Properties

Label 570.2.q.c.349.8
Level $570$
Weight $2$
Character 570.349
Analytic conductor $4.551$
Analytic rank $0$
Dimension $20$
CM no
Inner twists $4$

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) \(=\) \( 570 = 2 \cdot 3 \cdot 5 \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 570.q (of order \(6\), degree \(2\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(4.55147291521\)
Analytic rank: \(0\)
Dimension: \(20\)
Relative dimension: \(10\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{20} - \cdots)\)
Defining polynomial: \(x^{20} - 49 x^{16} - 8 x^{15} + 72 x^{13} + 2145 x^{12} - 648 x^{11} + 32 x^{10} - 7056 x^{9} - 11968 x^{8} + 10368 x^{7} + 9344 x^{6} + 18176 x^{5} + 56320 x^{4} + 28160 x^{3} + 8192 x^{2} + 4096 x + 1024\)
Coefficient ring: \(\Z[a_1, \ldots, a_{19}]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 349.8
Root \(0.686074 - 2.56046i\) of defining polynomial
Character \(\chi\) \(=\) 570.349
Dual form 570.2.q.c.49.8

$q$-expansion

\(f(q)\) \(=\) \(q+(0.866025 - 0.500000i) q^{2} +(-0.866025 + 0.500000i) q^{3} +(0.500000 - 0.866025i) q^{4} +(-0.118742 + 2.23291i) q^{5} +(-0.500000 + 0.866025i) q^{6} -2.79875i q^{7} -1.00000i q^{8} +(0.500000 - 0.866025i) q^{9} +O(q^{10})\) \(q+(0.866025 - 0.500000i) q^{2} +(-0.866025 + 0.500000i) q^{3} +(0.500000 - 0.866025i) q^{4} +(-0.118742 + 2.23291i) q^{5} +(-0.500000 + 0.866025i) q^{6} -2.79875i q^{7} -1.00000i q^{8} +(0.500000 - 0.866025i) q^{9} +(1.01362 + 1.99313i) q^{10} +4.02666 q^{11} +1.00000i q^{12} +(0.0960560 + 0.0554580i) q^{13} +(-1.39938 - 2.42379i) q^{14} +(-1.01362 - 1.99313i) q^{15} +(-0.500000 - 0.866025i) q^{16} +(3.68457 - 2.12729i) q^{17} -1.00000i q^{18} +(0.163933 + 4.35582i) q^{19} +(1.87439 + 1.21929i) q^{20} +(1.39938 + 2.42379i) q^{21} +(3.48719 - 2.01333i) q^{22} +(7.65779 + 4.42123i) q^{23} +(0.500000 + 0.866025i) q^{24} +(-4.97180 - 0.530281i) q^{25} +0.110916 q^{26} +1.00000i q^{27} +(-2.42379 - 1.39938i) q^{28} +(0.907996 - 1.57270i) q^{29} +(-1.87439 - 1.21929i) q^{30} +7.88104 q^{31} +(-0.866025 - 0.500000i) q^{32} +(-3.48719 + 2.01333i) q^{33} +(2.12729 - 3.68457i) q^{34} +(6.24938 + 0.332330i) q^{35} +(-0.500000 - 0.866025i) q^{36} -1.68176i q^{37} +(2.31988 + 3.69028i) q^{38} -0.110916 q^{39} +(2.23291 + 0.118742i) q^{40} +(-3.88203 - 6.72386i) q^{41} +(2.42379 + 1.39938i) q^{42} +(-6.46509 + 3.73262i) q^{43} +(2.01333 - 3.48719i) q^{44} +(1.87439 + 1.21929i) q^{45} +8.84246 q^{46} +(-4.17060 - 2.40790i) q^{47} +(0.866025 + 0.500000i) q^{48} -0.833029 q^{49} +(-4.57085 + 2.02666i) q^{50} +(-2.12729 + 3.68457i) q^{51} +(0.0960560 - 0.0554580i) q^{52} +(-6.45034 - 3.72410i) q^{53} +(0.500000 + 0.866025i) q^{54} +(-0.478134 + 8.99119i) q^{55} -2.79875 q^{56} +(-2.31988 - 3.69028i) q^{57} -1.81599i q^{58} +(-0.188606 - 0.326675i) q^{59} +(-2.23291 - 0.118742i) q^{60} +(-6.18078 + 10.7054i) q^{61} +(6.82518 - 3.94052i) q^{62} +(-2.42379 - 1.39938i) q^{63} -1.00000 q^{64} +(-0.135239 + 0.207900i) q^{65} +(-2.01333 + 3.48719i) q^{66} +(-3.82862 - 2.21046i) q^{67} -4.25457i q^{68} -8.84246 q^{69} +(5.57828 - 2.83688i) q^{70} +(-5.90675 - 10.2308i) q^{71} +(-0.866025 - 0.500000i) q^{72} +(8.33460 - 4.81199i) q^{73} +(-0.840881 - 1.45645i) q^{74} +(4.57085 - 2.02666i) q^{75} +(3.85421 + 2.03594i) q^{76} -11.2696i q^{77} +(-0.0960560 + 0.0554580i) q^{78} +(-2.11845 - 3.66927i) q^{79} +(1.99313 - 1.01362i) q^{80} +(-0.500000 - 0.866025i) q^{81} +(-6.72386 - 3.88203i) q^{82} +8.25792i q^{83} +2.79875 q^{84} +(4.31253 + 8.47992i) q^{85} +(-3.73262 + 6.46509i) q^{86} +1.81599i q^{87} -4.02666i q^{88} +(5.01501 - 8.68625i) q^{89} +(2.23291 + 0.118742i) q^{90} +(0.155213 - 0.268837i) q^{91} +(7.65779 - 4.42123i) q^{92} +(-6.82518 + 3.94052i) q^{93} -4.81579 q^{94} +(-9.74562 - 0.151171i) q^{95} +1.00000 q^{96} +(-4.52207 + 2.61082i) q^{97} +(-0.721424 + 0.416515i) q^{98} +(2.01333 - 3.48719i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 20q + 10q^{4} - 10q^{6} + 10q^{9} + O(q^{10}) \) \( 20q + 10q^{4} - 10q^{6} + 10q^{9} - 2q^{10} + 12q^{11} + 10q^{14} + 2q^{15} - 10q^{16} + 6q^{19} - 10q^{21} + 10q^{24} + 14q^{25} + 8q^{29} + 40q^{31} + 12q^{34} + 2q^{35} - 10q^{36} + 2q^{40} - 14q^{41} + 6q^{44} + 44q^{46} - 8q^{49} - 8q^{50} - 12q^{51} + 10q^{54} + 20q^{56} + 8q^{59} - 2q^{60} + 16q^{61} - 20q^{64} + 40q^{65} - 6q^{66} - 44q^{69} + 8q^{70} - 4q^{71} + 26q^{74} + 8q^{75} + 8q^{79} - 10q^{81} - 20q^{84} - 16q^{85} - 20q^{86} - 2q^{89} + 2q^{90} - 44q^{91} - 32q^{94} - 80q^{95} + 20q^{96} + 6q^{99} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/570\mathbb{Z}\right)^\times\).

