Properties

Label 570.2.q.c.49.1
Level $570$
Weight $2$
Character 570.49
Analytic conductor $4.551$
Analytic rank $0$
Dimension $20$
CM no
Inner twists $4$

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) \(=\) \( 570 = 2 \cdot 3 \cdot 5 \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 570.q (of order \(6\), degree \(2\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(4.55147291521\)
Analytic rank: \(0\)
Dimension: \(20\)
Relative dimension: \(10\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{20} - \cdots)\)
Defining polynomial: \(x^{20} - 49 x^{16} - 8 x^{15} + 72 x^{13} + 2145 x^{12} - 648 x^{11} + 32 x^{10} - 7056 x^{9} - 11968 x^{8} + 10368 x^{7} + 9344 x^{6} + 18176 x^{5} + 56320 x^{4} + 28160 x^{3} + 8192 x^{2} + 4096 x + 1024\)
Coefficient ring: \(\Z[a_1, \ldots, a_{19}]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 49.1
Root \(1.78384 - 0.477979i\) of defining polynomial
Character \(\chi\) \(=\) 570.49
Dual form 570.2.q.c.349.1

$q$-expansion

\(f(q)\) \(=\) \(q+(-0.866025 - 0.500000i) q^{2} +(0.866025 + 0.500000i) q^{3} +(0.500000 + 0.866025i) q^{4} +(-2.22489 + 0.223342i) q^{5} +(-0.500000 - 0.866025i) q^{6} -1.07560i q^{7} -1.00000i q^{8} +(0.500000 + 0.866025i) q^{9} +O(q^{10})\) \(q+(-0.866025 - 0.500000i) q^{2} +(0.866025 + 0.500000i) q^{3} +(0.500000 + 0.866025i) q^{4} +(-2.22489 + 0.223342i) q^{5} +(-0.500000 - 0.866025i) q^{6} -1.07560i q^{7} -1.00000i q^{8} +(0.500000 + 0.866025i) q^{9} +(2.03848 + 0.919023i) q^{10} +0.410555 q^{11} +1.00000i q^{12} +(3.30892 - 1.91041i) q^{13} +(-0.537799 + 0.931495i) q^{14} +(-2.03848 - 0.919023i) q^{15} +(-0.500000 + 0.866025i) q^{16} +(1.08642 + 0.627244i) q^{17} -1.00000i q^{18} +(3.85480 + 2.03482i) q^{19} +(-1.30586 - 1.81514i) q^{20} +(0.537799 - 0.931495i) q^{21} +(-0.355551 - 0.205277i) q^{22} +(3.23263 - 1.86636i) q^{23} +(0.500000 - 0.866025i) q^{24} +(4.90024 - 0.993820i) q^{25} -3.82081 q^{26} +1.00000i q^{27} +(0.931495 - 0.537799i) q^{28} +(1.18789 + 2.05749i) q^{29} +(1.30586 + 1.81514i) q^{30} +7.75919 q^{31} +(0.866025 - 0.500000i) q^{32} +(0.355551 + 0.205277i) q^{33} +(-0.627244 - 1.08642i) q^{34} +(0.240226 + 2.39308i) q^{35} +(-0.500000 + 0.866025i) q^{36} +2.08017i q^{37} +(-2.32094 - 3.68961i) q^{38} +3.82081 q^{39} +(0.223342 + 2.22489i) q^{40} +(-2.80171 + 4.85270i) q^{41} +(-0.931495 + 0.537799i) q^{42} +(-1.92233 - 1.10986i) q^{43} +(0.205277 + 0.355551i) q^{44} +(-1.30586 - 1.81514i) q^{45} -3.73273 q^{46} +(-3.58819 + 2.07164i) q^{47} +(-0.866025 + 0.500000i) q^{48} +5.84309 q^{49} +(-4.74064 - 1.58945i) q^{50} +(0.627244 + 1.08642i) q^{51} +(3.30892 + 1.91041i) q^{52} +(4.32940 - 2.49958i) q^{53} +(0.500000 - 0.866025i) q^{54} +(-0.913438 + 0.0916940i) q^{55} -1.07560 q^{56} +(2.32094 + 3.68961i) q^{57} -2.37579i q^{58} +(1.25650 - 2.17633i) q^{59} +(-0.223342 - 2.22489i) q^{60} +(-3.37731 - 5.84967i) q^{61} +(-6.71965 - 3.87959i) q^{62} +(0.931495 - 0.537799i) q^{63} -1.00000 q^{64} +(-6.93529 + 4.98945i) q^{65} +(-0.205277 - 0.355551i) q^{66} +(-8.07251 + 4.66066i) q^{67} +1.25449i q^{68} +3.73273 q^{69} +(0.988499 - 2.19258i) q^{70} +(4.79760 - 8.30969i) q^{71} +(0.866025 - 0.500000i) q^{72} +(6.02521 + 3.47866i) q^{73} +(1.04009 - 1.80148i) q^{74} +(4.74064 + 1.58945i) q^{75} +(0.165192 + 4.35577i) q^{76} -0.441592i q^{77} +(-3.30892 - 1.91041i) q^{78} +(4.47277 - 7.74707i) q^{79} +(0.919023 - 2.03848i) q^{80} +(-0.500000 + 0.866025i) q^{81} +(4.85270 - 2.80171i) q^{82} -9.12070i q^{83} +1.07560 q^{84} +(-2.55725 - 1.15290i) q^{85} +(1.10986 + 1.92233i) q^{86} +2.37579i q^{87} -0.410555i q^{88} +(-2.72783 - 4.72474i) q^{89} +(0.223342 + 2.22489i) q^{90} +(-2.05483 - 3.55906i) q^{91} +(3.23263 + 1.86636i) q^{92} +(6.71965 + 3.87959i) q^{93} +4.14328 q^{94} +(-9.03096 - 3.66631i) q^{95} +1.00000 q^{96} +(-10.5315 - 6.08034i) q^{97} +(-5.06026 - 2.92155i) q^{98} +(0.205277 + 0.355551i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 20q + 10q^{4} - 10q^{6} + 10q^{9} + O(q^{10}) \) \( 20q + 10q^{4} - 10q^{6} + 10q^{9} - 2q^{10} + 12q^{11} + 10q^{14} + 2q^{15} - 10q^{16} + 6q^{19} - 10q^{21} + 10q^{24} + 14q^{25} + 8q^{29} + 40q^{31} + 12q^{34} + 2q^{35} - 10q^{36} + 2q^{40} - 14q^{41} + 6q^{44} + 44q^{46} - 8q^{49} - 8q^{50} - 12q^{51} + 10q^{54} + 20q^{56} + 8q^{59} - 2q^{60} + 16q^{61} - 20q^{64} + 40q^{65} - 6q^{66} - 44q^{69} + 8q^{70} - 4q^{71} + 26q^{74} + 8q^{75} + 8q^{79} - 10q^{81} - 20q^{84} - 16q^{85} - 20q^{86} - 2q^{89} + 2q^{90} - 44q^{91} - 32q^{94} - 80q^{95} + 20q^{96} + 6q^{99} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/570\mathbb{Z}\right)^\times\).

