# Properties

 Label 570.2.q.c.349.8 Level $570$ Weight $2$ Character 570.349 Analytic conductor $4.551$ Analytic rank $0$ Dimension $20$ CM no Inner twists $4$

# Related objects

## Newspace parameters

 Level: $$N$$ $$=$$ $$570 = 2 \cdot 3 \cdot 5 \cdot 19$$ Weight: $$k$$ $$=$$ $$2$$ Character orbit: $$[\chi]$$ $$=$$ 570.q (of order $$6$$, degree $$2$$, minimal)

## Newform invariants

 Self dual: no Analytic conductor: $$4.55147291521$$ Analytic rank: $$0$$ Dimension: $$20$$ Relative dimension: $$10$$ over $$\Q(\zeta_{6})$$ Coefficient field: $$\mathbb{Q}[x]/(x^{20} - \cdots)$$ Defining polynomial: $$x^{20} - 49 x^{16} - 8 x^{15} + 72 x^{13} + 2145 x^{12} - 648 x^{11} + 32 x^{10} - 7056 x^{9} - 11968 x^{8} + 10368 x^{7} + 9344 x^{6} + 18176 x^{5} + 56320 x^{4} + 28160 x^{3} + 8192 x^{2} + 4096 x + 1024$$ Coefficient ring: $$\Z[a_1, \ldots, a_{19}]$$ Coefficient ring index: $$2^{2}$$ Twist minimal: yes Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

## Embedding invariants

 Embedding label 349.8 Root $$0.686074 - 2.56046i$$ of defining polynomial Character $$\chi$$ $$=$$ 570.349 Dual form 570.2.q.c.49.8

## $q$-expansion

 $$f(q)$$ $$=$$ $$q+(0.866025 - 0.500000i) q^{2} +(-0.866025 + 0.500000i) q^{3} +(0.500000 - 0.866025i) q^{4} +(-0.118742 + 2.23291i) q^{5} +(-0.500000 + 0.866025i) q^{6} -2.79875i q^{7} -1.00000i q^{8} +(0.500000 - 0.866025i) q^{9} +O(q^{10})$$ $$q+(0.866025 - 0.500000i) q^{2} +(-0.866025 + 0.500000i) q^{3} +(0.500000 - 0.866025i) q^{4} +(-0.118742 + 2.23291i) q^{5} +(-0.500000 + 0.866025i) q^{6} -2.79875i q^{7} -1.00000i q^{8} +(0.500000 - 0.866025i) q^{9} +(1.01362 + 1.99313i) q^{10} +4.02666 q^{11} +1.00000i q^{12} +(0.0960560 + 0.0554580i) q^{13} +(-1.39938 - 2.42379i) q^{14} +(-1.01362 - 1.99313i) q^{15} +(-0.500000 - 0.866025i) q^{16} +(3.68457 - 2.12729i) q^{17} -1.00000i q^{18} +(0.163933 + 4.35582i) q^{19} +(1.87439 + 1.21929i) q^{20} +(1.39938 + 2.42379i) q^{21} +(3.48719 - 2.01333i) q^{22} +(7.65779 + 4.42123i) q^{23} +(0.500000 + 0.866025i) q^{24} +(-4.97180 - 0.530281i) q^{25} +0.110916 q^{26} +1.00000i q^{27} +(-2.42379 - 1.39938i) q^{28} +(0.907996 - 1.57270i) q^{29} +(-1.87439 - 1.21929i) q^{30} +7.88104 q^{31} +(-0.866025 - 0.500000i) q^{32} +(-3.48719 + 2.01333i) q^{33} +(2.12729 - 3.68457i) q^{34} +(6.24938 + 0.332330i) q^{35} +(-0.500000 - 0.866025i) q^{36} -1.68176i q^{37} +(2.31988 + 3.69028i) q^{38} -0.110916 q^{39} +(2.23291 + 0.118742i) q^{40} +(-3.88203 - 6.72386i) q^{41} +(2.42379 + 1.39938i) q^{42} +(-6.46509 + 3.73262i) q^{43} +(2.01333 - 3.48719i) q^{44} +(1.87439 + 1.21929i) q^{45} +8.84246 q^{46} +(-4.17060 - 2.40790i) q^{47} +(0.866025 + 0.500000i) q^{48} -0.833029 q^{49} +(-4.57085 + 2.02666i) q^{50} +(-2.12729 + 3.68457i) q^{51} +(0.0960560 - 0.0554580i) q^{52} +(-6.45034 - 3.72410i) q^{53} +(0.500000 + 0.866025i) q^{54} +(-0.478134 + 8.99119i) q^{55} -2.79875 q^{56} +(-2.31988 - 3.69028i) q^{57} -1.81599i q^{58} +(-0.188606 - 0.326675i) q^{59} +(-2.23291 - 0.118742i) q^{60} +(-6.18078 + 10.7054i) q^{61} +(6.82518 - 3.94052i) q^{62} +(-2.42379 - 1.39938i) q^{63} -1.00000 q^{64} +(-0.135239 + 0.207900i) q^{65} +(-2.01333 + 3.48719i) q^{66} +(-3.82862 - 2.21046i) q^{67} -4.25457i q^{68} -8.84246 q^{69} +(5.57828 - 2.83688i) q^{70} +(-5.90675 - 10.2308i) q^{71} +(-0.866025 - 0.500000i) q^{72} +(8.33460 - 4.81199i) q^{73} +(-0.840881 - 1.45645i) q^{74} +(4.57085 - 2.02666i) q^{75} +(3.85421 + 2.03594i) q^{76} -11.2696i q^{77} +(-0.0960560 + 0.0554580i) q^{78} +(-2.11845 - 3.66927i) q^{79} +(1.99313 - 1.01362i) q^{80} +(-0.500000 - 0.866025i) q^{81} +(-6.72386 - 3.88203i) q^{82} +8.25792i q^{83} +2.79875 q^{84} +(4.31253 + 8.47992i) q^{85} +(-3.73262 + 6.46509i) q^{86} +1.81599i q^{87} -4.02666i q^{88} +(5.01501 - 8.68625i) q^{89} +(2.23291 + 0.118742i) q^{90} +(0.155213 - 0.268837i) q^{91} +(7.65779 - 4.42123i) q^{92} +(-6.82518 + 3.94052i) q^{93} -4.81579 q^{94} +(-9.74562 - 0.151171i) q^{95} +1.00000 q^{96} +(-4.52207 + 2.61082i) q^{97} +(-0.721424 + 0.416515i) q^{98} +(2.01333 - 3.48719i) q^{99} +O(q^{100})$$ $$\operatorname{Tr}(f)(q)$$ $$=$$ $$20q + 10q^{4} - 10q^{6} + 10q^{9} + O(q^{10})$$ $$20q + 10q^{4} - 10q^{6} + 10q^{9} - 2q^{10} + 12q^{11} + 10q^{14} + 2q^{15} - 10q^{16} + 6q^{19} - 10q^{21} + 10q^{24} + 14q^{25} + 8q^{29} + 40q^{31} + 12q^{34} + 2q^{35} - 10q^{36} + 2q^{40} - 14q^{41} + 6q^{44} + 44q^{46} - 8q^{49} - 8q^{50} - 12q^{51} + 10q^{54} + 20q^{56} + 8q^{59} - 2q^{60} + 16q^{61} - 20q^{64} + 40q^{65} - 6q^{66} - 44q^{69} + 8q^{70} - 4q^{71} + 26q^{74} + 8q^{75} + 8q^{79} - 10q^{81} - 20q^{84} - 16q^{85} - 20q^{86} - 2q^{89} + 2q^{90} - 44q^{91} - 32q^{94} - 80q^{95} + 20q^{96} + 6q^{99} + O(q^{100})$$