\(n\) \(191\) \(211\) \(457\)
\(\chi(n)\) \(1\) \(e\left(\frac{1}{3}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.866025 0.500000i 0.612372 0.353553i
\(3\) −0.866025 + 0.500000i −0.500000 + 0.288675i
\(4\) 0.500000 0.866025i 0.250000 0.433013i
\(5\) −0.118742 + 2.23291i −0.0531030 + 0.998589i
\(6\) −0.500000 + 0.866025i −0.204124 + 0.353553i
\(7\) 2.79875i 1.05783i −0.848675 0.528915i \(-0.822599\pi\)
0.848675 0.528915i \(-0.177401\pi\)
\(8\) 1.00000i 0.353553i
\(9\) 0.500000 0.866025i 0.166667 0.288675i
\(10\) 1.01362 + 1.99313i 0.320536 + 0.630283i
\(11\) 4.02666 1.21408 0.607042 0.794669i \(-0.292356\pi\)
0.607042 + 0.794669i \(0.292356\pi\)
\(12\) 1.00000i 0.288675i
\(13\) 0.0960560 + 0.0554580i 0.0266411 + 0.0153813i 0.513261 0.858232i \(-0.328437\pi\)
−0.486620 + 0.873614i \(0.661770\pi\)
\(14\) −1.39938 2.42379i −0.373999 0.647786i
\(15\) −1.01362 1.99313i −0.261716 0.514624i
\(16\) −0.500000 0.866025i −0.125000 0.216506i
\(17\) 3.68457 2.12729i 0.893639 0.515943i 0.0185079 0.999829i \(-0.494108\pi\)
0.875131 + 0.483886i \(0.160775\pi\)
\(18\) 1.00000i 0.235702i
\(19\) 0.163933 + 4.35582i 0.0376087 + 0.999293i
\(20\) 1.87439 + 1.21929i 0.419126 + 0.272642i
\(21\) 1.39938 + 2.42379i 0.305369 + 0.528915i
\(22\) 3.48719 2.01333i 0.743472 0.429244i
\(23\) 7.65779 + 4.42123i 1.59676 + 0.921890i 0.992106 + 0.125401i \(0.0400218\pi\)
0.604654 + 0.796489i \(0.293312\pi\)
\(24\) 0.500000 + 0.866025i 0.102062 + 0.176777i
\(25\) −4.97180 0.530281i −0.994360 0.106056i
\(26\) 0.110916 0.0217524
\(27\) 1.00000i 0.192450i
\(28\) −2.42379 1.39938i −0.458054 0.264457i
\(29\) 0.907996 1.57270i 0.168611 0.292042i −0.769321 0.638862i \(-0.779405\pi\)
0.937932 + 0.346820i \(0.112739\pi\)
\(30\) −1.87439 1.21929i −0.342215 0.222611i
\(31\) 7.88104 1.41548 0.707739 0.706474i \(-0.249715\pi\)
0.707739 + 0.706474i \(0.249715\pi\)
\(32\) −0.866025 0.500000i −0.153093 0.0883883i
\(33\) −3.48719 + 2.01333i −0.607042 + 0.350476i
\(34\) 2.12729 3.68457i 0.364827 0.631898i
\(35\) 6.24938 + 0.332330i 1.05634 + 0.0561740i
\(36\) −0.500000 0.866025i −0.0833333 0.144338i
\(37\) 1.68176i 0.276480i −0.990399 0.138240i \(-0.955855\pi\)
0.990399 0.138240i \(-0.0441445\pi\)
\(38\) 2.31988 + 3.69028i 0.376334 + 0.598643i
\(39\) −0.110916 −0.0177608
\(40\) 2.23291 + 0.118742i 0.353055 + 0.0187747i
\(41\) −3.88203 6.72386i −0.606270 1.05009i −0.991849 0.127416i \(-0.959332\pi\)
0.385579 0.922675i \(-0.374002\pi\)
\(42\) 2.42379 + 1.39938i 0.373999 + 0.215929i
\(43\) −6.46509 + 3.73262i −0.985917 + 0.569219i −0.904051 0.427424i \(-0.859421\pi\)
−0.0818657 + 0.996643i \(0.526088\pi\)
\(44\) 2.01333 3.48719i 0.303521 0.525714i
\(45\) 1.87439 + 1.21929i 0.279417 + 0.181761i
\(46\) 8.84246 1.30375
\(47\) −4.17060 2.40790i −0.608344 0.351228i 0.163973 0.986465i \(-0.447569\pi\)
−0.772317 + 0.635237i \(0.780902\pi\)
\(48\) 0.866025 + 0.500000i 0.125000 + 0.0721688i
\(49\) −0.833029 −0.119004
\(50\) −4.57085 + 2.02666i −0.646415 + 0.286614i
\(51\) −2.12729 + 3.68457i −0.297880 + 0.515943i
\(52\) 0.0960560 0.0554580i 0.0133206 0.00769064i
\(53\) −6.45034 3.72410i −0.886022 0.511545i −0.0133827 0.999910i \(-0.504260\pi\)
−0.872639 + 0.488365i \(0.837593\pi\)
\(54\) 0.500000 + 0.866025i 0.0680414 + 0.117851i
\(55\) −0.478134 + 8.99119i −0.0644716 + 1.21237i
\(56\) −2.79875 −0.373999
\(57\) −2.31988 3.69028i −0.307275 0.488790i
\(58\) 1.81599i 0.238451i
\(59\) −0.188606 0.326675i −0.0245544 0.0425294i 0.853487 0.521114i \(-0.174483\pi\)
−0.878041 + 0.478585i \(0.841150\pi\)
\(60\) −2.23291 0.118742i −0.288268 0.0153295i
\(61\) −6.18078 + 10.7054i −0.791368 + 1.37069i 0.133752 + 0.991015i \(0.457297\pi\)
−0.925120 + 0.379674i \(0.876036\pi\)
\(62\) 6.82518 3.94052i 0.866799 0.500447i
\(63\) −2.42379 1.39938i −0.305369 0.176305i
\(64\) −1.00000 −0.125000
\(65\) −0.135239 + 0.207900i −0.0167743 + 0.0257868i
\(66\) −2.01333 + 3.48719i −0.247824 + 0.429244i
\(67\) −3.82862 2.21046i −0.467741 0.270050i 0.247553 0.968874i \(-0.420374\pi\)
−0.715293 + 0.698824i \(0.753707\pi\)
\(68\) 4.25457i 0.515943i
\(69\) −8.84246 −1.06451
\(70\) 5.57828 2.83688i 0.666732 0.339072i
\(71\) −5.90675 10.2308i −0.701002 1.21417i −0.968115 0.250506i \(-0.919403\pi\)
0.267113 0.963665i \(-0.413930\pi\)
\(72\) −0.866025 0.500000i −0.102062 0.0589256i
\(73\) 8.33460 4.81199i 0.975492 0.563200i 0.0745857 0.997215i \(-0.476237\pi\)
0.900906 + 0.434014i \(0.142903\pi\)
\(74\) −0.840881 1.45645i −0.0977504 0.169309i
\(75\) 4.57085 2.02666i 0.527796 0.234019i
\(76\) 3.85421 + 2.03594i 0.442109 + 0.233538i
\(77\) 11.2696i 1.28430i
\(78\) −0.0960560 + 0.0554580i −0.0108762 + 0.00627938i
\(79\) −2.11845 3.66927i −0.238344 0.412825i 0.721895 0.692003i \(-0.243271\pi\)
−0.960239 + 0.279178i \(0.909938\pi\)
\(80\) 1.99313 1.01362i 0.222839 0.113326i
\(81\) −0.500000 0.866025i −0.0555556 0.0962250i
\(82\) −6.72386 3.88203i −0.742527 0.428698i
\(83\) 8.25792i 0.906425i 0.891403 + 0.453212i \(0.149722\pi\)
−0.891403 + 0.453212i \(0.850278\pi\)
\(84\) 2.79875 0.305369
\(85\) 4.31253 + 8.47992i 0.467760 + 0.919776i
\(86\) −3.73262 + 6.46509i −0.402499 + 0.697149i
\(87\) 1.81599i 0.194695i
\(88\) 4.02666i 0.429244i
\(89\) 5.01501 8.68625i 0.531590 0.920740i −0.467730 0.883871i \(-0.654928\pi\)
0.999320 0.0368691i \(-0.0117385\pi\)
\(90\) 2.23291 + 0.118742i 0.235370 + 0.0125165i
\(91\) 0.155213 0.268837i 0.0162708 0.0281818i
\(92\) 7.65779 4.42123i 0.798380 0.460945i
\(93\) −6.82518 + 3.94052i −0.707739 + 0.408613i
\(94\) −4.81579 −0.496711
\(95\) −9.74562 0.151171i −0.999880 0.0155098i
\(96\) 1.00000 0.102062
\(97\) −4.52207 + 2.61082i −0.459146 + 0.265088i −0.711685 0.702499i \(-0.752068\pi\)
0.252539 + 0.967587i \(0.418734\pi\)
\(98\) −0.721424 + 0.416515i −0.0728749 + 0.0420743i
\(99\) 2.01333 3.48719i 0.202347 0.350476i
\(100\) −2.94514 + 4.04057i −0.294514 + 0.404057i
\(101\) −5.86577 + 10.1598i −0.583666 + 1.01094i 0.411374 + 0.911466i \(0.365049\pi\)
−0.995040 + 0.0994725i \(0.968284\pi\)
\(102\) 4.25457i 0.421265i
\(103\) 17.9496i 1.76863i 0.466890 + 0.884315i \(0.345374\pi\)
−0.466890 + 0.884315i \(0.654626\pi\)
\(104\) 0.0554580 0.0960560i 0.00543810 0.00941907i