\(n\) \(191\) \(211\) \(457\)
\(\chi(n)\) \(1\) \(e\left(\frac{2}{3}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.866025 0.500000i −0.612372 0.353553i
\(3\) 0.866025 + 0.500000i 0.500000 + 0.288675i
\(4\) 0.500000 + 0.866025i 0.250000 + 0.433013i
\(5\) −2.22489 + 0.223342i −0.994999 + 0.0998815i
\(6\) −0.500000 0.866025i −0.204124 0.353553i
\(7\) 1.07560i 0.406538i −0.979123 0.203269i \(-0.934843\pi\)
0.979123 0.203269i \(-0.0651565\pi\)
\(8\) 1.00000i 0.353553i
\(9\) 0.500000 + 0.866025i 0.166667 + 0.288675i
\(10\) 2.03848 + 0.919023i 0.644624 + 0.290621i
\(11\) 0.410555 0.123787 0.0618935 0.998083i \(-0.480286\pi\)
0.0618935 + 0.998083i \(0.480286\pi\)
\(12\) 1.00000i 0.288675i
\(13\) 3.30892 1.91041i 0.917729 0.529851i 0.0348191 0.999394i \(-0.488914\pi\)
0.882910 + 0.469543i \(0.155581\pi\)
\(14\) −0.537799 + 0.931495i −0.143733 + 0.248952i
\(15\) −2.03848 0.919023i −0.526333 0.237291i
\(16\) −0.500000 + 0.866025i −0.125000 + 0.216506i
\(17\) 1.08642 + 0.627244i 0.263495 + 0.152129i 0.625928 0.779881i \(-0.284720\pi\)
−0.362433 + 0.932010i \(0.618054\pi\)
\(18\) 1.00000i 0.235702i
\(19\) 3.85480 + 2.03482i 0.884352 + 0.466820i
\(20\) −1.30586 1.81514i −0.292000 0.405877i
\(21\) 0.537799 0.931495i 0.117357 0.203269i
\(22\) −0.355551 0.205277i −0.0758037 0.0437653i
\(23\) 3.23263 1.86636i 0.674051 0.389164i −0.123559 0.992337i \(-0.539431\pi\)
0.797610 + 0.603174i \(0.206097\pi\)
\(24\) 0.500000 0.866025i 0.102062 0.176777i
\(25\) 4.90024 0.993820i 0.980047 0.198764i
\(26\) −3.82081 −0.749323
\(27\) 1.00000i 0.192450i
\(28\) 0.931495 0.537799i 0.176036 0.101634i
\(29\) 1.18789 + 2.05749i 0.220586 + 0.382067i 0.954986 0.296650i \(-0.0958696\pi\)
−0.734400 + 0.678717i \(0.762536\pi\)
\(30\) 1.30586 + 1.81514i 0.238417 + 0.331397i
\(31\) 7.75919 1.39359 0.696796 0.717270i \(-0.254608\pi\)
0.696796 + 0.717270i \(0.254608\pi\)
\(32\) 0.866025 0.500000i 0.153093 0.0883883i
\(33\) 0.355551 + 0.205277i 0.0618935 + 0.0357342i
\(34\) −0.627244 1.08642i −0.107571 0.186319i
\(35\) 0.240226 + 2.39308i 0.0406056 + 0.404505i
\(36\) −0.500000 + 0.866025i −0.0833333 + 0.144338i
\(37\) 2.08017i 0.341978i 0.985273 + 0.170989i \(0.0546963\pi\)
−0.985273 + 0.170989i \(0.945304\pi\)
\(38\) −2.32094 3.68961i −0.376507 0.598534i
\(39\) 3.82081 0.611819
\(40\) 0.223342 + 2.22489i 0.0353134 + 0.351785i
\(41\) −2.80171 + 4.85270i −0.437554 + 0.757865i −0.997500 0.0706636i \(-0.977488\pi\)
0.559947 + 0.828529i \(0.310822\pi\)
\(42\) −0.931495 + 0.537799i −0.143733 + 0.0829841i
\(43\) −1.92233 1.10986i −0.293153 0.169252i 0.346210 0.938157i \(-0.387469\pi\)
−0.639363 + 0.768905i \(0.720802\pi\)
\(44\) 0.205277 + 0.355551i 0.0309467 + 0.0536013i
\(45\) −1.30586 1.81514i −0.194667 0.270585i
\(46\) −3.73273 −0.550360
\(47\) −3.58819 + 2.07164i −0.523391 + 0.302180i −0.738321 0.674450i \(-0.764381\pi\)
0.214930 + 0.976629i \(0.431048\pi\)
\(48\) −0.866025 + 0.500000i −0.125000 + 0.0721688i
\(49\) 5.84309 0.834727
\(50\) −4.74064 1.58945i −0.670428 0.224781i
\(51\) 0.627244 + 1.08642i 0.0878317 + 0.152129i
\(52\) 3.30892 + 1.91041i 0.458864 + 0.264926i
\(53\) 4.32940 2.49958i 0.594689 0.343344i −0.172261 0.985051i \(-0.555107\pi\)
0.766949 + 0.641708i \(0.221774\pi\)
\(54\) 0.500000 0.866025i 0.0680414 0.117851i
\(55\) −0.913438 + 0.0916940i −0.123168 + 0.0123640i
\(56\) −1.07560 −0.143733
\(57\) 2.32094 + 3.68961i 0.307417 + 0.488701i
\(58\) 2.37579i 0.311956i
\(59\) 1.25650 2.17633i 0.163583 0.283334i −0.772568 0.634932i \(-0.781028\pi\)
0.936151 + 0.351598i \(0.114362\pi\)
\(60\) −0.223342 2.22489i −0.0288333 0.287232i
\(61\) −3.37731 5.84967i −0.432420 0.748973i 0.564661 0.825323i \(-0.309007\pi\)
−0.997081 + 0.0763496i \(0.975674\pi\)
\(62\) −6.71965 3.87959i −0.853397 0.492709i
\(63\) 0.931495 0.537799i 0.117357 0.0677563i
\(64\) −1.00000 −0.125000
\(65\) −6.93529 + 4.98945i −0.860217 + 0.618866i
\(66\) −0.205277 0.355551i −0.0252679 0.0437653i
\(67\) −8.07251 + 4.66066i −0.986214 + 0.569391i −0.904140 0.427236i \(-0.859488\pi\)
−0.0820733 + 0.996626i \(0.526154\pi\)
\(68\) 1.25449i 0.152129i
\(69\) 3.73273 0.449367
\(70\) 0.988499 2.19258i 0.118148 0.262064i
\(71\) 4.79760 8.30969i 0.569371 0.986179i −0.427258 0.904130i \(-0.640520\pi\)
0.996628 0.0820491i \(-0.0261464\pi\)
\(72\) 0.866025 0.500000i 0.102062 0.0589256i
\(73\) 6.02521 + 3.47866i 0.705198 + 0.407146i 0.809280 0.587422i \(-0.199857\pi\)
−0.104083 + 0.994569i \(0.533191\pi\)
\(74\) 1.04009 1.80148i 0.120907 0.209418i
\(75\) 4.74064 + 1.58945i 0.547402 + 0.183533i
\(76\) 0.165192 + 4.35577i 0.0189488 + 0.499641i
\(77\) 0.441592i 0.0503240i
\(78\) −3.30892 1.91041i −0.374661 0.216311i
\(79\) 4.47277 7.74707i 0.503226 0.871613i −0.496767 0.867884i \(-0.665480\pi\)
0.999993 0.00372912i \(-0.00118702\pi\)
\(80\) 0.919023 2.03848i 0.102750 0.227909i
\(81\) −0.500000 + 0.866025i −0.0555556 + 0.0962250i
\(82\) 4.85270 2.80171i 0.535892 0.309397i
\(83\) 9.12070i 1.00113i −0.865700 0.500563i \(-0.833126\pi\)
0.865700 0.500563i \(-0.166874\pi\)
\(84\) 1.07560 0.117357
\(85\) −2.55725 1.15290i −0.277372 0.125050i
\(86\) 1.10986 + 1.92233i 0.119679 + 0.207291i
\(87\) 2.37579i 0.254711i
\(88\) 0.410555i 0.0437653i
\(89\) −2.72783 4.72474i −0.289149 0.500821i 0.684458 0.729053i \(-0.260039\pi\)
−0.973607 + 0.228231i \(0.926706\pi\)
\(90\) 0.223342 + 2.22489i 0.0235423 + 0.234524i
\(91\) −2.05483 3.55906i −0.215404 0.373091i
\(92\) 3.23263 + 1.86636i 0.337025 + 0.194582i
\(93\) 6.71965 + 3.87959i 0.696796 + 0.402295i
\(94\) 4.14328 0.427347
\(95\) −9.03096 3.66631i −0.926556 0.376156i
\(96\) 1.00000 0.102062
\(97\) −10.5315 6.08034i −1.06931 0.617365i −0.141316 0.989965i \(-0.545133\pi\)
−0.927992 + 0.372599i \(0.878467\pi\)
\(98\) −5.06026 2.92155i −0.511164 0.295121i
\(99\) 0.205277 + 0.355551i 0.0206312 + 0.0357342i
\(100\) 3.31079 + 3.74682i 0.331079 + 0.374682i
\(101\) −1.54404 2.67436i −0.153638 0.266109i 0.778924 0.627118i \(-0.215766\pi\)
−0.932562 + 0.361009i \(0.882432\pi\)
\(102\) 1.25449i 0.124213i
\(103\) 14.7954i 1.45784i 0.684600 + 0.728919i \(0.259977\pi\)
−0.684600 + 0.728919i \(0.740023\pi\)
\(104\) −1.91041 3.30892i −0.187331 0.324466i