## Character values

We give the values of $$\chi$$ on generators for $$\left(\mathbb{Z}/570\mathbb{Z}\right)^\times$$.

 $$n$$ $$191$$ $$211$$ $$457$$ $$\chi(n)$$ $$1$$ $$e\left(\frac{1}{3}\right)$$ $$-1$$

## Coefficient data

For each $$n$$ we display the coefficients of the $$q$$-expansion $$a_n$$, the Satake parameters $$\alpha_p$$, and the Satake angles $$\theta_p = \textrm{Arg}(\alpha_p)$$.

Display $$a_p$$ with $$p$$ up to: 50 250 1000 Display $$a_n$$ with $$n$$ up to: 50 250 1000
$$n$$ $$a_n$$ $$a_n / n^{(k-1)/2}$$ $$\alpha_n$$ $$\theta_n$$
$$p$$ $$a_p$$ $$a_p / p^{(k-1)/2}$$ $$\alpha_p$$ $$\theta_p$$
$$2$$ 0.866025 0.500000i 0.612372 0.353553i
$$3$$ −0.866025 + 0.500000i −0.500000 + 0.288675i
$$4$$ 0.500000 0.866025i 0.250000 0.433013i
$$5$$ −0.118742 + 2.23291i −0.0531030 + 0.998589i
$$6$$ −0.500000 + 0.866025i −0.204124 + 0.353553i
$$7$$ 2.79875i 1.05783i −0.848675 0.528915i $$-0.822599\pi$$
0.848675 0.528915i $$-0.177401\pi$$
$$8$$ 1.00000i 0.353553i
$$9$$ 0.500000 0.866025i 0.166667 0.288675i
$$10$$ 1.01362 + 1.99313i 0.320536 + 0.630283i
$$11$$ 4.02666 1.21408 0.607042 0.794669i $$-0.292356\pi$$
0.607042 + 0.794669i $$0.292356\pi$$
$$12$$ 1.00000i 0.288675i
$$13$$ 0.0960560 + 0.0554580i 0.0266411 + 0.0153813i 0.513261 0.858232i $$-0.328437\pi$$
−0.486620 + 0.873614i $$0.661770\pi$$
$$14$$ −1.39938 2.42379i −0.373999 0.647786i
$$15$$ −1.01362 1.99313i −0.261716 0.514624i
$$16$$ −0.500000 0.866025i −0.125000 0.216506i
$$17$$ 3.68457 2.12729i 0.893639 0.515943i 0.0185079 0.999829i $$-0.494108\pi$$
0.875131 + 0.483886i $$0.160775\pi$$
$$18$$ 1.00000i 0.235702i
$$19$$ 0.163933 + 4.35582i 0.0376087 + 0.999293i
$$20$$ 1.87439 + 1.21929i 0.419126 + 0.272642i
$$21$$ 1.39938 + 2.42379i 0.305369 + 0.528915i
$$22$$ 3.48719 2.01333i 0.743472 0.429244i
$$23$$ 7.65779 + 4.42123i 1.59676 + 0.921890i 0.992106 + 0.125401i $$0.0400218\pi$$
0.604654 + 0.796489i $$0.293312\pi$$
$$24$$ 0.500000 + 0.866025i 0.102062 + 0.176777i
$$25$$ −4.97180 0.530281i −0.994360 0.106056i
$$26$$ 0.110916 0.0217524
$$27$$ 1.00000i 0.192450i
$$28$$ −2.42379 1.39938i −0.458054 0.264457i
$$29$$ 0.907996 1.57270i 0.168611 0.292042i −0.769321 0.638862i $$-0.779405\pi$$
0.937932 + 0.346820i $$0.112739\pi$$
$$30$$ −1.87439 1.21929i −0.342215 0.222611i
$$31$$ 7.88104 1.41548 0.707739 0.706474i $$-0.249715\pi$$
0.707739 + 0.706474i $$0.249715\pi$$
$$32$$ −0.866025 0.500000i −0.153093 0.0883883i
$$33$$ −3.48719 + 2.01333i −0.607042 + 0.350476i
$$34$$ 2.12729 3.68457i 0.364827 0.631898i
$$35$$ 6.24938 + 0.332330i 1.05634 + 0.0561740i
$$36$$ −0.500000 0.866025i −0.0833333 0.144338i
$$37$$ 1.68176i 0.276480i −0.990399 0.138240i $$-0.955855\pi$$
0.990399 0.138240i $$-0.0441445\pi$$
$$38$$ 2.31988 + 3.69028i 0.376334 + 0.598643i
$$39$$ −0.110916 −0.0177608
$$40$$ 2.23291 + 0.118742i 0.353055 + 0.0187747i
$$41$$ −3.88203 6.72386i −0.606270 1.05009i −0.991849 0.127416i $$-0.959332\pi$$
0.385579 0.922675i $$-0.374002\pi$$
$$42$$ 2.42379 + 1.39938i 0.373999 + 0.215929i
$$43$$ −6.46509 + 3.73262i −0.985917 + 0.569219i −0.904051 0.427424i $$-0.859421\pi$$
−0.0818657 + 0.996643i $$0.526088\pi$$
$$44$$ 2.01333 3.48719i 0.303521 0.525714i
$$45$$ 1.87439 + 1.21929i 0.279417 + 0.181761i
$$46$$ 8.84246 1.30375
$$47$$ −4.17060 2.40790i −0.608344 0.351228i 0.163973 0.986465i $$-0.447569\pi$$
−0.772317 + 0.635237i $$0.780902\pi$$
$$48$$ 0.866025 + 0.500000i 0.125000 + 0.0721688i
$$49$$ −0.833029 −0.119004
$$50$$ −4.57085 + 2.02666i −0.646415 + 0.286614i
$$51$$ −2.12729 + 3.68457i −0.297880 + 0.515943i
$$52$$ 0.0960560 0.0554580i 0.0133206 0.00769064i