\(105\) −5.57828 + 2.83688i −0.544385 + 0.276851i
\(106\) −7.44821 −0.723434
\(107\) 15.1358i 1.46324i 0.681714 + 0.731619i \(0.261235\pi\)
−0.681714 + 0.731619i \(0.738765\pi\)
\(108\) 0.866025 + 0.500000i 0.0833333 + 0.0481125i
\(109\) −4.29258 7.43496i −0.411154 0.712140i 0.583862 0.811853i \(-0.301541\pi\)
−0.995016 + 0.0997127i \(0.968208\pi\)
\(110\) 4.08152 + 8.02567i 0.389158 + 0.765217i
\(111\) 0.840881 + 1.45645i 0.0798129 + 0.138240i
\(112\) −2.42379 + 1.39938i −0.229027 + 0.132229i
\(113\) 1.24691i 0.117299i −0.998279 0.0586497i \(-0.981321\pi\)
0.998279 0.0586497i \(-0.0186795\pi\)
\(114\) −3.85421 2.03594i −0.360980 0.190683i
\(115\) −10.7815 + 16.5742i −1.00538 + 1.54555i
\(116\) −0.907996 1.57270i −0.0843053 0.146021i
\(117\) 0.0960560 0.0554580i 0.00888038 0.00512709i
\(118\) −0.326675 0.188606i −0.0300728 0.0173626i
\(119\) −5.95375 10.3122i −0.545780 0.945318i
\(120\) −1.99313 + 1.01362i −0.181947 + 0.0925307i
\(121\) 5.21402 0.474002
\(122\) 12.3616i 1.11916i
\(123\) 6.72386 + 3.88203i 0.606270 + 0.350030i
\(124\) 3.94052 6.82518i 0.353869 0.612920i
\(125\) 1.77443 11.0386i 0.158710 0.987325i
\(126\) −2.79875 −0.249333
\(127\) −11.9143 6.87872i −1.05722 0.610388i −0.132560 0.991175i \(-0.542320\pi\)
−0.924663 + 0.380787i \(0.875653\pi\)
\(128\) −0.866025 + 0.500000i −0.0765466 + 0.0441942i
\(129\) 3.73262 6.46509i 0.328639 0.569219i
\(130\) −0.0131704 + 0.247666i −0.00115512 + 0.0217217i
\(131\) 6.42860 + 11.1347i 0.561669 + 0.972840i 0.997351 + 0.0727388i \(0.0231739\pi\)
−0.435682 + 0.900101i \(0.643493\pi\)
\(132\) 4.02666i 0.350476i
\(133\) 12.1909 0.458807i 1.05708 0.0397836i
\(134\) −4.42091 −0.381909
\(135\) −2.23291 0.118742i −0.192179 0.0102197i
\(136\) −2.12729 3.68457i −0.182413 0.315949i
\(137\) 7.06060 + 4.07644i 0.603228 + 0.348274i 0.770310 0.637669i \(-0.220101\pi\)
−0.167082 + 0.985943i \(0.553435\pi\)
\(138\) −7.65779 + 4.42123i −0.651874 + 0.376360i
\(139\) 1.14277 1.97934i 0.0969289 0.167886i −0.813483 0.581589i \(-0.802431\pi\)
0.910412 + 0.413703i \(0.135765\pi\)
\(140\) 3.41249 5.24595i 0.288408 0.443364i
\(141\) 4.81579 0.405563
\(142\) −10.2308 5.90675i −0.858549 0.495683i
\(143\) 0.386785 + 0.223311i 0.0323446 + 0.0186742i
\(144\) −1.00000 −0.0833333
\(145\) 3.40388 + 2.21422i 0.282676 + 0.183881i
\(146\) 4.81199 8.33460i 0.398243 0.689777i
\(147\) 0.721424 0.416515i 0.0595021 0.0343535i
\(148\) −1.45645 0.840881i −0.119719 0.0691200i
\(149\) −9.36462 16.2200i −0.767180 1.32879i −0.939086 0.343681i \(-0.888326\pi\)
0.171907 0.985113i \(-0.445007\pi\)
\(150\) 2.94514 4.04057i 0.240469 0.329911i
\(151\) −16.1394 −1.31341 −0.656703 0.754150i \(-0.728049\pi\)
−0.656703 + 0.754150i \(0.728049\pi\)
\(152\) 4.35582 0.163933i 0.353303 0.0132967i
\(153\) 4.25457i 0.343962i
\(154\) −5.63482 9.75980i −0.454067 0.786467i
\(155\) −0.935810 + 17.5977i −0.0751661 + 1.41348i
\(156\) −0.0554580 + 0.0960560i −0.00444019 + 0.00769064i
\(157\) −6.73626 + 3.88918i −0.537612 + 0.310390i −0.744110 0.668057i \(-0.767126\pi\)
0.206499 + 0.978447i \(0.433793\pi\)
\(158\) −3.66927 2.11845i −0.291911 0.168535i
\(159\) 7.44821 0.590681
\(160\) 1.21929 1.87439i 0.0963933 0.148183i
\(161\) 12.3739 21.4323i 0.975202 1.68910i
\(162\) −0.866025 0.500000i −0.0680414 0.0392837i
\(163\) 1.99824i 0.156514i 0.996933 + 0.0782570i \(0.0249355\pi\)
−0.996933 + 0.0782570i \(0.975065\pi\)
\(164\) −7.76405 −0.606270
\(165\) −4.08152 8.02567i −0.317746 0.624797i
\(166\) 4.12896 + 7.15157i 0.320470 + 0.555069i
\(167\) 15.5791 + 8.99462i 1.20555 + 0.696024i 0.961784 0.273810i \(-0.0882839\pi\)
0.243766 + 0.969834i \(0.421617\pi\)
\(168\) 2.42379 1.39938i 0.187000 0.107964i
\(169\) −6.49385 11.2477i −0.499527 0.865206i
\(170\) 7.97472 + 5.18756i 0.611633 + 0.397868i
\(171\) 3.85421 + 2.03594i 0.294739 + 0.155692i
\(172\) 7.46524i 0.569219i
\(173\) 13.2653 7.65871i 1.00854 0.582281i 0.0977767 0.995208i \(-0.468827\pi\)
0.910764 + 0.412927i \(0.135494\pi\)
\(174\) 0.907996 + 1.57270i 0.0688350 + 0.119226i
\(175\) −1.48413 + 13.9149i −0.112189 + 1.05186i
\(176\) −2.01333 3.48719i −0.151761 0.262857i
\(177\) 0.326675 + 0.188606i 0.0245544 + 0.0141765i
\(178\) 10.0300i 0.751781i
\(179\) 10.8958 0.814389 0.407195 0.913341i \(-0.366507\pi\)
0.407195 + 0.913341i \(0.366507\pi\)
\(180\) 1.99313 1.01362i 0.148559 0.0755510i
\(181\) −9.12604 + 15.8068i −0.678333 + 1.17491i 0.297150 + 0.954831i \(0.403964\pi\)
−0.975483 + 0.220076i \(0.929369\pi\)
\(182\) 0.310427i 0.0230103i
\(183\) 12.3616i 0.913793i
\(184\) 4.42123 7.65779i 0.325937 0.564540i
\(185\) 3.75523 + 0.199696i 0.276090 + 0.0146819i
\(186\) −3.94052 + 6.82518i −0.288933 + 0.500447i
\(187\) 14.8365 8.56587i 1.08495 0.626398i
\(188\) −4.17060 + 2.40790i −0.304172 + 0.175614i
\(189\) 2.79875 0.203579
\(190\) −8.51554 + 4.74189i −0.617782 + 0.344013i
\(191\) −17.2519 −1.24830 −0.624151 0.781304i \(-0.714555\pi\)
−0.624151 + 0.781304i \(0.714555\pi\)
\(192\) 0.866025 0.500000i 0.0625000 0.0360844i
\(193\) −5.47129 + 3.15885i −0.393832 + 0.227379i −0.683819 0.729651i \(-0.739682\pi\)
0.289987 + 0.957031i \(0.406349\pi\)
\(194\) −2.61082 + 4.52207i −0.187446 + 0.324665i
\(195\) 0.0131704 0.247666i 0.000943150 0.0177357i
\(196\) −0.416515 + 0.721424i −0.0297510 + 0.0515303i
\(197\) 8.79248i 0.626438i 0.949681 + 0.313219i \(0.101407\pi\)
−0.949681 + 0.313219i \(0.898593\pi\)
\(198\) 4.02666i 0.286163i
\(199\) 2.38605 4.13275i 0.169142 0.292963i −0.768976 0.639277i \(-0.779234\pi\)
0.938119 + 0.346314i \(0.112567\pi\)
\(200\) −0.530281 + 4.97180i −0.0374965 + 0.351559i
\(201\) 4.42091 0.311827
\(202\) 11.7315i 0.825428i
\(203\) −4.40159 2.54126i −0.308931 0.178361i
\(204\) 2.12729 + 3.68457i 0.148940 + 0.257971i
\(205\) 15.4748 7.86982i 1.08080 0.549652i
\(206\) 8.97482 + 15.5448i 0.625305 + 1.08306i
\(207\) 7.65779 4.42123i 0.532253 0.307297i
\(208\) 0.110916i 0.00769064i
\(209\) 0.660101 + 17.5394i 0.0456601 + 1.21323i
\(210\) −3.41249 + 5.24595i −0.235484 + 0.362005i
\(211\) −10.6837 18.5047i −0.735497 1.27392i −0.954505 0.298196i \(-0.903615\pi\)
0.219007 0.975723i \(-0.429718\pi\)
\(212\) −6.45034 + 3.72410i −0.443011 + 0.255772i
\(213\) 10.2308 + 5.90675i 0.701002 + 0.404724i