\(105\) −0.988499 + 2.19258i −0.0964676 + 0.213974i
\(106\) −4.99916 −0.485561
\(107\) 5.37650i 0.519766i 0.965640 + 0.259883i \(0.0836840\pi\)
−0.965640 + 0.259883i \(0.916316\pi\)
\(108\) −0.866025 + 0.500000i −0.0833333 + 0.0481125i
\(109\) 8.16051 14.1344i 0.781636 1.35383i −0.149353 0.988784i \(-0.547719\pi\)
0.930988 0.365049i \(-0.118948\pi\)
\(110\) 0.836907 + 0.377309i 0.0797960 + 0.0359750i
\(111\) −1.04009 + 1.80148i −0.0987205 + 0.170989i
\(112\) 0.931495 + 0.537799i 0.0880180 + 0.0508172i
\(113\) 9.79888i 0.921801i 0.887452 + 0.460900i \(0.152473\pi\)
−0.887452 + 0.460900i \(0.847527\pi\)
\(114\) −0.165192 4.35577i −0.0154716 0.407955i
\(115\) −6.77541 + 4.87443i −0.631810 + 0.454543i
\(116\) −1.18789 + 2.05749i −0.110293 + 0.191033i
\(117\) 3.30892 + 1.91041i 0.305910 + 0.176617i
\(118\) −2.17633 + 1.25650i −0.200347 + 0.115670i
\(119\) 0.674662 1.16855i 0.0618461 0.107121i
\(120\) −0.919023 + 2.03848i −0.0838950 + 0.186087i
\(121\) −10.8314 −0.984677
\(122\) 6.75461i 0.611534i
\(123\) −4.85270 + 2.80171i −0.437554 + 0.252622i
\(124\) 3.87959 + 6.71965i 0.348398 + 0.603443i
\(125\) −10.6805 + 3.30556i −0.955294 + 0.295659i
\(126\) −1.07560 −0.0958218
\(127\) −15.8129 + 9.12955i −1.40316 + 0.810117i −0.994716 0.102665i \(-0.967263\pi\)
−0.408448 + 0.912782i \(0.633930\pi\)
\(128\) 0.866025 + 0.500000i 0.0765466 + 0.0441942i
\(129\) −1.10986 1.92233i −0.0977177 0.169252i
\(130\) 8.50087 0.853346i 0.745575 0.0748434i
\(131\) −9.70176 + 16.8039i −0.847647 + 1.46817i 0.0356553 + 0.999364i \(0.488648\pi\)
−0.883302 + 0.468804i \(0.844685\pi\)
\(132\) 0.410555i 0.0357342i
\(133\) 2.18865 4.14621i 0.189780 0.359522i
\(134\) 9.32133 0.805240
\(135\) −0.223342 2.22489i −0.0192222 0.191488i
\(136\) 0.627244 1.08642i 0.0537857 0.0931596i
\(137\) 7.65772 4.42119i 0.654244 0.377728i −0.135837 0.990731i \(-0.543372\pi\)
0.790080 + 0.613004i \(0.210039\pi\)
\(138\) −3.23263 1.86636i −0.275180 0.158875i
\(139\) 5.28333 + 9.15100i 0.448127 + 0.776178i 0.998264 0.0588961i \(-0.0187581\pi\)
−0.550138 + 0.835074i \(0.685425\pi\)
\(140\) −1.95236 + 1.40458i −0.165004 + 0.118709i
\(141\) −4.14328 −0.348927
\(142\) −8.30969 + 4.79760i −0.697334 + 0.402606i
\(143\) 1.35849 0.784326i 0.113603 0.0655886i
\(144\) −1.00000 −0.0833333
\(145\) −3.10245 4.31238i −0.257645 0.358124i
\(146\) −3.47866 6.02521i −0.287896 0.498650i
\(147\) 5.06026 + 2.92155i 0.417364 + 0.240965i
\(148\) −1.80148 + 1.04009i −0.148081 + 0.0854945i
\(149\) 1.18192 2.04715i 0.0968267 0.167709i −0.813543 0.581505i \(-0.802464\pi\)
0.910370 + 0.413796i \(0.135797\pi\)
\(150\) −3.31079 3.74682i −0.270325 0.305927i
\(151\) −4.02935 −0.327904 −0.163952 0.986468i \(-0.552424\pi\)
−0.163952 + 0.986468i \(0.552424\pi\)
\(152\) 2.03482 3.85480i 0.165046 0.312666i
\(153\) 1.25449i 0.101419i
\(154\) −0.220796 + 0.382430i −0.0177922 + 0.0308171i
\(155\) −17.2633 + 1.73295i −1.38662 + 0.139194i
\(156\) 1.91041 + 3.30892i 0.152955 + 0.264926i
\(157\) −16.8513 9.72912i −1.34488 0.776469i −0.357364 0.933965i \(-0.616324\pi\)
−0.987520 + 0.157497i \(0.949658\pi\)
\(158\) −7.74707 + 4.47277i −0.616324 + 0.355835i
\(159\) 4.99916 0.396459
\(160\) −1.81514 + 1.30586i −0.143499 + 0.103238i
\(161\) −2.00745 3.47701i −0.158210 0.274027i
\(162\) 0.866025 0.500000i 0.0680414 0.0392837i
\(163\) 13.4340i 1.05223i 0.850412 + 0.526117i \(0.176353\pi\)
−0.850412 + 0.526117i \(0.823647\pi\)
\(164\) −5.60342 −0.437554
\(165\) −0.836907 0.377309i −0.0651531 0.0293735i
\(166\) −4.56035 + 7.89876i −0.353952 + 0.613063i
\(167\) 3.38132 1.95221i 0.261655 0.151066i −0.363435 0.931620i \(-0.618396\pi\)
0.625089 + 0.780553i \(0.285063\pi\)
\(168\) −0.931495 0.537799i −0.0718664 0.0414921i
\(169\) 0.799296 1.38442i 0.0614843 0.106494i
\(170\) 1.63819 + 2.27707i 0.125643 + 0.174643i
\(171\) 0.165192 + 4.35577i 0.0126325 + 0.333094i
\(172\) 2.21972i 0.169252i
\(173\) −13.1394 7.58604i −0.998970 0.576756i −0.0910267 0.995848i \(-0.529015\pi\)
−0.907943 + 0.419093i \(0.862348\pi\)
\(174\) 1.18789 2.05749i 0.0900540 0.155978i
\(175\) −1.06895 5.27068i −0.0808050 0.398426i
\(176\) −0.205277 + 0.355551i −0.0154734 + 0.0268007i
\(177\) 2.17633 1.25650i 0.163583 0.0944445i
\(178\) 5.45566i 0.408919i
\(179\) −8.91162 −0.666085 −0.333043 0.942912i \(-0.608075\pi\)
−0.333043 + 0.942912i \(0.608075\pi\)
\(180\) 0.919023 2.03848i 0.0685000 0.151939i
\(181\) 4.61274 + 7.98950i 0.342862 + 0.593855i 0.984963 0.172765i \(-0.0552702\pi\)
−0.642101 + 0.766620i \(0.721937\pi\)
\(182\) 4.10965i 0.304628i
\(183\) 6.75461i 0.499315i
\(184\) −1.86636 3.23263i −0.137590 0.238313i
\(185\) −0.464589 4.62814i −0.0341573 0.340268i
\(186\) −3.87959 6.71965i −0.284466 0.492709i
\(187\) 0.446034 + 0.257518i 0.0326172 + 0.0188316i
\(188\) −3.58819 2.07164i −0.261695 0.151090i
\(189\) 1.07560 0.0782382
\(190\) 5.98788 + 7.69060i 0.434407 + 0.557935i
\(191\) 19.7445 1.42867 0.714333 0.699806i \(-0.246730\pi\)
0.714333 + 0.699806i \(0.246730\pi\)
\(192\) −0.866025 0.500000i −0.0625000 0.0360844i
\(193\) −11.9562 6.90289i −0.860623 0.496881i 0.00359794 0.999994i \(-0.498855\pi\)
−0.864221 + 0.503113i \(0.832188\pi\)
\(194\) 6.08034 + 10.5315i 0.436543 + 0.756115i
\(195\) −8.50087 + 0.853346i −0.608760 + 0.0611094i
\(196\) 2.92155 + 5.06026i 0.208682 + 0.361447i
\(197\) 8.42005i 0.599904i −0.953954 0.299952i \(-0.903029\pi\)
0.953954 0.299952i \(-0.0969706\pi\)
\(198\) 0.410555i 0.0291769i
\(199\) 3.33252 + 5.77210i 0.236236 + 0.409173i 0.959631 0.281261i \(-0.0907528\pi\)
−0.723395 + 0.690434i \(0.757419\pi\)
\(200\) −0.993820 4.90024i −0.0702737 0.346499i
\(201\) −9.32133 −0.657476
\(202\) 3.08809i 0.217277i
\(203\) 2.21303 1.27769i 0.155324 0.0896766i
\(204\) −0.627244 + 1.08642i −0.0439159 + 0.0760645i
\(205\) 5.14967 11.4225i 0.359669 0.797779i
\(206\) 7.39772 12.8132i 0.515424 0.892740i
\(207\) 3.23263 + 1.86636i 0.224684 + 0.129721i
\(208\) 3.82081i 0.264926i
\(209\) 1.58261 + 0.835406i 0.109471 + 0.0577863i
\(210\) 1.95236 1.40458i 0.134725 0.0969254i
\(211\) −6.10606 + 10.5760i −0.420359 + 0.728083i −0.995974 0.0896377i \(-0.971429\pi\)
0.575616 + 0.817720i \(0.304762\pi\)
\(212\) 4.32940 + 2.49958i 0.297344 + 0.171672i