$$53$$ −6.45034 3.72410i −0.886022 0.511545i −0.0133827 0.999910i $$-0.504260\pi$$
−0.872639 + 0.488365i $$0.837593\pi$$
$$54$$ 0.500000 + 0.866025i 0.0680414 + 0.117851i
$$55$$ −0.478134 + 8.99119i −0.0644716 + 1.21237i
$$56$$ −2.79875 −0.373999
$$57$$ −2.31988 3.69028i −0.307275 0.488790i
$$58$$ 1.81599i 0.238451i
$$59$$ −0.188606 0.326675i −0.0245544 0.0425294i 0.853487 0.521114i $$-0.174483\pi$$
−0.878041 + 0.478585i $$0.841150\pi$$
$$60$$ −2.23291 0.118742i −0.288268 0.0153295i
$$61$$ −6.18078 + 10.7054i −0.791368 + 1.37069i 0.133752 + 0.991015i $$0.457297\pi$$
−0.925120 + 0.379674i $$0.876036\pi$$
$$62$$ 6.82518 3.94052i 0.866799 0.500447i
$$63$$ −2.42379 1.39938i −0.305369 0.176305i
$$64$$ −1.00000 −0.125000
$$65$$ −0.135239 + 0.207900i −0.0167743 + 0.0257868i
$$66$$ −2.01333 + 3.48719i −0.247824 + 0.429244i
$$67$$ −3.82862 2.21046i −0.467741 0.270050i 0.247553 0.968874i $$-0.420374\pi$$
−0.715293 + 0.698824i $$0.753707\pi$$
$$68$$ 4.25457i 0.515943i
$$69$$ −8.84246 −1.06451
$$70$$ 5.57828 2.83688i 0.666732 0.339072i
$$71$$ −5.90675 10.2308i −0.701002 1.21417i −0.968115 0.250506i $$-0.919403\pi$$
0.267113 0.963665i $$-0.413930\pi$$
$$72$$ −0.866025 0.500000i −0.102062 0.0589256i
$$73$$ 8.33460 4.81199i 0.975492 0.563200i 0.0745857 0.997215i $$-0.476237\pi$$
0.900906 + 0.434014i $$0.142903\pi$$
$$74$$ −0.840881 1.45645i −0.0977504 0.169309i
$$75$$ 4.57085 2.02666i 0.527796 0.234019i
$$76$$ 3.85421 + 2.03594i 0.442109 + 0.233538i
$$77$$ 11.2696i 1.28430i
$$78$$ −0.0960560 + 0.0554580i −0.0108762 + 0.00627938i
$$79$$ −2.11845 3.66927i −0.238344 0.412825i 0.721895 0.692003i $$-0.243271\pi$$
−0.960239 + 0.279178i $$0.909938\pi$$
$$80$$ 1.99313 1.01362i 0.222839 0.113326i
$$81$$ −0.500000 0.866025i −0.0555556 0.0962250i
$$82$$ −6.72386 3.88203i −0.742527 0.428698i
$$83$$ 8.25792i 0.906425i 0.891403 + 0.453212i $$0.149722\pi$$
−0.891403 + 0.453212i $$0.850278\pi$$
$$84$$ 2.79875 0.305369
$$85$$ 4.31253 + 8.47992i 0.467760 + 0.919776i
$$86$$ −3.73262 + 6.46509i −0.402499 + 0.697149i
$$87$$ 1.81599i 0.194695i
$$88$$ 4.02666i 0.429244i
$$89$$ 5.01501 8.68625i 0.531590 0.920740i −0.467730 0.883871i $$-0.654928\pi$$
0.999320 0.0368691i $$-0.0117385\pi$$
$$90$$ 2.23291 + 0.118742i 0.235370 + 0.0125165i
$$91$$ 0.155213 0.268837i 0.0162708 0.0281818i
$$92$$ 7.65779 4.42123i 0.798380 0.460945i
$$93$$ −6.82518 + 3.94052i −0.707739 + 0.408613i
$$94$$ −4.81579 −0.496711
$$95$$ −9.74562 0.151171i −0.999880 0.0155098i
$$96$$ 1.00000 0.102062
$$97$$ −4.52207 + 2.61082i −0.459146 + 0.265088i −0.711685 0.702499i $$-0.752068\pi$$
0.252539 + 0.967587i $$0.418734\pi$$
$$98$$ −0.721424 + 0.416515i −0.0728749 + 0.0420743i
$$99$$ 2.01333 3.48719i 0.202347 0.350476i
$$100$$ −2.94514 + 4.04057i −0.294514 + 0.404057i
$$101$$ −5.86577 + 10.1598i −0.583666 + 1.01094i 0.411374 + 0.911466i $$0.365049\pi$$
−0.995040 + 0.0994725i $$0.968284\pi$$
$$102$$ 4.25457i 0.421265i
$$103$$ 17.9496i 1.76863i 0.466890 + 0.884315i $$0.345374\pi$$
−0.466890 + 0.884315i $$0.654626\pi$$
$$104$$ 0.0554580 0.0960560i 0.00543810 0.00941907i
$$105$$ −5.57828 + 2.83688i −0.544385 + 0.276851i
$$106$$ −7.44821 −0.723434
$$107$$ 15.1358i 1.46324i 0.681714 + 0.731619i $$0.261235\pi$$
−0.681714 + 0.731619i $$0.738765\pi$$
$$108$$ 0.866025 + 0.500000i 0.0833333 + 0.0481125i
$$109$$ −4.29258 7.43496i −0.411154 0.712140i 0.583862 0.811853i $$-0.301541\pi$$
−0.995016 + 0.0997127i $$0.968208\pi$$
$$110$$ 4.08152 + 8.02567i 0.389158 + 0.765217i
$$111$$ 0.840881 + 1.45645i 0.0798129 + 0.138240i
$$112$$ −2.42379 + 1.39938i −0.229027 + 0.132229i