\(214\) 7.56792 + 13.1080i 0.517333 + 0.896046i
\(215\) −7.56694 14.8792i −0.516061 1.01475i
\(216\) 1.00000 0.0680414
\(217\) 22.0571i 1.49733i
\(218\) −7.43496 4.29258i −0.503559 0.290730i
\(219\) −4.81199 + 8.33460i −0.325164 + 0.563200i
\(220\) 7.54753 + 4.90967i 0.508854 + 0.331010i
\(221\) 0.471900 0.0317434
\(222\) 1.45645 + 0.840881i 0.0977504 + 0.0564362i
\(223\) 0.769596 0.444327i 0.0515360 0.0297543i −0.474011 0.880519i \(-0.657194\pi\)
0.525547 + 0.850765i \(0.323861\pi\)
\(224\) −1.39938 + 2.42379i −0.0934998 + 0.161946i
\(225\) −2.94514 + 4.04057i −0.196342 + 0.269371i
\(226\) −0.623455 1.07986i −0.0414716 0.0718309i
\(227\) 0.227679i 0.0151116i 0.999971 + 0.00755579i \(0.00240511\pi\)
−0.999971 + 0.00755579i \(0.997595\pi\)
\(228\) −4.35582 + 0.163933i −0.288471 + 0.0108567i
\(229\) −16.2385 −1.07307 −0.536536 0.843878i \(-0.680267\pi\)
−0.536536 + 0.843878i \(0.680267\pi\)
\(230\) −1.04997 + 19.7444i −0.0692330 + 1.30191i
\(231\) 5.63482 + 9.75980i 0.370744 + 0.642148i
\(232\) −1.57270 0.907996i −0.103253 0.0596129i
\(233\) −2.89217 + 1.66979i −0.189472 + 0.109392i −0.591735 0.806132i \(-0.701557\pi\)
0.402263 + 0.915524i \(0.368224\pi\)
\(234\) 0.0554580 0.0960560i 0.00362540 0.00627938i
\(235\) 5.87185 9.02666i 0.383037 0.588835i
\(236\) −0.377211 −0.0245544
\(237\) 3.66927 + 2.11845i 0.238344 + 0.137608i
\(238\) −10.3122 5.95375i −0.668441 0.385924i
\(239\) 28.3414 1.83325 0.916626 0.399745i \(-0.130901\pi\)
0.916626 + 0.399745i \(0.130901\pi\)
\(240\) −1.21929 + 1.87439i −0.0787048 + 0.120991i
\(241\) −7.12956 + 12.3488i −0.459255 + 0.795453i −0.998922 0.0464255i \(-0.985217\pi\)
0.539667 + 0.841879i \(0.318550\pi\)
\(242\) 4.51547 2.60701i 0.290266 0.167585i
\(243\) 0.866025 + 0.500000i 0.0555556 + 0.0320750i
\(244\) 6.18078 + 10.7054i 0.395684 + 0.685345i
\(245\) 0.0989155 1.86008i 0.00631948 0.118836i
\(246\) 7.76405 0.495018
\(247\) −0.225818 + 0.427494i −0.0143685 + 0.0272008i
\(248\) 7.88104i 0.500447i
\(249\) −4.12896 7.15157i −0.261662 0.453212i
\(250\) −3.98261 10.4470i −0.251883 0.660723i
\(251\) 12.1437 21.0334i 0.766501 1.32762i −0.172949 0.984931i \(-0.555329\pi\)
0.939449 0.342687i \(-0.111337\pi\)
\(252\) −2.42379 + 1.39938i −0.152685 + 0.0881525i
\(253\) 30.8353 + 17.8028i 1.93860 + 1.11925i
\(254\) −13.7574 −0.863219
\(255\) −7.97472 5.18756i −0.499396 0.324857i
\(256\) −0.500000 + 0.866025i −0.0312500 + 0.0541266i
\(257\) −2.06264 1.19086i −0.128664 0.0742840i 0.434287 0.900775i \(-0.357000\pi\)
−0.562950 + 0.826491i \(0.690334\pi\)
\(258\) 7.46524i 0.464766i
\(259\) −4.70684 −0.292469
\(260\) 0.112427 + 0.221070i 0.00697242 + 0.0137102i
\(261\) −0.907996 1.57270i −0.0562036 0.0973474i
\(262\) 11.1347 + 6.42860i 0.687901 + 0.397160i
\(263\) 6.92724 3.99944i 0.427152 0.246616i −0.270981 0.962585i \(-0.587348\pi\)
0.698133 + 0.715969i \(0.254015\pi\)
\(264\) 2.01333 + 3.48719i 0.123912 + 0.214622i
\(265\) 9.08152 13.9608i 0.557874 0.857607i
\(266\) 10.3282 6.49277i 0.633262 0.398097i
\(267\) 10.0300i 0.613827i
\(268\) −3.82862 + 2.21046i −0.233870 + 0.135025i
\(269\) 5.32072 + 9.21576i 0.324410 + 0.561895i 0.981393 0.192011i \(-0.0615009\pi\)
−0.656983 + 0.753906i \(0.728168\pi\)
\(270\) −1.99313 + 1.01362i −0.121298 + 0.0616871i
\(271\) 8.07644 + 13.9888i 0.490609 + 0.849759i 0.999942 0.0108102i \(-0.00344107\pi\)
−0.509333 + 0.860570i \(0.670108\pi\)
\(272\) −3.68457 2.12729i −0.223410 0.128986i
\(273\) 0.310427i 0.0187879i
\(274\) 8.15288 0.492534
\(275\) −20.0198 2.13526i −1.20724 0.128761i
\(276\) −4.42123 + 7.65779i −0.266127 + 0.460945i
\(277\) 21.6950i 1.30352i −0.758423 0.651762i \(-0.774030\pi\)
0.758423 0.651762i \(-0.225970\pi\)
\(278\) 2.28555i 0.137078i
\(279\) 3.94052 6.82518i 0.235913 0.408613i
\(280\) 0.332330 6.24938i 0.0198605 0.373472i
\(281\) −0.595143 + 1.03082i −0.0355032 + 0.0614934i −0.883231 0.468938i \(-0.844637\pi\)
0.847728 + 0.530431i \(0.177970\pi\)
\(282\) 4.17060 2.40790i 0.248355 0.143388i
\(283\) 0.262002 0.151267i 0.0155744 0.00899189i −0.492193 0.870486i \(-0.663804\pi\)
0.507767 + 0.861494i \(0.330471\pi\)
\(284\) −11.8135 −0.701002
\(285\) 8.51554 4.74189i 0.504417 0.280886i
\(286\) 0.446621 0.0264093
\(287\) −18.8184 + 10.8648i −1.11082 + 0.641331i
\(288\) −0.866025 + 0.500000i −0.0510310 + 0.0294628i
\(289\) 0.550694 0.953829i 0.0323937 0.0561076i
\(290\) 4.05495 + 0.215634i 0.238115 + 0.0126625i
\(291\) 2.61082 4.52207i 0.153049 0.265088i
\(292\) 9.62397i 0.563200i
\(293\) 25.2078i 1.47266i −0.676625 0.736328i \(-0.736558\pi\)
0.676625 0.736328i \(-0.263442\pi\)
\(294\) 0.416515 0.721424i 0.0242916 0.0420743i
\(295\) 0.751832 0.382350i 0.0437733 0.0222613i
\(296\) −1.68176 −0.0977504
\(297\) 4.02666i 0.233651i
\(298\) −16.2200 9.36462i −0.939599 0.542478i
\(299\) 0.490385 + 0.849371i 0.0283597 + 0.0491204i
\(300\) 0.530281 4.97180i 0.0306158 0.287047i
\(301\) 10.4467 + 18.0942i 0.602137 + 1.04293i
\(302\) −13.9771 + 8.06970i −0.804293 + 0.464359i
\(303\) 11.7315i 0.673959i
\(304\) 3.69028 2.31988i 0.211652 0.133054i
\(305\) −23.1704 15.0723i −1.32673 0.863039i
\(306\) −2.12729 3.68457i −0.121609 0.210633i
\(307\) −19.7299 + 11.3911i −1.12605 + 0.650123i −0.942938 0.332969i \(-0.891950\pi\)
−0.183109 + 0.983093i \(0.558616\pi\)
\(308\) −9.75980 5.63482i −0.556116 0.321074i
\(309\) −8.97482 15.5448i −0.510560 0.884315i
\(310\) 7.98841 + 15.7079i 0.453711 + 0.892151i
\(311\) −12.0752 −0.684724 −0.342362 0.939568i \(-0.611227\pi\)
−0.342362 + 0.939568i \(0.611227\pi\)
\(312\) 0.110916i 0.00627938i
\(313\) 9.22306 + 5.32494i 0.521318 + 0.300983i 0.737474 0.675376i \(-0.236019\pi\)
−0.216156 + 0.976359i \(0.569352\pi\)
\(314\) −3.88918 + 6.73626i −0.219479 + 0.380149i
\(315\) 3.41249 5.24595i 0.192272 0.295576i
\(316\) −4.23690 −0.238344
\(317\) −14.3154 8.26498i −0.804031 0.464208i 0.0408477 0.999165i \(-0.486994\pi\)
−0.844879 + 0.534958i \(0.820327\pi\)
\(318\) 6.45034 3.72410i 0.361717 0.208837i
\(319\) 3.65620 6.33272i 0.204708 0.354564i
\(320\) 0.118742 2.23291i 0.00663788 0.124824i
\(321\) −7.56792 13.1080i −0.422400 0.731619i
\(322\) 24.7479i 1.37914i
\(323\) 9.87009 + 15.7006i 0.549186 + 0.873603i
\(324\) −1.00000 −0.0555556