\(213\) 8.30969 4.79760i 0.569371 0.328726i
\(214\) 2.68825 4.65618i 0.183765 0.318290i
\(215\) 4.52485 + 2.03997i 0.308592 + 0.139125i
\(216\) 1.00000 0.0680414
\(217\) 8.34576i 0.566547i
\(218\) −14.1344 + 8.16051i −0.957304 + 0.552700i
\(219\) 3.47866 + 6.02521i 0.235066 + 0.407146i
\(220\) −0.536128 0.745213i −0.0361458 0.0502423i
\(221\) 4.79316 0.322423
\(222\) 1.80148 1.04009i 0.120907 0.0698060i
\(223\) 0.493682 + 0.285027i 0.0330594 + 0.0190868i 0.516439 0.856324i \(-0.327257\pi\)
−0.483379 + 0.875411i \(0.660591\pi\)
\(224\) −0.537799 0.931495i −0.0359332 0.0622381i
\(225\) 3.31079 + 3.74682i 0.220719 + 0.249788i
\(226\) 4.89944 8.48608i 0.325906 0.564485i
\(227\) 2.46316i 0.163486i 0.996653 + 0.0817428i \(0.0260486\pi\)
−0.996653 + 0.0817428i \(0.973951\pi\)
\(228\) −2.03482 + 3.85480i −0.134759 + 0.255290i
\(229\) 11.0250 0.728553 0.364276 0.931291i \(-0.381316\pi\)
0.364276 + 0.931291i \(0.381316\pi\)
\(230\) 8.30489 0.833673i 0.547608 0.0549708i
\(231\) 0.220796 0.382430i 0.0145273 0.0251620i
\(232\) 2.05749 1.18789i 0.135081 0.0779890i
\(233\) 14.9579 + 8.63595i 0.979925 + 0.565760i 0.902247 0.431219i \(-0.141916\pi\)
0.0776772 + 0.996979i \(0.475250\pi\)
\(234\) −1.91041 3.30892i −0.124887 0.216311i
\(235\) 7.52062 5.41055i 0.490591 0.352946i
\(236\) 2.51301 0.163583
\(237\) 7.74707 4.47277i 0.503226 0.290538i
\(238\) −1.16855 + 0.674662i −0.0757457 + 0.0437318i
\(239\) −6.90743 −0.446805 −0.223402 0.974726i \(-0.571716\pi\)
−0.223402 + 0.974726i \(0.571716\pi\)
\(240\) 1.81514 1.30586i 0.117167 0.0842931i
\(241\) −11.0140 19.0767i −0.709471 1.22884i −0.965053 0.262053i \(-0.915600\pi\)
0.255582 0.966787i \(-0.417733\pi\)
\(242\) 9.38031 + 5.41572i 0.602989 + 0.348136i
\(243\) −0.866025 + 0.500000i −0.0555556 + 0.0320750i
\(244\) 3.37731 5.84967i 0.216210 0.374487i
\(245\) −13.0002 + 1.30501i −0.830553 + 0.0833738i
\(246\) 5.60342 0.357261
\(247\) 16.6426 0.631167i 1.05894 0.0401602i
\(248\) 7.75919i 0.492709i
\(249\) 4.56035 7.89876i 0.289000 0.500563i
\(250\) 10.9024 + 2.47755i 0.689527 + 0.156694i
\(251\) 10.5663 + 18.3014i 0.666940 + 1.15517i 0.978755 + 0.205032i \(0.0657298\pi\)
−0.311815 + 0.950143i \(0.600937\pi\)
\(252\) 0.931495 + 0.537799i 0.0586786 + 0.0338781i
\(253\) 1.32717 0.766244i 0.0834387 0.0481734i
\(254\) 18.2591 1.14568
\(255\) −1.63819 2.27707i −0.102587 0.142595i
\(256\) −0.500000 0.866025i −0.0312500 0.0541266i
\(257\) 22.8775 13.2083i 1.42706 0.823913i 0.430172 0.902747i \(-0.358453\pi\)
0.996888 + 0.0788341i \(0.0251197\pi\)
\(258\) 2.21972i 0.138194i
\(259\) 2.23743 0.139027
\(260\) −7.78864 3.51141i −0.483031 0.217769i
\(261\) −1.18789 + 2.05749i −0.0735287 + 0.127356i
\(262\) 16.8039 9.70176i 1.03815 0.599377i
\(263\) 20.7173 + 11.9611i 1.27748 + 0.737555i 0.976385 0.216039i \(-0.0693138\pi\)
0.301097 + 0.953593i \(0.402647\pi\)
\(264\) 0.205277 0.355551i 0.0126340 0.0218826i
\(265\) −9.07416 + 6.52821i −0.557421 + 0.401025i
\(266\) −3.96853 + 2.49640i −0.243326 + 0.153064i
\(267\) 5.45566i 0.333881i
\(268\) −8.07251 4.66066i −0.493107 0.284695i
\(269\) −3.89266 + 6.74229i −0.237340 + 0.411085i −0.959950 0.280171i \(-0.909609\pi\)
0.722610 + 0.691256i \(0.242942\pi\)
\(270\) −0.919023 + 2.03848i −0.0559300 + 0.124058i
\(271\) −0.421189 + 0.729521i −0.0255854 + 0.0443152i −0.878535 0.477679i \(-0.841478\pi\)
0.852949 + 0.521994i \(0.174812\pi\)
\(272\) −1.08642 + 0.627244i −0.0658738 + 0.0380322i
\(273\) 4.10965i 0.248728i
\(274\) −8.84238 −0.534188
\(275\) 2.01182 0.408018i 0.121317 0.0246044i
\(276\) 1.86636 + 3.23263i 0.112342 + 0.194582i
\(277\) 5.55485i 0.333758i −0.985977 0.166879i \(-0.946631\pi\)
0.985977 0.166879i \(-0.0533690\pi\)
\(278\) 10.5667i 0.633747i
\(279\) 3.87959 + 6.71965i 0.232265 + 0.402295i
\(280\) 2.39308 0.240226i 0.143014 0.0143562i
\(281\) −8.05993 13.9602i −0.480815 0.832796i 0.518943 0.854809i \(-0.326326\pi\)
−0.999758 + 0.0220130i \(0.992992\pi\)
\(282\) 3.58819 + 2.07164i 0.213673 + 0.123364i
\(283\) 4.78552 + 2.76292i 0.284469 + 0.164239i 0.635445 0.772146i \(-0.280817\pi\)
−0.350976 + 0.936385i \(0.614150\pi\)
\(284\) 9.59521 0.569371
\(285\) −5.98788 7.69060i −0.354691 0.455552i
\(286\) −1.56865 −0.0927563
\(287\) 5.21956 + 3.01351i 0.308101 + 0.177882i
\(288\) 0.866025 + 0.500000i 0.0510310 + 0.0294628i
\(289\) −7.71313 13.3595i −0.453714 0.785855i
\(290\) 0.530612 + 5.28585i 0.0311586 + 0.310396i
\(291\) −6.08034 10.5315i −0.356436 0.617365i
\(292\) 6.95732i 0.407146i
\(293\) 0.546541i 0.0319293i −0.999873 0.0159646i \(-0.994918\pi\)
0.999873 0.0159646i \(-0.00508192\pi\)
\(294\) −2.92155 5.06026i −0.170388 0.295121i
\(295\) −2.30951 + 5.12271i −0.134465 + 0.298256i
\(296\) 2.08017 0.120907
\(297\) 0.410555i 0.0238228i
\(298\) −2.04715 + 1.18192i −0.118588 + 0.0684668i
\(299\) 7.13102 12.3513i 0.412397 0.714293i
\(300\) 0.993820 + 4.90024i 0.0573782 + 0.282915i
\(301\) −1.19376 + 2.06766i −0.0688073 + 0.119178i
\(302\) 3.48952 + 2.01468i 0.200799 + 0.115932i
\(303\) 3.08809i 0.177406i
\(304\) −3.68961 + 2.32094i −0.211614 + 0.133115i
\(305\) 8.82060 + 12.2606i 0.505066 + 0.702037i
\(306\) 0.627244 1.08642i 0.0358571 0.0621064i
\(307\) −21.2877 12.2904i −1.21495 0.701452i −0.251117 0.967957i \(-0.580798\pi\)
−0.963834 + 0.266505i \(0.914131\pi\)
\(308\) 0.382430 0.220796i 0.0217909 0.0125810i
\(309\) −7.39772 + 12.8132i −0.420842 + 0.728919i
\(310\) 15.8169 + 7.13088i 0.898342 + 0.405007i
\(311\) 21.5698 1.22311 0.611556 0.791201i \(-0.290544\pi\)
0.611556 + 0.791201i \(0.290544\pi\)
\(312\) 3.82081i 0.216311i
\(313\) 25.3785 14.6523i 1.43447 0.828194i 0.437017 0.899453i \(-0.356035\pi\)
0.997458 + 0.0712588i \(0.0227016\pi\)
\(314\) 9.72912 + 16.8513i 0.549046 + 0.950976i
\(315\) −1.95236 + 1.40458i −0.110003 + 0.0791392i
\(316\) 8.94554 0.503226
\(317\) −7.10418 + 4.10160i −0.399011 + 0.230369i −0.686057 0.727548i \(-0.740660\pi\)
0.287046 + 0.957917i \(0.407327\pi\)
\(318\) −4.32940 2.49958i −0.242781 0.140169i
\(319\) 0.487695 + 0.844713i 0.0273057 + 0.0472948i
\(320\) 2.22489 0.223342i 0.124375 0.0124852i
\(321\) −2.68825 + 4.65618i −0.150043 + 0.259883i
\(322\) 4.01491i 0.223742i
\(323\) 2.91160 + 4.62857i 0.162006 + 0.257540i