$$113$$ 1.24691i 0.117299i −0.998279 0.0586497i $$-0.981321\pi$$
0.998279 0.0586497i $$-0.0186795\pi$$
$$114$$ −3.85421 2.03594i −0.360980 0.190683i
$$115$$ −10.7815 + 16.5742i −1.00538 + 1.54555i
$$116$$ −0.907996 1.57270i −0.0843053 0.146021i
$$117$$ 0.0960560 0.0554580i 0.00888038 0.00512709i
$$118$$ −0.326675 0.188606i −0.0300728 0.0173626i
$$119$$ −5.95375 10.3122i −0.545780 0.945318i
$$120$$ −1.99313 + 1.01362i −0.181947 + 0.0925307i
$$121$$ 5.21402 0.474002
$$122$$ 12.3616i 1.11916i
$$123$$ 6.72386 + 3.88203i 0.606270 + 0.350030i
$$124$$ 3.94052 6.82518i 0.353869 0.612920i
$$125$$ 1.77443 11.0386i 0.158710 0.987325i
$$126$$ −2.79875 −0.249333
$$127$$ −11.9143 6.87872i −1.05722 0.610388i −0.132560 0.991175i $$-0.542320\pi$$
−0.924663 + 0.380787i $$0.875653\pi$$
$$128$$ −0.866025 + 0.500000i −0.0765466 + 0.0441942i
$$129$$ 3.73262 6.46509i 0.328639 0.569219i
$$130$$ −0.0131704 + 0.247666i −0.00115512 + 0.0217217i
$$131$$ 6.42860 + 11.1347i 0.561669 + 0.972840i 0.997351 + 0.0727388i $$0.0231739\pi$$
−0.435682 + 0.900101i $$0.643493\pi$$
$$132$$ 4.02666i 0.350476i
$$133$$ 12.1909 0.458807i 1.05708 0.0397836i
$$134$$ −4.42091 −0.381909
$$135$$ −2.23291 0.118742i −0.192179 0.0102197i
$$136$$ −2.12729 3.68457i −0.182413 0.315949i
$$137$$ 7.06060 + 4.07644i 0.603228 + 0.348274i 0.770310 0.637669i $$-0.220101\pi$$
−0.167082 + 0.985943i $$0.553435\pi$$
$$138$$ −7.65779 + 4.42123i −0.651874 + 0.376360i
$$139$$ 1.14277 1.97934i 0.0969289 0.167886i −0.813483 0.581589i $$-0.802431\pi$$
0.910412 + 0.413703i $$0.135765\pi$$
$$140$$ 3.41249 5.24595i 0.288408 0.443364i
$$141$$ 4.81579 0.405563
$$142$$ −10.2308 5.90675i −0.858549 0.495683i
$$143$$ 0.386785 + 0.223311i 0.0323446 + 0.0186742i
$$144$$ −1.00000 −0.0833333
$$145$$ 3.40388 + 2.21422i 0.282676 + 0.183881i
$$146$$ 4.81199 8.33460i 0.398243 0.689777i
$$147$$ 0.721424 0.416515i 0.0595021 0.0343535i
$$148$$ −1.45645 0.840881i −0.119719 0.0691200i
$$149$$ −9.36462 16.2200i −0.767180 1.32879i −0.939086 0.343681i $$-0.888326\pi$$
0.171907 0.985113i $$-0.445007\pi$$
$$150$$ 2.94514 4.04057i 0.240469 0.329911i
$$151$$ −16.1394 −1.31341 −0.656703 0.754150i $$-0.728049\pi$$
−0.656703 + 0.754150i $$0.728049\pi$$
$$152$$ 4.35582 0.163933i 0.353303 0.0132967i
$$153$$ 4.25457i 0.343962i
$$154$$ −5.63482 9.75980i −0.454067 0.786467i
$$155$$ −0.935810 + 17.5977i −0.0751661 + 1.41348i
$$156$$ −0.0554580 + 0.0960560i −0.00444019 + 0.00769064i
$$157$$ −6.73626 + 3.88918i −0.537612 + 0.310390i −0.744110 0.668057i $$-0.767126\pi$$
0.206499 + 0.978447i $$0.433793\pi$$
$$158$$ −3.66927 2.11845i −0.291911 0.168535i
$$159$$ 7.44821 0.590681
$$160$$ 1.21929 1.87439i 0.0963933 0.148183i
$$161$$ 12.3739 21.4323i 0.975202 1.68910i
$$162$$ −0.866025 0.500000i −0.0680414 0.0392837i
$$163$$ 1.99824i 0.156514i 0.996933 + 0.0782570i $$0.0249355\pi$$
−0.996933 + 0.0782570i $$0.975065\pi$$
$$164$$ −7.76405 −0.606270
$$165$$ −4.08152 8.02567i −0.317746 0.624797i
$$166$$ 4.12896 + 7.15157i 0.320470 + 0.555069i
$$167$$ 15.5791 + 8.99462i 1.20555 + 0.696024i 0.961784 0.273810i $$-0.0882839\pi$$
0.243766 + 0.969834i $$0.421617\pi$$
$$168$$ 2.42379 1.39938i 0.187000 0.107964i
$$169$$ −6.49385 11.2477i −0.499527 0.865206i
$$170$$ 7.97472 + 5.18756i 0.611633 + 0.397868i
$$171$$ 3.85421 + 2.03594i 0.294739 + 0.155692i
$$172$$ 7.46524i 0.569219i
$$173$$ 13.2653 7.65871i 1.00854 0.582281i 0.0977767 0.995208i $$-0.468827\pi$$
0.910764 + 0.412927i $$0.135494\pi$$
$$174$$ 0.907996 + 1.57270i 0.0688350 + 0.119226i
$$175$$ −1.48413 + 13.9149i −0.112189 + 1.05186i
$$176$$ −2.01333 3.48719i −0.151761 0.262857i