\(325\) −0.448163 0.326663i −0.0248596 0.0181200i
\(326\) 0.999118 + 1.73052i 0.0553360 + 0.0958448i
\(327\) 7.43496 + 4.29258i 0.411154 + 0.237380i
\(328\) −6.72386 + 3.88203i −0.371263 + 0.214349i
\(329\) −6.73911 + 11.6725i −0.371539 + 0.643525i
\(330\) −7.54753 4.90967i −0.415478 0.270268i
\(331\) 33.3848 1.83499 0.917496 0.397744i \(-0.130207\pi\)
0.917496 + 0.397744i \(0.130207\pi\)
\(332\) 7.15157 + 4.12896i 0.392493 + 0.226606i
\(333\) −1.45645 0.840881i −0.0798129 0.0460800i
\(334\) 17.9892 0.984327
\(335\) 5.39037 8.28651i 0.294508 0.452740i
\(336\) 1.39938 2.42379i 0.0763423 0.132229i
\(337\) −19.2072 + 11.0893i −1.04628 + 0.604072i −0.921607 0.388125i \(-0.873123\pi\)
−0.124677 + 0.992197i \(0.539789\pi\)
\(338\) −11.2477 6.49385i −0.611793 0.353219i
\(339\) 0.623455 + 1.07986i 0.0338614 + 0.0586497i
\(340\) 9.50009 + 0.505196i 0.515215 + 0.0273981i
\(341\) 31.7343 1.71851
\(342\) 4.35582 0.163933i 0.235536 0.00886446i
\(343\) 17.2598i 0.931944i
\(344\) 3.73262 + 6.46509i 0.201249 + 0.348574i
\(345\) 1.04997 19.7444i 0.0565285 1.06300i
\(346\) 7.65871 13.2653i 0.411735 0.713146i
\(347\) 15.7368 9.08564i 0.844795 0.487743i −0.0140963 0.999901i \(-0.504487\pi\)
0.858891 + 0.512158i \(0.171154\pi\)
\(348\) 1.57270 + 0.907996i 0.0843053 + 0.0486737i
\(349\) −5.54988 −0.297078 −0.148539 0.988907i \(-0.547457\pi\)
−0.148539 + 0.988907i \(0.547457\pi\)
\(350\) 5.67213 + 12.7927i 0.303188 + 0.683797i
\(351\) −0.0554580 + 0.0960560i −0.00296013 + 0.00512709i
\(352\) −3.48719 2.01333i −0.185868 0.107311i
\(353\) 11.9998i 0.638686i 0.947639 + 0.319343i \(0.103462\pi\)
−0.947639 + 0.319343i \(0.896538\pi\)
\(354\) 0.377211 0.0200486
\(355\) 23.5458 11.9744i 1.24968 0.635537i
\(356\) −5.01501 8.68625i −0.265795 0.460370i
\(357\) 10.3122 + 5.95375i 0.545780 + 0.315106i
\(358\) 9.43602 5.44789i 0.498709 0.287930i
\(359\) 15.8492 + 27.4515i 0.836487 + 1.44884i 0.892814 + 0.450425i \(0.148728\pi\)
−0.0563277 + 0.998412i \(0.517939\pi\)
\(360\) 1.21929 1.87439i 0.0642622 0.0987889i
\(361\) −18.9463 + 1.42812i −0.997171 + 0.0751642i
\(362\) 18.2521i 0.959308i
\(363\) −4.51547 + 2.60701i −0.237001 + 0.136833i
\(364\) −0.155213 0.268837i −0.00813539 0.0140909i
\(365\) 9.75508 + 19.1818i 0.510604 + 1.00402i
\(366\) −6.18078 10.7054i −0.323075 0.559582i
\(367\) −3.14212 1.81410i −0.164017 0.0946954i 0.415745 0.909481i \(-0.363521\pi\)
−0.579762 + 0.814786i \(0.696854\pi\)
\(368\) 8.84246i 0.460945i
\(369\) −7.76405 −0.404180
\(370\) 3.35197 1.70467i 0.174261 0.0886217i
\(371\) −10.4229 + 18.0529i −0.541128 + 0.937260i
\(372\) 7.88104i 0.408613i
\(373\) 7.74901i 0.401228i −0.979670 0.200614i \(-0.935706\pi\)
0.979670 0.200614i \(-0.0642938\pi\)
\(374\) 8.56587 14.8365i 0.442930 0.767178i
\(375\) 3.98261 + 10.4470i 0.205661 + 0.539478i
\(376\) −2.40790 + 4.17060i −0.124178 + 0.215082i
\(377\) 0.174437 0.100711i 0.00898396 0.00518689i
\(378\) 2.42379 1.39938i 0.124666 0.0719762i
\(379\) 6.68218 0.343241 0.171620 0.985163i \(-0.445100\pi\)
0.171620 + 0.985163i \(0.445100\pi\)
\(380\) −5.00373 + 8.36437i −0.256686 + 0.429083i
\(381\) 13.7574 0.704815
\(382\) −14.9406 + 8.62594i −0.764426 + 0.441341i
\(383\) −17.5053 + 10.1067i −0.894479 + 0.516428i −0.875405 0.483390i \(-0.839405\pi\)
−0.0190744 + 0.999818i \(0.506072\pi\)
\(384\) 0.500000 0.866025i 0.0255155 0.0441942i
\(385\) 25.1641 + 1.33818i 1.28248 + 0.0681999i
\(386\) −3.15885 + 5.47129i −0.160781 + 0.278481i
\(387\) 7.46524i 0.379480i
\(388\) 5.22163i 0.265088i
\(389\) 0.559544 0.969159i 0.0283700 0.0491383i −0.851492 0.524368i \(-0.824302\pi\)
0.879862 + 0.475230i \(0.157635\pi\)
\(390\) −0.112427 0.221070i −0.00569296 0.0111943i
\(391\) 37.6209 1.90257
\(392\) 0.833029i 0.0420743i
\(393\) −11.1347 6.42860i −0.561669 0.324280i
\(394\) 4.39624 + 7.61451i 0.221479 + 0.383613i
\(395\) 8.44470 4.29462i 0.424899 0.216086i
\(396\) −2.01333 3.48719i −0.101174 0.175238i
\(397\) −8.44367 + 4.87495i −0.423776 + 0.244667i −0.696691 0.717371i \(-0.745345\pi\)
0.272916 + 0.962038i \(0.412012\pi\)
\(398\) 4.77209i 0.239203i
\(399\) −10.3282 + 6.49277i −0.517056 + 0.325045i
\(400\) 2.02666 + 4.57085i 0.101333 + 0.228542i
\(401\) −4.85007 8.40056i −0.242201 0.419504i 0.719140 0.694865i \(-0.244536\pi\)
−0.961341 + 0.275361i \(0.911203\pi\)
\(402\) 3.82862 2.21046i 0.190954 0.110248i
\(403\) 0.757022 + 0.437067i 0.0377099 + 0.0217718i
\(404\) 5.86577 + 10.1598i 0.291833 + 0.505469i
\(405\) 1.99313 1.01362i 0.0990394 0.0503673i
\(406\) −5.08252 −0.252241
\(407\) 6.77189i 0.335670i
\(408\) 3.68457 + 2.12729i 0.182413 + 0.105316i
\(409\) 1.03028 1.78451i 0.0509443 0.0882381i −0.839429 0.543470i \(-0.817110\pi\)
0.890373 + 0.455232i \(0.150444\pi\)
\(410\) 9.46663 14.5528i 0.467523 0.718714i
\(411\) −8.15288 −0.402152
\(412\) 15.5448 + 8.97482i 0.765840 + 0.442158i
\(413\) −0.914282 + 0.527861i −0.0449889 + 0.0259744i
\(414\) 4.42123 7.65779i 0.217291 0.376360i
\(415\) −18.4392 0.980562i −0.905146 0.0481339i
\(416\) −0.0554580 0.0960560i −0.00271905 0.00470953i
\(417\) 2.28555i 0.111924i
\(418\) 9.34137 + 14.8595i 0.456901 + 0.726803i
\(419\) 17.5492 0.857336 0.428668 0.903462i \(-0.358983\pi\)
0.428668 + 0.903462i \(0.358983\pi\)
\(420\) −0.332330 + 6.24938i −0.0162160 + 0.304938i
\(421\) −5.86950 10.1663i −0.286062 0.495474i 0.686804 0.726842i \(-0.259013\pi\)
−0.972866 + 0.231369i \(0.925680\pi\)
\(422\) −18.5047 10.6837i −0.900797 0.520075i
\(423\) −4.17060 + 2.40790i −0.202781 + 0.117076i
\(424\) −3.72410 + 6.45034i −0.180858 + 0.313256i
\(425\) −19.4470 + 8.62259i −0.943318 + 0.418257i
\(426\) 11.8135 0.572366
\(427\) 29.9619 + 17.2985i 1.44996 + 0.837133i
\(428\) 13.1080 + 7.56792i 0.633600 + 0.365809i
\(429\) −0.446621 −0.0215631
\(430\) −13.9928 9.10230i −0.674791 0.438952i
\(431\) −9.77272 + 16.9268i −0.470735 + 0.815337i −0.999440 0.0334686i \(-0.989345\pi\)
0.528705 + 0.848806i \(0.322678\pi\)
\(432\) 0.866025 0.500000i 0.0416667 0.0240563i
\(433\) 30.9164 + 17.8496i 1.48575 + 0.857797i 0.999868 0.0162277i \(-0.00516568\pi\)
0.485881 + 0.874025i \(0.338499\pi\)
\(434\) −11.0286 19.1020i −0.529388 0.916926i
\(435\) −4.05495 0.215634i −0.194420 0.0103389i
\(436\) −8.58516 −0.411154