\(324\) −1.00000 −0.0555556
\(325\) 14.3159 12.6499i 0.794103 0.701691i
\(326\) 6.71701 11.6342i 0.372021 0.644359i
\(327\) 14.1344 8.16051i 0.781636 0.451277i
\(328\) 4.85270 + 2.80171i 0.267946 + 0.154699i
\(329\) 2.22825 + 3.85944i 0.122847 + 0.212778i
\(330\) 0.536128 + 0.745213i 0.0295129 + 0.0410226i
\(331\) −27.0826 −1.48860 −0.744298 0.667847i \(-0.767216\pi\)
−0.744298 + 0.667847i \(0.767216\pi\)
\(332\) 7.89876 4.56035i 0.433501 0.250282i
\(333\) −1.80148 + 1.04009i −0.0987205 + 0.0569963i
\(334\) −3.90441 −0.213640
\(335\) 16.9195 12.1724i 0.924410 0.665048i
\(336\) 0.537799 + 0.931495i 0.0293393 + 0.0508172i
\(337\) −23.9964 13.8543i −1.30717 0.754693i −0.325544 0.945527i \(-0.605547\pi\)
−0.981622 + 0.190834i \(0.938881\pi\)
\(338\) −1.38442 + 0.799296i −0.0753026 + 0.0434760i
\(339\) −4.89944 + 8.48608i −0.266101 + 0.460900i
\(340\) −0.280179 2.79109i −0.0151949 0.151368i
\(341\) 3.18557 0.172508
\(342\) 2.03482 3.85480i 0.110031 0.208444i
\(343\) 13.8140i 0.745885i
\(344\) −1.10986 + 1.92233i −0.0598396 + 0.103645i
\(345\) −8.30489 + 0.833673i −0.447120 + 0.0448835i
\(346\) 7.58604 + 13.1394i 0.407828 + 0.706379i
\(347\) 2.04836 + 1.18262i 0.109962 + 0.0634865i 0.553972 0.832535i \(-0.313111\pi\)
−0.444010 + 0.896022i \(0.646445\pi\)
\(348\) −2.05749 + 1.18789i −0.110293 + 0.0636778i
\(349\) −16.7894 −0.898718 −0.449359 0.893351i \(-0.648348\pi\)
−0.449359 + 0.893351i \(0.648348\pi\)
\(350\) −1.70960 + 5.09902i −0.0913821 + 0.272554i
\(351\) 1.91041 + 3.30892i 0.101970 + 0.176617i
\(352\) 0.355551 0.205277i 0.0189509 0.0109413i
\(353\) 23.0018i 1.22426i 0.790756 + 0.612132i \(0.209688\pi\)
−0.790756 + 0.612132i \(0.790312\pi\)
\(354\) −2.51301 −0.133565
\(355\) −8.81822 + 19.5596i −0.468023 + 1.03812i
\(356\) 2.72783 4.72474i 0.144575 0.250411i
\(357\) 1.16855 0.674662i 0.0618461 0.0357069i
\(358\) 7.71769 + 4.45581i 0.407892 + 0.235497i
\(359\) 1.84432 3.19445i 0.0973393 0.168597i −0.813243 0.581924i \(-0.802300\pi\)
0.910583 + 0.413327i \(0.135633\pi\)
\(360\) −1.81514 + 1.30586i −0.0956661 + 0.0688250i
\(361\) 10.7190 + 15.6877i 0.564157 + 0.825667i
\(362\) 9.22548i 0.484881i
\(363\) −9.38031 5.41572i −0.492338 0.284252i
\(364\) 2.05483 3.55906i 0.107702 0.186546i
\(365\) −14.1823 6.39394i −0.742338 0.334674i
\(366\) −3.37731 + 5.84967i −0.176535 + 0.305767i
\(367\) 9.72280 5.61346i 0.507526 0.293020i −0.224290 0.974522i \(-0.572006\pi\)
0.731816 + 0.681502i \(0.238673\pi\)
\(368\) 3.73273i 0.194582i
\(369\) −5.60342 −0.291702
\(370\) −1.91173 + 4.24038i −0.0993859 + 0.220447i
\(371\) −2.68854 4.65669i −0.139582 0.241763i
\(372\) 7.75919i 0.402295i
\(373\) 2.73993i 0.141868i 0.997481 + 0.0709340i \(0.0225980\pi\)
−0.997481 + 0.0709340i \(0.977402\pi\)
\(374\) −0.257518 0.446034i −0.0133159 0.0230639i
\(375\) −10.9024 2.47755i −0.562996 0.127940i
\(376\) 2.07164 + 3.58819i 0.106837 + 0.185047i
\(377\) 7.86129 + 4.53872i 0.404877 + 0.233756i
\(378\) −0.931495 0.537799i −0.0479109 0.0276614i
\(379\) −36.3082 −1.86503 −0.932515 0.361132i \(-0.882390\pi\)
−0.932515 + 0.361132i \(0.882390\pi\)
\(380\) −1.34036 9.65419i −0.0687589 0.495250i
\(381\) −18.2591 −0.935442
\(382\) −17.0993 9.87227i −0.874875 0.505109i
\(383\) −9.30230 5.37069i −0.475326 0.274429i 0.243141 0.969991i \(-0.421822\pi\)
−0.718466 + 0.695562i \(0.755156\pi\)
\(384\) 0.500000 + 0.866025i 0.0255155 + 0.0441942i
\(385\) 0.0986258 + 0.982491i 0.00502644 + 0.0500724i
\(386\) 6.90289 + 11.9562i 0.351348 + 0.608552i
\(387\) 2.21972i 0.112835i
\(388\) 12.1607i 0.617365i
\(389\) 3.04431 + 5.27291i 0.154353 + 0.267347i 0.932823 0.360334i \(-0.117337\pi\)
−0.778470 + 0.627681i \(0.784004\pi\)
\(390\) 7.78864 + 3.51141i 0.394393 + 0.177807i
\(391\) 4.68266 0.236812
\(392\) 5.84309i 0.295121i
\(393\) −16.8039 + 9.70176i −0.847647 + 0.489389i
\(394\) −4.21002 + 7.29198i −0.212098 + 0.367364i
\(395\) −8.22116 + 18.2353i −0.413652 + 0.917517i
\(396\) −0.205277 + 0.355551i −0.0103156 + 0.0178671i
\(397\) −19.8802 11.4778i −0.997759 0.576056i −0.0901743 0.995926i \(-0.528742\pi\)
−0.907584 + 0.419870i \(0.862076\pi\)
\(398\) 6.66504i 0.334088i
\(399\) 3.96853 2.49640i 0.198675 0.124976i
\(400\) −1.58945 + 4.74064i −0.0794723 + 0.237032i
\(401\) 9.06197 15.6958i 0.452533 0.783810i −0.546010 0.837779i \(-0.683854\pi\)
0.998543 + 0.0539687i \(0.0171871\pi\)
\(402\) 8.07251 + 4.66066i 0.402620 + 0.232453i
\(403\) 25.6745 14.8232i 1.27894 0.738396i
\(404\) 1.54404 2.67436i 0.0768190 0.133054i
\(405\) 0.919023 2.03848i 0.0456666 0.101293i
\(406\) −2.55539 −0.126822
\(407\) 0.854024i 0.0423324i
\(408\) 1.08642 0.627244i 0.0537857 0.0310532i
\(409\) 19.7968 + 34.2890i 0.978888 + 1.69548i 0.666457 + 0.745543i \(0.267810\pi\)
0.312431 + 0.949941i \(0.398857\pi\)
\(410\) −10.1710 + 7.31730i −0.502309 + 0.361376i
\(411\) 8.84238 0.436162
\(412\) −12.8132 + 7.39772i −0.631263 + 0.364460i
\(413\) −2.34085 1.35149i −0.115186 0.0665025i
\(414\) −1.86636 3.23263i −0.0917267 0.158875i
\(415\) 2.03703 + 20.2925i 0.0999940 + 0.996121i
\(416\) 1.91041 3.30892i 0.0936653 0.162233i
\(417\) 10.5667i 0.517452i
\(418\) −0.952875 1.51479i −0.0466066 0.0740906i
\(419\) 27.5268 1.34477 0.672385 0.740201i \(-0.265270\pi\)
0.672385 + 0.740201i \(0.265270\pi\)
\(420\) −2.39308 + 0.240226i −0.116770 + 0.0117218i
\(421\) 0.443296 0.767812i 0.0216049 0.0374209i −0.855021 0.518594i \(-0.826456\pi\)
0.876626 + 0.481173i \(0.159789\pi\)
\(422\) 10.5760 6.10606i 0.514832 0.297239i
\(423\) −3.58819 2.07164i −0.174464 0.100727i
\(424\) −2.49958 4.32940i −0.121390 0.210254i
\(425\) 5.94707 + 1.99394i 0.288475 + 0.0967203i
\(426\) −9.59521 −0.464889
\(427\) −6.29189 + 3.63262i −0.304486 + 0.175795i
\(428\) −4.65618 + 2.68825i −0.225065 + 0.129941i
\(429\) 1.56865 0.0757352
\(430\) −2.89865 4.02909i −0.139785 0.194300i
\(431\) −4.26551 7.38807i −0.205462 0.355871i 0.744818 0.667268i \(-0.232536\pi\)
−0.950280 + 0.311397i \(0.899203\pi\)
\(432\) −0.866025 0.500000i −0.0416667 0.0240563i
\(433\) 12.5809 7.26356i 0.604597 0.349064i −0.166251 0.986084i \(-0.553166\pi\)
0.770848 + 0.637019i \(0.219833\pi\)
\(434\) −4.17288 + 7.22764i −0.200305 + 0.346938i