$$177$$ 0.326675 + 0.188606i 0.0245544 + 0.0141765i
$$178$$ 10.0300i 0.751781i
$$179$$ 10.8958 0.814389 0.407195 0.913341i $$-0.366507\pi$$
0.407195 + 0.913341i $$0.366507\pi$$
$$180$$ 1.99313 1.01362i 0.148559 0.0755510i
$$181$$ −9.12604 + 15.8068i −0.678333 + 1.17491i 0.297150 + 0.954831i $$0.403964\pi$$
−0.975483 + 0.220076i $$0.929369\pi$$
$$182$$ 0.310427i 0.0230103i
$$183$$ 12.3616i 0.913793i
$$184$$ 4.42123 7.65779i 0.325937 0.564540i
$$185$$ 3.75523 + 0.199696i 0.276090 + 0.0146819i
$$186$$ −3.94052 + 6.82518i −0.288933 + 0.500447i
$$187$$ 14.8365 8.56587i 1.08495 0.626398i
$$188$$ −4.17060 + 2.40790i −0.304172 + 0.175614i
$$189$$ 2.79875 0.203579
$$190$$ −8.51554 + 4.74189i −0.617782 + 0.344013i
$$191$$ −17.2519 −1.24830 −0.624151 0.781304i $$-0.714555\pi$$
−0.624151 + 0.781304i $$0.714555\pi$$
$$192$$ 0.866025 0.500000i 0.0625000 0.0360844i
$$193$$ −5.47129 + 3.15885i −0.393832 + 0.227379i −0.683819 0.729651i $$-0.739682\pi$$
0.289987 + 0.957031i $$0.406349\pi$$
$$194$$ −2.61082 + 4.52207i −0.187446 + 0.324665i
$$195$$ 0.0131704 0.247666i 0.000943150 0.0177357i
$$196$$ −0.416515 + 0.721424i −0.0297510 + 0.0515303i
$$197$$ 8.79248i 0.626438i 0.949681 + 0.313219i $$0.101407\pi$$
−0.949681 + 0.313219i $$0.898593\pi$$
$$198$$ 4.02666i 0.286163i
$$199$$ 2.38605 4.13275i 0.169142 0.292963i −0.768976 0.639277i $$-0.779234\pi$$
0.938119 + 0.346314i $$0.112567\pi$$
$$200$$ −0.530281 + 4.97180i −0.0374965 + 0.351559i
$$201$$ 4.42091 0.311827
$$202$$ 11.7315i 0.825428i
$$203$$ −4.40159 2.54126i −0.308931 0.178361i
$$204$$ 2.12729 + 3.68457i 0.148940 + 0.257971i
$$205$$ 15.4748 7.86982i 1.08080 0.549652i
$$206$$ 8.97482 + 15.5448i 0.625305 + 1.08306i
$$207$$ 7.65779 4.42123i 0.532253 0.307297i
$$208$$ 0.110916i 0.00769064i
$$209$$ 0.660101 + 17.5394i 0.0456601 + 1.21323i
$$210$$ −3.41249 + 5.24595i −0.235484 + 0.362005i
$$211$$ −10.6837 18.5047i −0.735497 1.27392i −0.954505 0.298196i $$-0.903615\pi$$
0.219007 0.975723i $$-0.429718\pi$$
$$212$$ −6.45034 + 3.72410i −0.443011 + 0.255772i
$$213$$ 10.2308 + 5.90675i 0.701002 + 0.404724i
$$214$$ 7.56792 + 13.1080i 0.517333 + 0.896046i
$$215$$ −7.56694 14.8792i −0.516061 1.01475i
$$216$$ 1.00000 0.0680414
$$217$$ 22.0571i 1.49733i
$$218$$ −7.43496 4.29258i −0.503559 0.290730i
$$219$$ −4.81199 + 8.33460i −0.325164 + 0.563200i
$$220$$ 7.54753 + 4.90967i 0.508854 + 0.331010i
$$221$$ 0.471900 0.0317434
$$222$$ 1.45645 + 0.840881i 0.0977504 + 0.0564362i
$$223$$ 0.769596 0.444327i 0.0515360 0.0297543i −0.474011 0.880519i $$-0.657194\pi$$
0.525547 + 0.850765i $$0.323861\pi$$
$$224$$ −1.39938 + 2.42379i −0.0934998 + 0.161946i
$$225$$ −2.94514 + 4.04057i −0.196342 + 0.269371i
$$226$$ −0.623455 1.07986i −0.0414716 0.0718309i
$$227$$ 0.227679i 0.0151116i 0.999971 + 0.00755579i $$0.00240511\pi$$
−0.999971 + 0.00755579i $$0.997595\pi$$
$$228$$ −4.35582 + 0.163933i −0.288471 + 0.0108567i
$$229$$ −16.2385 −1.07307 −0.536536 0.843878i $$-0.680267\pi$$
−0.536536 + 0.843878i $$0.680267\pi$$
$$230$$ −1.04997 + 19.7444i −0.0692330 + 1.30191i
$$231$$ 5.63482 + 9.75980i 0.370744 + 0.642148i
$$232$$ −1.57270 0.907996i −0.103253 0.0596129i
$$233$$ −2.89217 + 1.66979i −0.189472 + 0.109392i −0.591735 0.806132i $$-0.701557\pi$$
0.402263 + 0.915524i $$0.368224\pi$$
$$234$$ 0.0554580 0.0960560i 0.00362540 0.00627938i
$$235$$ 5.87185 9.02666i 0.383037 0.588835i
$$236$$ −0.377211 −0.0245544
$$237$$ 3.66927 + 2.11845i 0.238344 + 0.137608i
$$238$$ −10.3122 5.95375i −0.668441 0.385924i
$$239$$ 28.3414 1.83325 0.916626 0.399745i $$-0.130901\pi$$
0.916626 + 0.399745i $$0.130901\pi$$
