051 + 0.336106i
\(767\) 9.60172i 0.346698i
\(768\) 1.00000i 0.0360844i
\(769\) 9.23956 + 16.0034i 0.333187 + 0.577097i 0.983135 0.182882i \(-0.0585426\pi\)
−0.649948 + 0.759979i \(0.725209\pi\)
\(770\) −0.982491 0.0986258i −0.0354065 0.00355423i
\(771\) 26.4167 0.951373
\(772\) 13.8058i 0.496881i
\(773\) 39.7340 22.9404i 1.42913 0.825110i 0.432080 0.901835i \(-0.357780\pi\)
0.997052 + 0.0767251i \(0.0244464\pi\)
\(774\) −1.10986 + 1.92233i −0.0398931 + 0.0690968i
\(775\) −25.6891 +