\(435\) −0.530612 5.28585i −0.0254409 0.253437i
\(436\) 16.3210 0.781636
\(437\) 16.2589 0.616616i 0.777768 0.0294968i
\(438\) 6.95732i 0.332433i
\(439\) 6.98935 12.1059i 0.333583 0.577784i −0.649628 0.760252i \(-0.725075\pi\)
0.983212 + 0.182469i \(0.0584088\pi\)
\(440\) 0.0916940 + 0.913438i 0.00437134 + 0.0435464i
\(441\) 2.92155 + 5.06026i 0.139121 + 0.240965i
\(442\) −4.15100 2.39658i −0.197443 0.113994i
\(443\) −19.1733 + 11.0697i −0.910951 + 0.525938i −0.880737 0.473606i \(-0.842952\pi\)
−0.0302139 + 0.999543i \(0.509619\pi\)
\(444\) −2.08017 −0.0987205
\(445\) 7.12434 + 9.90277i 0.337726 + 0.469436i
\(446\) −0.285027 0.493682i −0.0134964 0.0233765i
\(447\) 2.04715 1.18192i 0.0968267 0.0559029i
\(448\) 1.07560i 0.0508172i
\(449\) −33.0859 −1.56142 −0.780711 0.624892i \(-0.785143\pi\)
−0.780711 + 0.624892i \(0.785143\pi\)
\(450\) −0.993820 4.90024i −0.0468491 0.230999i
\(451\) −1.15026 + 1.99230i −0.0541634 + 0.0938138i
\(452\) −8.48608 + 4.89944i −0.399151 + 0.230450i
\(453\) −3.48952 2.01468i −0.163952 0.0946577i
\(454\) 1.23158 2.13316i 0.0578009 0.100114i
\(455\) 5.36664 + 7.45958i 0.251592 + 0.349711i
\(456\) 3.68961 2.32094i 0.172782 0.108688i
\(457\) 29.1810i 1.36503i −0.730871 0.682515i \(-0.760886\pi\)
0.730871 0.682515i \(-0.239114\pi\)
\(458\) −9.54793 5.51250i −0.446145 0.257582i
\(459\) −0.627244 + 1.08642i −0.0292772 + 0.0507097i
\(460\) −7.60908 3.43046i −0.354775 0.159946i
\(461\) 10.1373 17.5583i 0.472141 0.817773i −0.527350 0.849648i \(-0.676814\pi\)
0.999492 + 0.0318749i \(0.0101478\pi\)
\(462\) −0.382430 + 0.220796i −0.0177922 + 0.0102724i
\(463\) 15.3688i 0.714251i 0.934057 + 0.357125i \(0.116243\pi\)
−0.934057 + 0.357125i \(0.883757\pi\)
\(464\) −2.37579 −0.110293
\(465\) −15.8169 7.13088i −0.733493 0.330686i
\(466\) −8.63595 14.9579i −0.400053 0.692911i
\(467\) 38.1609i 1.76587i 0.469491 + 0.882937i \(0.344437\pi\)
−0.469491 + 0.882937i \(0.655563\pi\)
\(468\) 3.82081i 0.176617i
\(469\) 5.01300 + 8.68277i 0.231479 + 0.400933i
\(470\) −9.21833 + 0.925367i −0.425210 + 0.0426840i
\(471\) −9.72912 16.8513i −0.448294 0.776469i
\(472\) −2.17633 1.25650i −0.100174 0.0578352i
\(473\) −0.789223 0.455658i −0.0362885 0.0209512i
\(474\) −8.94554 −0.410882
\(475\) 20.9117 + 6.14014i 0.959494 + 0.281729i
\(476\) 1.34932 0.0618461
\(477\) 4.32940 + 2.49958i 0.198230 + 0.114448i
\(478\) 5.98201 + 3.45372i 0.273611 + 0.157969i
\(479\) −15.1215 26.1912i −0.690918 1.19670i −0.971538 0.236886i \(-0.923873\pi\)
0.280620 0.959819i \(-0.409460\pi\)
\(480\) −2.22489 + 0.223342i −0.101552 + 0.0101941i
\(481\) 3.97397 + 6.88312i 0.181197 + 0.313843i
\(482\) 22.0279i 1.00334i
\(483\) 4.01491i 0.182685i
\(484\) −5.41572 9.38031i −0.246169 0.426378i
\(485\) 24.7893 + 11.1760i 1.12562 + 0.507474i
\(486\) 1.00000 0.0453609
\(487\) 37.7499i 1.71061i 0.518125 + 0.855305i \(0.326630\pi\)
−0.518125 + 0.855305i \(0.673370\pi\)
\(488\) −5.84967 + 3.37731i −0.264802 + 0.152884i
\(489\) −6.71701 + 11.6342i −0.303754 + 0.526117i
\(490\) 11.9110 + 5.36994i 0.538085 + 0.242589i
\(491\) −10.6495 + 18.4456i −0.480607 + 0.832436i −0.999752 0.0222498i \(-0.992917\pi\)
0.519145 + 0.854686i \(0.326250\pi\)
\(492\) −4.85270 2.80171i −0.218777 0.126311i
\(493\) 2.98039i 0.134230i
\(494\) −14.7285 7.77467i −0.662665 0.349799i
\(495\) −0.536128 0.745213i −0.0240972 0.0334948i
\(496\) −3.87959 + 6.71965i −0.174199 + 0.301721i
\(497\) −8.93788 5.16029i −0.400919 0.231471i
\(498\) −7.89876 + 4.56035i −0.353952 + 0.204354i
\(499\) −10.2460 + 17.7466i −0.458674 + 0.794447i −0.998891 0.0470789i \(-0.985009\pi\)
0.540217 + 0.841526i \(0.318342\pi\)
\(500\) −8.20296 7.59681i −0.366847 0.339740i
\(501\) 3.90441 0.174436
\(502\) 21.1326i 0.943196i
\(503\) −3.26234 + 1.88351i −0.145461 + 0.0839817i −0.570964 0.820975i \(-0.693430\pi\)
0.425503 + 0.904957i \(0.360097\pi\)
\(504\) −0.537799 0.931495i −0.0239555 0.0414921i
\(505\) 4.03262 + 5.60530i 0.179449 + 0.249432i
\(506\) −1.53249 −0.0681274
\(507\) 1.38442 0.799296i 0.0614843 0.0354980i
\(508\) −15.8129 9.12955i −0.701582 0.405058i
\(509\) −4.50733 7.80693i −0.199784 0.346036i 0.748674 0.662938i \(-0.230691\pi\)
−0.948458 + 0.316902i \(0.897357\pi\)
\(510\) 0.280179 + 2.79109i 0.0124066 + 0.123592i
\(511\) 3.74164 6.48070i 0.165520 0.286689i
\(512\) 1.00000i 0.0441942i
\(513\) −2.03482 + 3.85480i −0.0898396 + 0.170194i
\(514\) −26.4167 −1.16519
\(515\) −3.30444 32.9182i −0.145611 1.45055i
\(516\) 1.10986 1.92233i 0.0488588 0.0846260i
\(517\) −1.47315 + 0.850522i −0.0647889 + 0.0374059i
\(518\) −1.93767 1.11871i −0.0851362 0.0491534i
\(519\) −7.58604 13.1394i −0.332990 0.576756i
\(520\) 4.98945 + 6.93529i 0.218802 + 0.304133i
\(521\) 7.99789 0.350394 0.175197 0.984533i \(-0.443944\pi\)
0.175197 + 0.984533i \(0.443944\pi\)
\(522\) 2.05749 1.18789i 0.0900540 0.0519927i
\(523\) 10.1372 5.85269i 0.443267 0.255920i −0.261716 0.965145i \(-0.584288\pi\)
0.704982 + 0.709225i \(0.250955\pi\)
\(524\) −19.4035 −0.847647
\(525\) 1.70960 5.09902i 0.0746132 0.222539i
\(526\) −11.9611 20.7173i −0.521530 0.903316i
\(527\) 8.42972 + 4.86690i 0.367204 + 0.212006i
\(528\) −0.355551 + 0.205277i −0.0154734 + 0.00893355i
\(529\) −4.53338 + 7.85205i −0.197104 + 0.341393i
\(530\) 11.1226 1.11652i 0.483133 0.0484986i
\(531\) 2.51301 0.109055
\(532\) 4.68505 0.177680i 0.203123 0.00770341i
\(533\) 21.4096i 0.927353i
\(534\) −2.72783 + 4.72474i −0.118045 + 0.204459i
\(535\) −1.20080 11.9621i −0.0519150 0.517167i
\(536\) 4.66066 + 8.07251i 0.201310 + 0.348679i
\(537\) −7.71769 4.45581i −0.333043 0.192282i
\(538\) 6.74229 3.89266i 0.290681 0.167825i
\(539\) 2.39891 0.103328
\(540\) 1.81514 1.30586i 0.0781111 0.0561954i
\(541\) −12.3595 21.4072i −0.531375 0.920369i −0.999329 0.0366163i \(-0.988342\pi\)
0.467954 0.883753i \(-0.344991\pi\)
\(542\) 0.729521 0.421189i 0.0313356 0.0180916i
\(543\) 9.22548i 0.395903i
\(544\) 1.25449 0.0537857
\(545\) −14.9994 + 33.2701i −0.642504 + 1.42513i
\(546\) −2.05483 + 3.55906i −0.0879385 + 0.152314i
\(547\) −27.0571 + 15.6214i −1.15688 + 0.667924i −0.950554 0.310560i \(-0.899484\pi\)
−0.206324 + 0.978484i \(0.566150\pi\)
\(548\) 7.65772 + 4.42119i 0.327122 + 0.188864i
\(549\) 3.37731 5.84967i 0.144140 0.249658i