$$240$$ −1.21929 + 1.87439i −0.0787048 + 0.120991i
$$241$$ −7.12956 + 12.3488i −0.459255 + 0.795453i −0.998922 0.0464255i $$-0.985217\pi$$
0.539667 + 0.841879i $$0.318550\pi$$
$$242$$ 4.51547 2.60701i 0.290266 0.167585i
$$243$$ 0.866025 + 0.500000i 0.0555556 + 0.0320750i
$$244$$ 6.18078 + 10.7054i 0.395684 + 0.685345i
$$245$$ 0.0989155 1.86008i 0.00631948 0.118836i
$$246$$ 7.76405 0.495018
$$247$$ −0.225818 + 0.427494i −0.0143685 + 0.0272008i
$$248$$ 7.88104i 0.500447i
$$249$$ −4.12896 7.15157i −0.261662 0.453212i
$$250$$ −3.98261 10.4470i −0.251883 0.660723i
$$251$$ 12.1437 21.0334i 0.766501 1.32762i −0.172949 0.984931i $$-0.555329\pi$$
0.939449 0.342687i $$-0.111337\pi$$
$$252$$ −2.42379 + 1.39938i −0.152685 + 0.0881525i
$$253$$ 30.8353 + 17.8028i 1.93860 + 1.11925i
$$254$$ −13.7574 −0.863219
$$255$$ −7.97472 5.18756i −0.499396 0.324857i
$$256$$ −0.500000 + 0.866025i −0.0312500 + 0.0541266i
$$257$$ −2.06264 1.19086i −0.128664 0.0742840i 0.434287 0.900775i $$-0.357000\pi$$
−0.562950 + 0.826491i $$0.690334\pi$$
$$258$$ 7.46524i 0.464766i
$$259$$ −4.70684 −0.292469
$$260$$ 0.112427 + 0.221070i 0.00697242 + 0.0137102i
$$261$$ −0.907996 1.57270i −0.0562036 0.0973474i
$$262$$ 11.1347 + 6.42860i 0.687901 + 0.397160i
$$263$$ 6.92724 3.99944i 0.427152 0.246616i −0.270981 0.962585i $$-0.587348\pi$$
0.698133 + 0.715969i $$0.254015\pi$$
$$264$$ 2.01333 + 3.48719i 0.123912 + 0.214622i
$$265$$ 9.08152 13.9608i 0.557874 0.857607i
$$266$$ 10.3282 6.49277i 0.633262 0.398097i
$$267$$ 10.0300i 0.613827i
$$268$$ −3.82862 + 2.21046i −0.233870 + 0.135025i
$$269$$ 5.32072 + 9.21576i 0.324410 + 0.561895i 0.981393 0.192011i $$-0.0615009\pi$$
−0.656983 + 0.753906i $$0.728168\pi$$
$$270$$ −1.99313 + 1.01362i −0.121298 + 0.0616871i
$$271$$ 8.07644 + 13.9888i 0.490609 + 0.849759i 0.999942 0.0108102i $$-0.00344107\pi$$
−0.509333 + 0.860570i $$0.670108\pi$$
$$272$$ −3.68457 2.12729i −0.223410 0.128986i
$$273$$ 0.310427i 0.0187879i
$$274$$ 8.15288 0.492534
$$275$$ −20.0198 2.13526i −1.20724 0.128761i
$$276$$ −4.42123 + 7.65779i −0.266127 + 0.460945i
$$277$$ 21.6950i 1.30352i −0.758423 0.651762i $$-0.774030\pi$$
0.758423 0.651762i $$-0.225970\pi$$
$$278$$ 2.28555i 0.137078i
$$279$$ 3.94052 6.82518i 0.235913 0.408613i
$$280$$ 0.332330 6.24938i 0.0198605 0.373472i
$$281$$ −0.595143 + 1.03082i −0.0355032 + 0.0614934i −0.883231 0.468938i $$-0.844637\pi$$
0.847728 + 0.530431i $$0.177970\pi$$
$$282$$ 4.17060 2.40790i 0.248355 0.143388i
$$283$$ 0.262002 0.151267i 0.0155744 0.00899189i −0.492193 0.870486i $$-0.663804\pi$$
0.507767 + 0.861494i $$0.330471\pi$$
$$284$$ −11.8135 −0.701002
$$285$$ 8.51554 4.74189i 0.504417 0.280886i
$$286$$ 0.446621 0.0264093
$$287$$ −18.8184 + 10.8648i −1.11082 + 0.641331i
$$288$$ −0.866025 + 0.500000i −0.0510310 + 0.0294628i
$$289$$ 0.550694 0.953829i 0.0323937 0.0561076i
$$290$$ 4.05495 + 0.215634i 0.238115 + 0.0126625i
$$291$$ 2.61082 4.52207i 0.153049 0.265088i
$$292$$ 9.62397i 0.563200i
$$293$$ 25.2078i 1.47266i −0.676625 0.736328i $$-0.736558\pi$$
0.676625 0.736328i $$-0.263442\pi$$
$$294$$ 0.416515 0.721424i 0.0242916 0.0420743i
$$295$$ 0.751832 0.382350i 0.0437733 0.0222613i
$$296$$ −1.68176 −0.0977504
$$297$$ 4.02666i 0.233651i
$$298$$ −16.2200 9.36462i −0.939599 0.542478i
$$299$$ 0.490385 + 0.849371i 0.0283597 + 0.0491204i
$$300$$ 0.530281 4.97180i 0.0306158 0.287047i
$$301$$ 10.4467 + 18.0942i 0.602137 + 1.04293i
$$302$$ −13.9771 + 8.06970i −0.804293 + 0.464359i
$$303$$ 11.7315i 0.673959i
$$304$$ 3.69028 2.31988i 0.211652 0.133054i
$$305$$ −23.1704 15.0723i −1.32673 0.863039i