\(437\) −18.0027 + 34.0807i −0.861185 + 1.63030i
\(438\) 9.62397i 0.459851i
\(439\) −19.4194 33.6354i −0.926838 1.60533i −0.788579 0.614934i \(-0.789183\pi\)
−0.138259 0.990396i \(-0.544151\pi\)
\(440\) 8.99119 + 0.478134i 0.428638 + 0.0227941i
\(441\) −0.416515 + 0.721424i −0.0198340 + 0.0343535i
\(442\) 0.408677 0.235950i 0.0194388 0.0112230i
\(443\) 25.1014 + 14.4923i 1.19260 + 0.688549i 0.958896 0.283758i \(-0.0915811\pi\)
0.233707 + 0.972307i \(0.424914\pi\)
\(444\) 1.68176 0.0798129
\(445\) 18.8001 + 12.2295i 0.891212 + 0.579734i
\(446\) 0.444327 0.769596i 0.0210395 0.0364414i
\(447\) 16.2200 + 9.36462i 0.767180 + 0.442931i
\(448\) 2.79875i 0.132229i
\(449\) −11.5314 −0.544201 −0.272100 0.962269i \(-0.587718\pi\)
−0.272100 + 0.962269i \(0.587718\pi\)
\(450\) −0.530281 + 4.97180i −0.0249977 + 0.234373i
\(451\) −15.6316 27.0747i −0.736064 1.27490i
\(452\) −1.07986 0.623455i −0.0507921 0.0293248i
\(453\) 13.9771 8.06970i 0.656703 0.379147i
\(454\) 0.113839 + 0.197176i 0.00534275 + 0.00925392i
\(455\) 0.581860 + 0.378500i 0.0272780 + 0.0177444i
\(456\) −3.69028 + 2.31988i −0.172813 + 0.108638i
\(457\) 22.1107i 1.03430i −0.855896 0.517148i \(-0.826994\pi\)
0.855896 0.517148i \(-0.173006\pi\)
\(458\) −14.0630 + 8.11926i −0.657119 + 0.379388i
\(459\) 2.12729 + 3.68457i 0.0992932 + 0.171981i
\(460\) 8.96292 + 17.6242i 0.417898 + 0.821731i
\(461\) −9.08841 15.7416i −0.423289 0.733159i 0.572970 0.819577i \(-0.305791\pi\)
−0.996259 + 0.0864179i \(0.972458\pi\)
\(462\) 9.75980 + 5.63482i 0.454067 + 0.262156i
\(463\) 34.9548i 1.62449i 0.583318 + 0.812244i \(0.301754\pi\)
−0.583318 + 0.812244i \(0.698246\pi\)
\(464\) −1.81599 −0.0843053
\(465\) −7.98841 15.7079i −0.370453 0.728439i
\(466\) −1.66979 + 2.89217i −0.0773517 + 0.133977i
\(467\) 13.0120i 0.602125i −0.953604 0.301063i \(-0.902659\pi\)
0.953604 0.301063i \(-0.0973414\pi\)
\(468\) 0.110916i 0.00512709i
\(469\) −6.18652 + 10.7154i −0.285667 + 0.494790i
\(470\) 0.571836 10.7532i 0.0263768 0.496010i
\(471\) 3.88918 6.73626i 0.179204 0.310390i
\(472\) −0.326675 + 0.188606i −0.0150364 + 0.00868128i
\(473\) −26.0327 + 15.0300i −1.19699 + 0.691081i
\(474\) 4.23690 0.194607
\(475\) 1.49477 21.7432i 0.0685845 0.997645i
\(476\) −11.9075 −0.545780
\(477\) −6.45034 + 3.72410i −0.295341 + 0.170515i
\(478\) 24.5444 14.1707i 1.12263 0.648153i
\(479\) −15.1415 + 26.2259i −0.691833 + 1.19829i 0.279403 + 0.960174i \(0.409863\pi\)
−0.971237 + 0.238117i \(0.923470\pi\)
\(480\) −0.118742 + 2.23291i −0.00541980 + 0.101918i
\(481\) 0.0932671 0.161543i 0.00425261 0.00736574i
\(482\) 14.2591i 0.649485i
\(483\) 24.7479i 1.12607i
\(484\) 2.60701 4.51547i 0.118500 0.205249i
\(485\) −5.29276 10.4074i −0.240332 0.472575i
\(486\) 1.00000 0.0453609
\(487\) 35.5166i 1.60941i −0.593674 0.804706i \(-0.702323\pi\)
0.593674 0.804706i \(-0.297677\pi\)
\(488\) 10.7054 + 6.18078i 0.484612 + 0.279791i
\(489\) −0.999118 1.73052i −0.0451817 0.0782570i
\(490\) −0.844377 1.66034i −0.0381451 0.0750063i
\(491\) 5.36057 + 9.28479i 0.241919 + 0.419017i 0.961261 0.275640i \(-0.0888897\pi\)
−0.719342 + 0.694656i \(0.755556\pi\)
\(492\) 6.72386 3.88203i 0.303135 0.175015i
\(493\) 7.72627i 0.347974i
\(494\) 0.0181827 + 0.483129i 0.000818080 + 0.0217370i
\(495\) 7.54753 + 4.90967i 0.339236 + 0.220673i
\(496\) −3.94052 6.82518i −0.176935 0.306460i
\(497\) −28.6335 + 16.5315i −1.28439 + 0.741541i
\(498\) −7.15157 4.12896i −0.320470 0.185023i
\(499\) 12.0259 + 20.8295i 0.538353 + 0.932455i 0.998993 + 0.0448675i \(0.0142866\pi\)
−0.460640 + 0.887587i \(0.652380\pi\)
\(500\) −8.67252 7.05602i −0.387847 0.315555i
\(501\) −17.9892 −0.803700
\(502\) 24.2873i 1.08400i
\(503\) −34.4057 19.8642i −1.53408 0.885699i −0.999168 0.0407894i \(-0.987013\pi\)
−0.534909 0.844910i \(-0.679654\pi\)
\(504\) −1.39938 + 2.42379i −0.0623332 + 0.107964i
\(505\) −21.9895 14.3041i −0.978518 0.636526i
\(506\) 35.6056 1.58286
\(507\) 11.2477 + 6.49385i 0.499527 + 0.288402i
\(508\) −11.9143 + 6.87872i −0.528611 + 0.305194i
\(509\) −2.51441 + 4.35509i −0.111449 + 0.193036i −0.916355 0.400367i \(-0.868883\pi\)
0.804905 + 0.593403i \(0.202216\pi\)
\(510\) −9.50009 0.505196i −0.420671 0.0223705i
\(511\) −13.4676 23.3265i −0.595770 1.03190i
\(512\) 1.00000i 0.0441942i
\(513\) −4.35582 + 0.163933i −0.192314 + 0.00723780i
\(514\) −2.38173 −0.105053
\(515\) −40.0800 2.13138i −1.76614 0.0939196i
\(516\) −3.73262 6.46509i −0.164320 0.284610i
\(517\) −16.7936 9.69579i −0.738581 0.426420i
\(518\) −4.07624 + 2.35342i −0.179100 + 0.103403i
\(519\) −7.65871 + 13.2653i −0.336180 + 0.582281i
\(520\) 0.207900 + 0.135239i 0.00911700 + 0.00593061i
\(521\) −43.2225 −1.89361 −0.946806 0.321806i \(-0.895710\pi\)
−0.946806 + 0.321806i \(0.895710\pi\)
\(522\) −1.57270 0.907996i −0.0688350 0.0397419i
\(523\) 0.0430629 + 0.0248624i 0.00188301 + 0.00108716i 0.500941 0.865481i \(-0.332987\pi\)
−0.499058 + 0.866568i \(0.666321\pi\)
\(524\) 12.8572 0.561669
\(525\) −5.67213 12.7927i −0.247552 0.558318i
\(526\) 3.99944 6.92724i 0.174384 0.302042i
\(527\) 29.0382 16.7652i 1.26493 0.730305i
\(528\) 3.48719 + 2.01333i 0.151761 + 0.0876190i
\(529\) 27.5945 + 47.7951i 1.19976 + 2.07805i
\(530\) 0.884415 16.6312i 0.0384165 0.722413i
\(531\) −0.377211 −0.0163696
\(532\) 5.69809 10.7870i 0.247044 0.467676i
\(533\) 0.861157i 0.0373008i
\(534\) 5.01501 + 8.68625i 0.217021 + 0.375891i
\(535\) −33.7970 1.79726i −1.46117 0.0777023i
\(536\) −2.21046 + 3.82862i −0.0954772 + 0.165371i
\(537\) −9.43602 + 5.44789i −0.407195 + 0.235094i
\(538\) 9.21576 + 5.32072i 0.397320 + 0.229393i
\(539\) −3.35433 −0.144481
\(540\) −1.21929 + 1.87439i −0.0524699 + 0.0806608i
\(541\) 3.67092 6.35822i 0.157825 0.273361i −0.776259 0.630414i \(-0.782885\pi\)
0.934084 + 0.357053i \(0.116218\pi\)
\(542\) 13.9888 + 8.07644i 0.600871 + 0.346913i
\(543\) 18.2521i 0.783271i
\(544\) −4.25457 −0.182413
\(545\) 17.1113 8.70211i 0.732969 0.372757i
\(546\) 0.155213 + 0.268837i 0.00664252 + 0.0115052i
\(547\) −20.7675 11.9901i −0.887954 0.512660i −0.0146810 0.999892i \(-0.504673\pi\)
−0.873273 + 0.487232i \(0.838007\pi\)
\(548\) 7.06060 4.07644i 0.301614 0.174137i
\(549\) 6.18078 + 10.7054i 0.263789 + 0.456896i