\(550\) −1.94629 0.652554i −0.0829902 0.0278250i
\(551\) 0.392461 + 10.3484i 0.0167194 + 0.440856i
\(552\) 3.73273i 0.158875i
\(553\) −8.33272 4.81090i −0.354343 0.204580i
\(554\) −2.77742 + 4.81064i −0.118001 + 0.204384i
\(555\) 1.91173 4.24038i 0.0811482 0.179994i
\(556\) −5.28333 + 9.15100i −0.224063 + 0.388089i
\(557\) 1.27137 0.734027i 0.0538698 0.0311017i −0.472823 0.881157i \(-0.656765\pi\)
0.526693 + 0.850056i \(0.323432\pi\)
\(558\) 7.75919i 0.328473i
\(559\) −8.48113 −0.358713
\(560\) −2.19258 0.988499i −0.0926535 0.0417717i
\(561\) 0.257518 + 0.446034i 0.0108724 + 0.0188316i
\(562\) 16.1199i 0.679975i
\(563\) 9.14417i 0.385381i −0.981260 0.192690i \(-0.938279\pi\)
0.981260 0.192690i \(-0.0617213\pi\)
\(564\) −2.07164 3.58819i −0.0872318 0.151090i
\(565\) −2.18850 21.8014i −0.0920708 0.917191i
\(566\) −2.76292 4.78552i −0.116134 0.201150i
\(567\) 0.931495 + 0.537799i 0.0391191 + 0.0225854i
\(568\) −8.30969 4.79760i −0.348667 0.201303i
\(569\) −26.6371 −1.11668 −0.558342 0.829611i \(-0.688562\pi\)
−0.558342 + 0.829611i \(0.688562\pi\)
\(570\) 1.34036 + 9.65419i 0.0561414 + 0.404370i
\(571\) 37.9441 1.58791 0.793957 0.607974i \(-0.208018\pi\)
0.793957 + 0.607974i \(0.208018\pi\)
\(572\) 1.35849 + 0.784326i 0.0568014 + 0.0327943i
\(573\) 17.0993 + 9.87227i 0.714333 + 0.412420i
\(574\) −3.01351 5.21956i −0.125782 0.217860i
\(575\) 13.9858 12.3583i 0.583250 0.515376i
\(576\) −0.500000 0.866025i −0.0208333 0.0360844i
\(577\) 11.2059i 0.466508i 0.972416 + 0.233254i \(0.0749373\pi\)
−0.972416 + 0.233254i \(0.925063\pi\)
\(578\) 15.4263i 0.641648i
\(579\) −6.90289 11.9562i −0.286874 0.496881i
\(580\) 2.18340 4.84299i 0.0906609 0.201094i
\(581\) −9.81020 −0.406996
\(582\) 12.1607i 0.504077i
\(583\) 1.77745 1.02621i 0.0736147 0.0425014i
\(584\) 3.47866 6.02521i 0.143948 0.249325i
\(585\) −7.78864 3.51141i −0.322021 0.145179i
\(586\) −0.273271 + 0.473319i −0.0112887 + 0.0195526i
\(587\) −17.3126 9.99543i −0.714567 0.412555i 0.0981828 0.995168i \(-0.468697\pi\)
−0.812750 + 0.582613i \(0.802030\pi\)
\(588\) 5.84309i 0.240965i
\(589\) 29.9101 + 15.7886i 1.23243 + 0.650557i
\(590\) 4.56145 3.28164i 0.187792 0.135103i
\(591\) 4.21002 7.29198i 0.173177 0.299952i
\(592\) −1.80148 1.04009i −0.0740404 0.0427472i
\(593\) 18.6911 10.7913i 0.767552 0.443146i −0.0644489 0.997921i \(-0.520529\pi\)
0.832001 + 0.554775i \(0.187196\pi\)
\(594\) 0.205277 0.355551i 0.00842263 0.0145884i
\(595\) −1.24006 + 2.75057i −0.0508375 + 0.112762i
\(596\) 2.36384 0.0968267
\(597\) 6.66504i 0.272782i
\(598\) −12.3513 + 7.13102i −0.505082 + 0.291609i
\(599\) −22.0781 38.2403i −0.902085 1.56246i −0.824783 0.565449i \(-0.808703\pi\)
−0.0773019 0.997008i \(-0.524631\pi\)
\(600\) 1.58945 4.74064i 0.0648888 0.193536i
\(601\) 22.7911 0.929667 0.464834 0.885398i \(-0.346114\pi\)
0.464834 + 0.885398i \(0.346114\pi\)
\(602\) 2.06766 1.19376i 0.0842714 0.0486541i
\(603\) −8.07251 4.66066i −0.328738 0.189797i
\(604\) −2.01468 3.48952i −0.0819760 0.141987i
\(605\) 24.0987 2.41911i 0.979753 0.0983510i
\(606\) −1.54404 + 2.67436i −0.0627224 + 0.108638i
\(607\) 15.8927i 0.645064i 0.946559 + 0.322532i \(0.104534\pi\)
−0.946559 + 0.322532i \(0.895466\pi\)
\(608\) 4.35577 0.165192i 0.176650 0.00669942i
\(609\) 2.55539 0.103550
\(610\) −1.50859 15.0282i −0.0610809 0.608476i
\(611\) −7.91534 + 13.7098i −0.320221 + 0.554638i
\(612\) −1.08642 + 0.627244i −0.0439159 + 0.0253548i
\(613\) 33.0003 + 19.0527i 1.33287 + 0.769532i 0.985738 0.168285i \(-0.0538230\pi\)
0.347130 + 0.937817i \(0.387156\pi\)
\(614\) 12.2904 + 21.2877i 0.496001 + 0.859100i
\(615\) 10.1710 7.31730i 0.410133 0.295062i
\(616\) −0.441592 −0.0177922
\(617\) −30.0827 + 17.3683i −1.21109 + 0.699221i −0.962996 0.269516i \(-0.913136\pi\)
−0.248090 + 0.968737i \(0.579803\pi\)
\(618\) 12.8132 7.39772i 0.515424 0.297580i
\(619\) −19.6805 −0.791027 −0.395513 0.918460i \(-0.629433\pi\)
−0.395513 + 0.918460i \(0.629433\pi\)
\(620\) −10.1324 14.0840i −0.406928 0.565627i
\(621\) 1.86636 + 3.23263i 0.0748946 + 0.129721i
\(622\) −18.6800 10.7849i −0.749000 0.432435i
\(623\) −5.08192 + 2.93405i −0.203603 + 0.117550i
\(624\) −1.91041 + 3.30892i −0.0764774 + 0.132463i
\(625\) 23.0246 9.73991i 0.920986 0.389596i
\(626\) −29.3045 −1.17124
\(627\) 0.952875 + 1.51479i 0.0380542 + 0.0604948i
\(628\) 19.4582i 0.776469i
\(629\) −1.30477 + 2.25994i −0.0520248 + 0.0901095i
\(630\) 2.39308 0.240226i 0.0953426 0.00957082i
\(631\) −10.0442 17.3970i −0.399851 0.692563i 0.593856 0.804571i \(-0.297605\pi\)
−0.993707 + 0.112008i \(0.964272\pi\)
\(632\) −7.74707 4.47277i −0.308162 0.177917i
\(633\) −10.5760 + 6.10606i −0.420359 + 0.242694i
\(634\) 8.20320 0.325791
\(635\) 33.1428 23.8439i 1.31523 0.946216i
\(636\) 2.49958 + 4.32940i 0.0991148 + 0.171672i
\(637\) 19.3343 11.1627i 0.766053 0.442281i
\(638\) 0.975391i 0.0386161i
\(639\) 9.59521 0.379581
\(640\) −2.03848 0.919023i −0.0805780 0.0363276i
\(641\) 10.1096 17.5104i 0.399306 0.691618i −0.594335 0.804218i \(-0.702585\pi\)
0.993640 + 0.112600i \(0.0359179\pi\)
\(642\) 4.65618 2.68825i 0.183765 0.106097i
\(643\) 11.6160 + 6.70652i 0.458092 + 0.264479i 0.711241 0.702948i \(-0.248133\pi\)
−0.253150 + 0.967427i \(0.581467\pi\)
\(644\) 2.00745 3.47701i 0.0791048 0.137014i
\(645\) 2.89865 + 4.02909i 0.114134 + 0.158645i
\(646\) −0.207231 5.46426i −0.00815341 0.214988i
\(647\) 36.1642i 1.42176i 0.703313 + 0.710880i \(0.251703\pi\)
−0.703313 + 0.710880i \(0.748297\pi\)
\(648\) 0.866025 + 0.500000i 0.0340207 + 0.0196419i
\(649\) 0.515863 0.893501i 0.0202494 0.0350730i
\(650\) −18.7229 + 3.79720i −0.734372 + 0.148938i
\(651\) 4.17288 7.22764i 0.163548 0.283274i
\(652\) −11.6342 + 6.71701i −0.455631 + 0.263058i
\(653\) 28.2889i 1.10703i −0.832839 0.553515i \(-0.813286\pi\)
0.832839 0.553515i \(-0.186714\pi\)
\(654\) −16.3210 −0.638203
\(655\) 17.8323 39.5537i 0.696766 1.54549i
\(656\) −2.80171 4.85270i −0.109388 0.189466i
\(657\) 6.95732i 0.271431i
\(658\) 4.45650i 0.173732i
\(659\) −3.15825 5.47025i −0.123028 0.213091i 0.797932 0.602747i \(-0.205927\pi\)
−0.920960 + 0.389656i \(0.872594\pi\)
\(660\) −0.0916940 0.913438i −0.00356918 0.0355555i