$$306$$ −2.12729 3.68457i −0.121609 0.210633i
$$307$$ −19.7299 + 11.3911i −1.12605 + 0.650123i −0.942938 0.332969i $$-0.891950\pi$$
−0.183109 + 0.983093i $$0.558616\pi$$
$$308$$ −9.75980 5.63482i −0.556116 0.321074i
$$309$$ −8.97482 15.5448i −0.510560 0.884315i
$$310$$ 7.98841 + 15.7079i 0.453711 + 0.892151i
$$311$$ −12.0752 −0.684724 −0.342362 0.939568i $$-0.611227\pi$$
−0.342362 + 0.939568i $$0.611227\pi$$
$$312$$ 0.110916i 0.00627938i
$$313$$ 9.22306 + 5.32494i 0.521318 + 0.300983i 0.737474 0.675376i $$-0.236019\pi$$
−0.216156 + 0.976359i $$0.569352\pi$$
$$314$$ −3.88918 + 6.73626i −0.219479 + 0.380149i
$$315$$ 3.41249 5.24595i 0.192272 0.295576i
$$316$$ −4.23690 −0.238344
$$317$$ −14.3154 8.26498i −0.804031 0.464208i 0.0408477 0.999165i $$-0.486994\pi$$
−0.844879 + 0.534958i $$0.820327\pi$$
$$318$$ 6.45034 3.72410i 0.361717 0.208837i
$$319$$ 3.65620 6.33272i 0.204708 0.354564i
$$320$$ 0.118742 2.23291i 0.00663788 0.124824i
$$321$$ −7.56792 13.1080i −0.422400 0.731619i
$$322$$ 24.7479i 1.37914i
$$323$$ 9.87009 + 15.7006i 0.549186 + 0.873603i
$$324$$ −1.00000 −0.0555556
$$325$$ −0.448163 0.326663i −0.0248596 0.0181200i
$$326$$ 0.999118 + 1.73052i 0.0553360 + 0.0958448i
$$327$$ 7.43496 + 4.29258i 0.411154 + 0.237380i
$$328$$ −6.72386 + 3.88203i −0.371263 + 0.214349i
$$329$$ −6.73911 + 11.6725i −0.371539 + 0.643525i
$$330$$ −7.54753 4.90967i −0.415478 0.270268i
$$331$$ 33.3848 1.83499 0.917496 0.397744i $$-0.130207\pi$$
0.917496 + 0.397744i $$0.130207\pi$$
$$332$$ 7.15157 + 4.12896i 0.392493 + 0.226606i
$$333$$ −1.45645 0.840881i −0.0798129 0.0460800i
$$334$$ 17.9892 0.984327
$$335$$ 5.39037 8.28651i 0.294508 0.452740i
$$336$$ 1.39938 2.42379i 0.0763423 0.132229i
$$337$$ −19.2072 + 11.0893i −1.04628 + 0.604072i −0.921607 0.388125i $$-0.873123\pi$$
−0.124677 + 0.992197i $$0.539789\pi$$
$$338$$ −11.2477 6.49385i −0.611793 0.353219i
$$339$$ 0.623455 + 1.07986i 0.0338614 + 0.0586497i
$$340$$ 9.50009 + 0.505196i 0.515215 + 0.0273981i
$$341$$ 31.7343 1.71851
$$342$$ 4.35582 0.163933i 0.235536 0.00886446i
$$343$$ 17.2598i 0.931944i
$$344$$ 3.73262 + 6.46509i 0.201249 + 0.348574i
$$345$$ 1.04997 19.7444i 0.0565285 1.06300i
$$346$$ 7.65871 13.2653i 0.411735 0.713146i
$$347$$ 15.7368 9.08564i 0.844795 0.487743i −0.0140963 0.999901i $$-0.504487\pi$$
0.858891 + 0.512158i $$0.171154\pi$$
$$348$$ 1.57270 + 0.907996i 0.0843053 + 0.0486737i
$$349$$ −5.54988 −0.297078 −0.148539 0.988907i $$-0.547457\pi$$
−0.148539 + 0.988907i $$0.547457\pi$$
$$350$$ 5.67213 + 12.7927i 0.303188 + 0.683797i
$$351$$ −0.0554580 + 0.0960560i −0.00296013 + 0.00512709i
$$352$$ −3.48719 2.01333i −0.185868 0.107311i
$$353$$ 11.9998i 0.638686i 0.947639 + 0.319343i $$0.103462\pi$$
−0.947639 + 0.319343i $$0.896538\pi$$
$$354$$ 0.377211 0.0200486
$$355$$ 23.5458 11.9744i 1.24968 0.635537i
$$356$$ −5.01501 8.68625i −0.265795 0.460370i
$$357$$ 10.3122 + 5.95375i 0.545780 + 0.315106i
$$358$$ 9.43602 5.44789i 0.498709 0.287930i
$$359$$ 15.8492 + 27.4515i 0.836487 + 1.44884i 0.892814 + 0.450425i $$0.148728\pi$$
−0.0563277 + 0.998412i $$0.517939\pi$$
$$360$$ 1.21929 1.87439i 0.0642622 0.0987889i
$$361$$ −18.9463 + 1.42812i −0.997171 + 0.0751642i
$$362$$ 18.2521i 0.959308i
$$363$$ −4.51547 + 2.60701i −0.237001 + 0.136833i
$$364$$ −0.155213 0.268837i −0.00813539 0.0140909i
$$365$$ 9.75508 + 19.1818i 0.510604 + 1.00402i
$$366$$ −6.18078 10.7054i −0.323075 0.559582i
$$367$$ −3.14212 1.81410i −0.164017 0.0946954i 0.415745 0.909481i $$-0.363521\pi$$
−0.579762 + 0.814786i $$0.696854\pi$$
$$368$$ 8.84246i 0.460945i
$$369$$ −7.76405 −0.404180