\(550\) −18.4053 + 8.16069i −0.784803 + 0.347973i
\(551\) 6.99922 + 3.69725i 0.298177 + 0.157508i
\(552\) 8.84246i 0.376360i
\(553\) −10.2694 + 5.92903i −0.436698 + 0.252128i
\(554\) −10.8475 18.7884i −0.460865 0.798242i
\(555\) −3.35197 + 1.70467i −0.142283 + 0.0723593i
\(556\) −1.14277 1.97934i −0.0484644 0.0839429i
\(557\) −21.6447 12.4966i −0.917115 0.529497i −0.0344016 0.999408i \(-0.510953\pi\)
−0.882714 + 0.469911i \(0.844286\pi\)
\(558\) 7.88104i 0.333631i
\(559\) −0.828015 −0.0350213
\(560\) −2.83688 5.57828i −0.119880 0.235725i
\(561\) −8.56587 + 14.8365i −0.361651 + 0.626398i
\(562\) 1.19029i 0.0502092i
\(563\) 23.2863i 0.981403i 0.871328 + 0.490701i \(0.163259\pi\)
−0.871328 + 0.490701i \(0.836741\pi\)
\(564\) 2.40790 4.17060i 0.101391 0.175614i
\(565\) 2.78424 + 0.148060i 0.117134 + 0.00622895i
\(566\) 0.151267 0.262002i 0.00635822 0.0110128i
\(567\) −2.42379 + 1.39938i −0.101790 + 0.0587683i
\(568\) −10.2308 + 5.90675i −0.429274 + 0.247842i
\(569\) 16.8454 0.706196 0.353098 0.935586i \(-0.385128\pi\)
0.353098 + 0.935586i \(0.385128\pi\)
\(570\) 5.00373 8.36437i 0.209583 0.350345i
\(571\) −16.1395 −0.675418 −0.337709 0.941250i \(-0.609652\pi\)
−0.337709 + 0.941250i \(0.609652\pi\)
\(572\) 0.386785 0.223311i 0.0161723 0.00933709i
\(573\) 14.9406 8.62594i 0.624151 0.360354i
\(574\) −10.8648 + 18.8184i −0.453490 + 0.785467i
\(575\) −35.7285 26.0422i −1.48998 1.08604i
\(576\) −0.500000 + 0.866025i −0.0208333 + 0.0360844i
\(577\) 3.05772i 0.127295i 0.997972 + 0.0636473i \(0.0202733\pi\)
−0.997972 + 0.0636473i \(0.979727\pi\)
\(578\) 1.10139i 0.0458117i
\(579\) 3.15885 5.47129i 0.131277 0.227379i
\(580\) 3.61951 1.84073i 0.150292 0.0764322i
\(581\) 23.1119 0.958843
\(582\) 5.22163i 0.216444i
\(583\) −25.9733 14.9957i −1.07571 0.621059i
\(584\) −4.81199 8.33460i −0.199121 0.344888i
\(585\) 0.112427 + 0.221070i 0.00464828 + 0.00914012i
\(586\) −12.6039 21.8306i −0.520662 0.901813i
\(587\) 26.8130 15.4805i 1.10669 0.638949i 0.168722 0.985664i \(-0.446036\pi\)
0.937971 + 0.346714i \(0.112703\pi\)
\(588\) 0.833029i 0.0343535i
\(589\) 1.29196 + 34.3284i 0.0532343 + 1.41448i
\(590\) 0.459930 0.707041i 0.0189350 0.0291084i
\(591\) −4.39624 7.61451i −0.180837 0.313219i
\(592\) −1.45645 + 0.840881i −0.0598597 + 0.0345600i
\(593\) −21.9486 12.6720i −0.901322 0.520379i −0.0236932 0.999719i \(-0.507542\pi\)
−0.877629 + 0.479341i \(0.840876\pi\)
\(594\) 2.01333 + 3.48719i 0.0826080 + 0.143081i
\(595\) 23.7332 12.0697i 0.972967 0.494810i
\(596\) −18.7292 −0.767180
\(597\) 4.77209i 0.195309i
\(598\) 0.849371 + 0.490385i 0.0347334 + 0.0200533i
\(599\) −11.1523 + 19.3163i −0.455670 + 0.789243i −0.998726 0.0504529i \(-0.983934\pi\)
0.543057 + 0.839696i \(0.317267\pi\)
\(600\) −2.02666 4.57085i −0.0827382 0.186604i
\(601\) 27.6758 1.12892 0.564460 0.825460i \(-0.309084\pi\)
0.564460 + 0.825460i \(0.309084\pi\)
\(602\) 18.0942 + 10.4467i 0.737465 + 0.425775i
\(603\) −3.82862 + 2.21046i −0.155914 + 0.0900167i
\(604\) −8.06970 + 13.9771i −0.328351 + 0.568721i
\(605\) −0.619123 + 11.6425i −0.0251709 + 0.473333i
\(606\) −5.86577 10.1598i −0.238281 0.412714i
\(607\) 16.7201i 0.678650i 0.940669 + 0.339325i \(0.110199\pi\)
−0.940669 + 0.339325i \(0.889801\pi\)
\(608\) 2.03594 3.85421i 0.0825682 0.156309i
\(609\) 5.08252 0.205954
\(610\) −27.6023 1.46784i −1.11758 0.0594309i
\(611\) −0.267074 0.462586i −0.0108047 0.0187142i
\(612\) −3.68457 2.12729i −0.148940 0.0859904i
\(613\) −25.3849 + 14.6560i −1.02529 + 0.591950i −0.915631 0.402020i \(-0.868308\pi\)
−0.109656 + 0.993970i \(0.534975\pi\)
\(614\) −11.3911 + 19.7299i −0.459707 + 0.796235i
\(615\) −9.46663 + 14.5528i −0.381731 + 0.586827i
\(616\) −11.2696 −0.454067
\(617\) 32.4820 + 18.7535i 1.30767 + 0.754986i 0.981708 0.190395i \(-0.0609769\pi\)
0.325967 + 0.945381i \(0.394310\pi\)
\(618\) −15.5448 8.97482i −0.625305 0.361020i
\(619\) −39.0394 −1.56912 −0.784562 0.620050i \(-0.787112\pi\)
−0.784562 + 0.620050i \(0.787112\pi\)
\(620\) 14.7721 + 9.60928i 0.593263 + 0.385918i
\(621\) −4.42123 + 7.65779i −0.177418 + 0.307297i
\(622\) −10.4575 + 6.03762i −0.419306 + 0.242087i
\(623\) −24.3107 14.0358i −0.973987 0.562331i
\(624\) 0.0554580 + 0.0960560i 0.00222010 + 0.00384532i
\(625\) 24.4376 + 5.27290i 0.977504 + 0.210916i
\(626\) 10.6499 0.425655
\(627\) −9.34137 14.8595i −0.373058 0.593432i
\(628\) 7.77836i 0.310390i
\(629\) −3.57759 6.19657i −0.142648 0.247073i
\(630\) 0.332330 6.24938i 0.0132403 0.248981i
\(631\) 13.0406 22.5870i 0.519139 0.899174i −0.480614 0.876932i \(-0.659586\pi\)
0.999753 0.0222421i \(-0.00708045\pi\)
\(632\) −3.66927 + 2.11845i −0.145956 + 0.0842675i
\(633\) 18.5047 + 10.6837i 0.735497 + 0.424640i
\(634\) −16.5300 −0.656489
\(635\) 16.7743 25.7868i 0.665668 1.02332i
\(636\) 3.72410 6.45034i 0.147670 0.255772i
\(637\) −0.0800175 0.0461981i −0.00317041 0.00183044i
\(638\) 7.31239i 0.289500i
\(639\) −11.8135 −0.467335
\(640\) −1.01362 1.99313i −0.0400670 0.0787854i
\(641\) 1.56243 + 2.70621i 0.0617122 + 0.106889i 0.895231 0.445603i \(-0.147011\pi\)
−0.833519 + 0.552491i \(0.813677\pi\)
\(642\) −13.1080 7.56792i −0.517333 0.298682i
\(643\) −17.9701 + 10.3750i −0.708671 + 0.409151i −0.810569 0.585644i \(-0.800842\pi\)
0.101898 + 0.994795i \(0.467509\pi\)
\(644\) −12.3739 21.4323i −0.487601 0.844550i
\(645\) 13.9928 + 9.10230i 0.550965 + 0.358403i
\(646\) 16.3980 + 8.66205i 0.645172 + 0.340804i
\(647\) 16.4405i 0.646344i −0.946340 0.323172i \(-0.895251\pi\)
0.946340 0.323172i \(-0.104749\pi\)
\(648\) −0.866025 + 0.500000i −0.0340207 + 0.0196419i
\(649\) −0.759452 1.31541i −0.0298111 0.0516343i
\(650\) −0.551452 0.0588166i −0.0216297 0.00230698i
\(651\) 11.0286 + 19.1020i 0.432243 + 0.748667i
\(652\) 1.73052 + 0.999118i 0.0677725 + 0.0391285i
\(653\) 6.77814i 0.265249i −0.991166 0.132625i \(-0.957660\pi\)
0.991166 0.132625i \(-0.0423405\pi\)
\(654\) 8.58516 0.335706
\(655\) −25.6261 + 13.0323i −1.00129 + 0.509216i
\(656\) −3.88203 + 6.72386i −0.151568 + 0.262523i
\(657\) 9.62397i 0.375467i
\(658\) 13.4782i 0.525436i
\(659\) 12.0863 20.9341i 0.470817 0.815478i −0.528626 0.848855i \(-0.677293\pi\)
0.999443 + 0.0333765i \(0.0106260\pi\)