\(661\) 12.4189 + 21.5102i 0.483039 + 0.836649i 0.999810 0.0194748i \(-0.00619942\pi\)
−0.516771 + 0.856124i \(0.672866\pi\)
\(662\) 23.4543 + 13.5413i 0.911575 + 0.526298i
\(663\) 4.15100 + 2.39658i 0.161211 + 0.0930754i
\(664\) −9.12070 −0.353952
\(665\) −3.94348 + 9.71367i −0.152921 + 0.376680i
\(666\) 2.08017 0.0806050
\(667\) 7.68005 + 4.43408i 0.297373 + 0.171688i
\(668\) 3.38132 + 1.95221i 0.130827 + 0.0755331i
\(669\) 0.285027 + 0.493682i 0.0110198 + 0.0190868i
\(670\) −20.7389 + 2.08184i −0.801213 + 0.0804286i
\(671\) −1.38657 2.40161i −0.0535279 0.0927131i
\(672\) 1.07560i 0.0414921i
\(673\) 28.1903i 1.08665i 0.839521 + 0.543327i \(0.182836\pi\)
−0.839521 + 0.543327i \(0.817164\pi\)
\(674\) 13.8543 + 23.9964i 0.533648 + 0.924306i
\(675\) 0.993820 + 4.90024i 0.0382521 + 0.188610i
\(676\) 1.59859 0.0614843
\(677\) 16.9194i 0.650266i −0.945668 0.325133i \(-0.894591\pi\)
0.945668 0.325133i \(-0.105409\pi\)
\(678\) 8.48608 4.89944i 0.325906 0.188162i
\(679\) −6.54000 + 11.3276i −0.250982 + 0.434714i
\(680\) −1.15290 + 2.55725i −0.0442118 + 0.0980659i
\(681\) −1.23158 + 2.13316i −0.0471942 + 0.0817428i
\(682\) −2.75879 1.59279i −0.105639 0.0609909i
\(683\) 46.8587i 1.79300i −0.443044 0.896500i \(-0.646101\pi\)
0.443044 0.896500i \(-0.353899\pi\)
\(684\) −3.68961 + 2.32094i −0.141076 + 0.0887435i
\(685\) −16.0501 + 11.5469i −0.613244 + 0.441186i
\(686\) −6.90700 + 11.9633i −0.263710 + 0.456760i
\(687\) 9.54793 + 5.51250i 0.364276 + 0.210315i
\(688\) 1.92233 1.10986i 0.0732883 0.0423130i
\(689\) 9.55042 16.5418i 0.363842 0.630193i
\(690\) 7.60908 + 3.43046i 0.289673 + 0.130595i
\(691\) −19.4802 −0.741061 −0.370531 0.928820i \(-0.620824\pi\)
−0.370531 + 0.928820i \(0.620824\pi\)
\(692\) 15.1721i 0.576756i
\(693\) 0.382430 0.220796i 0.0145273 0.00838734i
\(694\) −1.18262 2.04836i −0.0448917 0.0777547i
\(695\) −13.7986 19.1800i −0.523411 0.727537i
\(696\) 2.37579 0.0900540
\(697\) −6.08766 + 3.51471i −0.230586 + 0.133129i
\(698\) 14.5401 + 8.39471i 0.550350 + 0.317745i
\(699\) 8.63595 + 14.9579i 0.326642 + 0.565760i
\(700\) 4.03007 3.56108i 0.152322 0.134596i
\(701\) −24.8870 + 43.1055i −0.939968 + 1.62807i −0.174441 + 0.984668i \(0.555812\pi\)
−0.765527 + 0.643404i \(0.777522\pi\)
\(702\) 3.82081i 0.144207i
\(703\) −4.23278 + 8.01865i −0.159642 + 0.302429i
\(704\) −0.410555 −0.0154734
\(705\) 9.21833 0.925367i 0.347182 0.0348514i
\(706\) 11.5009 19.9202i 0.432843 0.749706i
\(707\) −2.87653 + 1.66077i −0.108183 + 0.0624596i
\(708\) 2.17633 + 1.25650i 0.0817914 + 0.0472223i
\(709\) −12.3260 21.3493i −0.462913 0.801790i 0.536191 0.844097i \(-0.319863\pi\)
−0.999105 + 0.0423070i \(0.986529\pi\)
\(710\) 17.4166 12.5300i 0.653634 0.470243i
\(711\) 8.94554 0.335484
\(712\) −4.72474 + 2.72783i −0.177067 + 0.102230i
\(713\) 25.0826 14.4815i 0.939352 0.542335i
\(714\) −1.34932 −0.0504972
\(715\) −2.84732 + 2.04844i −0.106484 + 0.0766075i
\(716\) −4.45581 7.71769i −0.166521 0.288423i
\(717\) −5.98201 3.45372i −0.223402 0.128981i
\(718\) −3.19445 + 1.84432i −0.119216 + 0.0688293i
\(719\) −16.3306 + 28.2854i −0.609027 + 1.05487i 0.382374 + 0.924008i \(0.375107\pi\)
−0.991401 + 0.130858i \(0.958227\pi\)
\(720\) 2.22489 0.223342i 0.0829166 0.00832346i
\(721\) 15.9139 0.592666
\(722\) −1.43908 18.9454i −0.0535569 0.705076i
\(723\) 22.0279i 0.819227i
\(724\) −4.61274 + 7.98950i −0.171431 + 0.296927i
\(725\) 7.86573 + 8.90164i 0.292126 + 0.330599i
\(726\) 5.41572 + 9.38031i 0.200996 + 0.348136i
\(727\) 9.05449 + 5.22761i 0.335813 + 0.193881i 0.658419 0.752652i \(-0.271226\pi\)
−0.322606 + 0.946533i \(0.604559\pi\)
\(728\) −3.55906 + 2.05483i −0.131908 + 0.0761569i
\(729\) −1.00000 −0.0370370
\(730\) 9.08530 + 12.6285i 0.336262 + 0.467401i
\(731\) −1.39231 2.41154i −0.0514963 0.0891942i
\(732\) 5.84967 3.37731i 0.216210 0.124829i
\(733\) 20.8146i 0.768804i 0.923166 + 0.384402i \(0.125592\pi\)
−0.923166 + 0.384402i \(0.874408\pi\)
\(734\) −11.2269 −0.414393
\(735\) −11.9110 5.36994i −0.439344 0.198073i
\(736\) 1.86636 3.23263i 0.0687950 0.119157i
\(737\) −3.31421 + 1.91346i −0.122080 + 0.0704831i
\(738\) 4.85270 + 2.80171i 0.178631 + 0.103132i
\(739\) 1.61058 2.78961i 0.0592461 0.102617i −0.834881 0.550430i \(-0.814464\pi\)
0.894127 + 0.447813i \(0.147797\pi\)
\(740\) 3.77580 2.71642i 0.138801 0.0998575i
\(741\) 14.7285 + 7.77467i 0.541064 + 0.285610i
\(742\) 5.37708i 0.197399i
\(743\) −36.4504 21.0447i −1.33724 0.772054i −0.350840 0.936435i \(-0.614104\pi\)
−0.986397 + 0.164381i \(0.947437\pi\)
\(744\) 3.87959 6.71965i 0.142233 0.246354i
\(745\) −2.17243 + 4.81864i −0.0795915 + 0.176541i
\(746\) 1.36996 2.37285i 0.0501579 0.0868761i
\(747\) 7.89876 4.56035i 0.289000 0.166854i
\(748\) 0.515036i 0.0188316i
\(749\) 5.78295 0.211304
\(750\) 8.20296 + 7.59681i 0.299530 + 0.277396i
\(751\) −15.3356 26.5620i −0.559602 0.969259i −0.997529 0.0702491i \(-0.977621\pi\)
0.437927 0.899010i \(-0.355713\pi\)
\(752\) 4.14328i 0.151090i
\(753\) 21.1326i 0.770116i
\(754\) −4.53872 7.86129i −0.165290 0.286291i
\(755\) 8.96485 0.899923i 0.326264 0.0327515i
\(756\) 0.537799 + 0.931495i 0.0195595 + 0.0338781i
\(757\) −24.7684 14.3000i −0.900221 0.519743i −0.0229494 0.999737i \(-0.507306\pi\)
−0.877272 + 0.479994i \(0.840639\pi\)
\(758\) 31.4439 + 18.1541i 1.14209 + 0.659387i
\(759\) 1.53249 0.0556258
\(760\) −3.66631 + 9.03096i −0.132991 + 0.327587i
\(761\) 35.0855 1.27185 0.635924 0.771752i \(-0.280619\pi\)
0.635924 + 0.771752i \(0.280619\pi\)
\(762\) 15.8129 + 9.12955i 0.572839 + 0.330729i
\(763\) −15.2029 8.77743i −0.550384 0.317764i
\(764\) 9.87227 + 17.0993i 0.357166 + 0.618630i
\(765\) −0.280179 2.79109i −0.0101299 0.100912i
\(766\) 5.37069 + 9.30230i 0.194051 + 0.336106i
\(767\) 9.60172i 0.346698i
\(768\) 1.00000i 0.0360844i
\(769\) 9.23956 + 16.0034i 0.333187 + 0.577097i 0.983135 0.182882i \(-0.0585426\pi\)
−0.649948 + 0.759979i \(0.725209\pi\)
\(770\) 0.405833 0.900175i 0.0146252 0.0324401i
\(771\) 26.4167 0.951373
\(772\) 13.8058i 0.496881i
\(773\) −39.7340 + 22.9404i −1.42913 + 0.825110i −0.997052 0.0767251i \(-0.975554\pi\)
−0.432080 + 0.901835i \(0.642220\pi\)
\(774\) −1.10986 + 1.92233i −0.0398931 + 0.0690968i
\(775\) 38.0219 7.71124i 1.3