\(660\) −8.99119 0.478134i −0.349982 0.0186113i
\(661\) −13.5085 + 23.3974i −0.525420 + 0.910055i 0.474141 + 0.880449i \(0.342759\pi\)
−0.999562 + 0.0296059i \(0.990575\pi\)
\(662\) 28.9121 16.6924i 1.12370 0.648768i
\(663\) −0.408677 + 0.235950i −0.0158717 + 0.00916354i
\(664\) 8.25792 0.320470
\(665\) −0.423090 + 27.2756i −0.0164067 + 1.05770i
\(666\) −1.68176 −0.0651670
\(667\) 13.9065 8.02892i 0.538461 0.310881i
\(668\) 15.5791 8.99462i 0.602775 0.348012i
\(669\) −0.444327 + 0.769596i −0.0171787 + 0.0297543i
\(670\) 0.524948 9.87151i 0.0202805 0.381370i
\(671\) −24.8879 + 43.1071i −0.960788 + 1.66413i
\(672\) 2.79875i 0.107964i
\(673\) 21.9407i 0.845751i −0.906188 0.422875i \(-0.861021\pi\)
0.906188 0.422875i \(-0.138979\pi\)
\(674\) −11.0893 + 19.2072i −0.427144 + 0.739834i
\(675\) 0.530281 4.97180i 0.0204105 0.191365i
\(676\) −12.9877 −0.499527
\(677\) 18.8185i 0.723254i 0.932323 + 0.361627i \(0.117779\pi\)
−0.932323 + 0.361627i \(0.882221\pi\)
\(678\) 1.07986 + 0.623455i 0.0414716 + 0.0239436i
\(679\) 7.30703 + 12.6562i 0.280418 + 0.485699i
\(680\) 8.47992 4.31253i 0.325190 0.165378i
\(681\) −0.113839 0.197176i −0.00436234 0.00755579i
\(682\) 27.4827 15.8672i 1.05237 0.607585i
\(683\) 19.3651i 0.740986i 0.928835 + 0.370493i \(0.120811\pi\)
−0.928835 + 0.370493i \(0.879189\pi\)
\(684\) 3.69028 2.31988i 0.141101 0.0887027i
\(685\) −9.94073 + 15.2817i −0.379816 + 0.583882i
\(686\) −8.62992 14.9475i −0.329492 0.570697i
\(687\) 14.0630 8.11926i 0.536536 0.309769i
\(688\) 6.46509 + 3.73262i 0.246479 + 0.142305i
\(689\) −0.413062 0.715445i −0.0157364 0.0272563i
\(690\) −8.96292 17.6242i −0.341212 0.670941i
\(691\) 0.642365 0.0244367 0.0122184 0.999925i \(-0.496111\pi\)
0.0122184 + 0.999925i \(0.496111\pi\)
\(692\) 15.3174i 0.582281i
\(693\) −9.75980 5.63482i −0.370744 0.214049i
\(694\) 9.08564 15.7368i 0.344886 0.597360i
\(695\) 4.28401 + 2.78675i 0.162502 + 0.105707i
\(696\) 1.81599 0.0688350
\(697\) −28.6072 16.5164i −1.08357 0.625602i
\(698\) −4.80634 + 2.77494i −0.181923 + 0.105033i
\(699\) 1.66979 2.89217i 0.0631574 0.109392i
\(700\) 11.3086 + 8.24272i 0.427423 + 0.311545i
\(701\) −22.4846 38.9445i −0.849233 1.47091i −0.881894 0.471448i \(-0.843732\pi\)
0.0326612 0.999466i \(-0.489602\pi\)
\(702\) 0.110916i 0.00418625i
\(703\) 7.32544 0.275695i 0.276284 0.0103981i
\(704\) −4.02666 −0.151761
\(705\) −0.571836 + 10.7532i −0.0215366 + 0.404991i
\(706\) 5.99991 + 10.3922i 0.225810 + 0.391114i
\(707\) 28.4348 + 16.4169i 1.06940 + 0.617419i
\(708\) 0.326675 0.188606i 0.0122772 0.00708824i
\(709\) 4.09461 7.09207i 0.153776 0.266348i −0.778836 0.627227i \(-0.784190\pi\)
0.932613 + 0.360879i \(0.117523\pi\)
\(710\) 14.4041 22.1431i 0.540575 0.831015i
\(711\) −4.23690 −0.158896
\(712\) −8.68625 5.01501i −0.325531 0.187945i
\(713\) 60.3514 + 34.8439i 2.26018 + 1.30491i
\(714\) 11.9075 0.445627
\(715\) −0.544561 + 0.837142i −0.0203654 + 0.0313073i
\(716\) 5.44789 9.43602i 0.203597 0.352641i
\(717\) −24.5444 + 14.1707i −0.916626 + 0.529214i
\(718\) 27.4515 + 15.8492i 1.02448 + 0.591485i
\(719\) 25.2772 + 43.7813i 0.942679 + 1.63277i 0.760334 + 0.649533i \(0.225035\pi\)
0.182345 + 0.983235i \(0.441631\pi\)
\(720\) 0.118742 2.23291i 0.00442525 0.0832158i
\(721\) 50.2367 1.87091
\(722\) −15.6939 + 10.7099i −0.584066 + 0.398582i
\(723\) 14.2591i 0.530302i
\(724\) 9.12604 + 15.8068i 0.339167 + 0.587454i
\(725\) −5.34835 + 7.33764i −0.198633 + 0.272513i
\(726\) −2.60701 + 4.51547i −0.0967552 + 0.167585i
\(727\) 2.96717 1.71310i 0.110046 0.0635353i −0.443967 0.896043i \(-0.646429\pi\)
0.554013 + 0.832508i \(0.313096\pi\)
\(728\) −0.268837 0.155213i −0.00996377 0.00575259i
\(729\) −1.00000 −0.0370370
\(730\) 18.0391 + 11.7344i 0.667656 + 0.434310i
\(731\) −15.8807 + 27.5062i −0.587369 + 1.01735i
\(732\) −10.7054 6.18078i −0.395684 0.228448i
\(733\) 0.420632i 0.0155364i −0.999970 0.00776819i \(-0.997527\pi\)
0.999970 0.00776819i \(-0.00247272\pi\)
\(734\) −3.62820 −0.133919
\(735\) 0.844377 + 1.66034i 0.0311453 + 0.0612424i
\(736\) −4.42123 7.65779i −0.162969 0.282270i
\(737\) −15.4166 8.90076i −0.567877 0.327864i
\(738\) −6.72386 + 3.88203i −0.247509 + 0.142899i
\(739\) 6.70752 + 11.6178i 0.246740 + 0.427366i 0.962619 0.270858i \(-0.0873073\pi\)
−0.715879 + 0.698224i \(0.753974\pi\)
\(740\) 2.05056 3.15228i 0.0753799 0.115880i
\(741\) −0.0181827 0.483129i −0.000667959 0.0177482i
\(742\) 20.8457i 0.765270i
\(743\) 29.4635 17.0108i 1.08091 0.624064i 0.149769 0.988721i \(-0.452147\pi\)
0.931142 + 0.364657i \(0.118814\pi\)
\(744\) 3.94052 + 6.82518i 0.144467 + 0.250223i
\(745\) 37.3298 18.9844i 1.36766 0.695534i
\(746\) −3.87450 6.71084i −0.141856 0.245701i
\(747\) 7.15157 + 4.12896i 0.261662 + 0.151071i
\(748\) 17.1317i 0.626398i
\(749\) 42.3615 1.54786
\(750\) 8.67252 + 7.05602i 0.316676 + 0.257649i
\(751\) −11.0748 + 19.1820i −0.404123 + 0.699962i −0.994219 0.107371i \(-0.965757\pi\)
0.590096 + 0.807333i \(0.299090\pi\)
\(752\) 4.81579i 0.175614i
\(753\) 24.2873i 0.885079i
\(754\) 0.100711 0.174437i 0.00366769 0.00635262i
\(755\) 1.91642 36.0379i 0.0697458 1.31155i
\(756\) 1.39938 2.42379i 0.0508949 0.0881525i
\(757\) −5.58767 + 3.22604i −0.203087 + 0.117252i −0.598095 0.801425i \(-0.704075\pi\)
0.395008 + 0.918678i \(0.370742\pi\)
\(758\) 5.78694 3.34109i 0.210191 0.121354i
\(759\) −35.6056 −1.29240
\(760\) −0.151171 + 9.74562i −0.00548354 + 0.353511i
\(761\) 25.4438 0.922338 0.461169 0.887312i \(-0.347430\pi\)
0.461169 + 0.887312i \(0.347430\pi\)
\(762\) 11.9143 6.87872i 0.431609 0.249190i
\(763\) −20.8086 + 12.0139i −0.753323 + 0.434931i
\(764\) −8.62594 + 14.9406i −0.312075 + 0.540531i
\(765\) 9.50009 + 0.505196i 0.343476 + 0.0182654i
\(766\) −10.1067 + 17.5053i −0.365170 + 0.632492i
\(767\) 0.0418388i 0.00151071i
\(768\) 1.00000i 0.0360844i
\(769\) 22.8321 39.5464i 0.823348 1.42608i −0.0798275 0.996809i \(-0.525437\pi\)
0.903175 0.429272i \(-0.141230\pi\)
\(770\) 22.4619 11.4232i 0.809470 0.411662i
\(771\) 2.38173 0.0857758
\(772\) 6.31770i 0.227379i
\(773\) −23.3288 13.4689i −0.839080 0.484443i 0.0178717 0.999840i \(-0.494311\pi\)
−0.856951 + 0.515397i \(0.827644\pi\)
\(774\) 3.73262 + 6.46509i 0.134166 + 0.232383i
\(775\) −39.1830