$$370$$ 3.35197 1.70467i 0.174261 0.0886217i
$$371$$ −10.4229 + 18.0529i −0.541128 + 0.937260i
$$372$$ 7.88104i 0.408613i
$$373$$ 7.74901i 0.401228i −0.979670 0.200614i $$-0.935706\pi$$
0.979670 0.200614i $$-0.0642938\pi$$
$$374$$ 8.56587 14.8365i 0.442930 0.767178i
$$375$$ 3.98261 + 10.4470i 0.205661 + 0.539478i
$$376$$ −2.40790 + 4.17060i −0.124178 + 0.215082i
$$377$$ 0.174437 0.100711i 0.00898396 0.00518689i
$$378$$ 2.42379 1.39938i 0.124666 0.0719762i
$$379$$ 6.68218 0.343241 0.171620 0.985163i $$-0.445100\pi$$
0.171620 + 0.985163i $$0.445100\pi$$
$$380$$ −5.00373 + 8.36437i −0.256686 + 0.429083i
$$381$$ 13.7574 0.704815
$$382$$ −14.9406 + 8.62594i −0.764426 + 0.441341i
$$383$$ −17.5053 + 10.1067i −0.894479 + 0.516428i −0.875405 0.483390i $$-0.839405\pi$$
−0.0190744 + 0.999818i $$0.506072\pi$$
$$384$$ 0.500000 0.866025i 0.0255155 0.0441942i
$$385$$ 25.1641 + 1.33818i 1.28248 + 0.0681999i
$$386$$ −3.15885 + 5.47129i −0.160781 + 0.278481i
$$387$$ 7.46524i 0.379480i
$$388$$ 5.22163i 0.265088i
$$389$$ 0.559544 0.969159i 0.0283700 0.0491383i −0.851492 0.524368i $$-0.824302\pi$$
0.879862 + 0.475230i $$0.157635\pi$$
$$390$$ −0.112427 0.221070i −0.00569296 0.0111943i
$$391$$ 37.6209 1.90257
$$392$$ 0.833029i 0.0420743i
$$393$$ −11.1347 6.42860i −0.561669 0.324280i
$$394$$ 4.39624 + 7.61451i 0.221479 + 0.383613i
$$395$$ 8.44470 4.29462i 0.424899 0.216086i
$$396$$ −2.01333 3.48719i −0.101174 0.175238i
$$397$$ −8.44367 + 4.87495i −0.423776 + 0.244667i −0.696691 0.717371i $$-0.745345\pi$$
0.272916 + 0.962038i $$0.412012\pi$$
$$398$$ 4.77209i 0.239203i
$$399$$ −10.3282 + 6.49277i −0.517056 + 0.325045i
$$400$$ 2.02666 + 4.57085i 0.101333 + 0.228542i
$$401$$ −4.85007 8.40056i −0.242201 0.419504i 0.719140 0.694865i $$-0.244536\pi$$
−0.961341 + 0.275361i $$0.911203\pi$$
$$402$$ 3.82862 2.21046i 0.190954 0.110248i
$$403$$ 0.757022 + 0.437067i 0.0377099 + 0.0217718i
$$404$$ 5.86577 + 10.1598i 0.291833 + 0.505469i
$$405$$ 1.99313 1.01362i 0.0990394 0.0503673i
$$406$$ −5.08252 −0.252241
$$407$$ 6.77189i 0.335670i
$$408$$ 3.68457 + 2.12729i 0.182413 + 0.105316i
$$409$$ 1.03028 1.78451i 0.0509443 0.0882381i −0.839429 0.543470i $$-0.817110\pi$$
0.890373 + 0.455232i $$0.150444\pi$$
$$410$$ 9.46663 14.5528i 0.467523 0.718714i
$$411$$ −8.15288 −0.402152
$$412$$ 15.5448 + 8.97482i 0.765840 + 0.442158i
$$413$$ −0.914282 + 0.527861i −0.0449889 + 0.0259744i
$$414$$ 4.42123 7.65779i 0.217291 0.376360i
$$415$$ −18.4392 0.980562i −0.905146 0.0481339i
$$416$$ −0.0554580 0.0960560i −0.00271905 0.00470953i
$$417$$ 2.28555i 0.111924i
$$418$$ 9.34137 + 14.8595i 0.456901 + 0.726803i
$$419$$ 17.5492 0.857336 0.428668 0.903462i $$-0.358983\pi$$
0.428668 + 0.903462i $$0.358983\pi$$
$$420$$ −0.332330 + 6.24938i −0.0162160 + 0.304938i
$$421$$ −5.86950 10.1663i −0.286062 0.495474i 0.686804 0.726842i $$-0.259013\pi$$
−0.972866 + 0.231369i $$0.925680\pi$$
$$422$$ −18.5047 10.6837i −0.900797 0.520075i
$$423$$ −4.17060 + 2.40790i −0.202781 + 0.117076i
$$424$$ −3.72410 + 6.45034i −0.180858 + 0.313256i
$$425$$ −19.4470 + 8.62259i −0.943318 + 0.418257i
$$426$$ 11.8135 0.572366
$$427$$ 29.9619 + 17.2985i 1.44996 + 0.837133i
$$428$$ 13.1080 + 7.56792i 0.633600 + 0.365809i
$$429$$ −0.446621 −0.0215631
$$430$$ −13.9928 9.10230i −0.674791 0.438952i
$$431$$ −9.77272 + 16.9268i −0.470735 + 0.815337i −0.999440 0.0334686i $$-0.989345\pi$$
0.528705 + 0.848806i $$0.322678\pi$$
$$432$$ 0.866025 0.500000i 0.0416667 0.0240563i
$$433$$ 30.9164 + 17.8496i 1.48575 + 0.857797i 0.999868 0.0162277i $$-0.00516568\pi$$
0.485881 + 0.874025i $$0.338499\pi$$
$$434$$ −11.0286 19.1020i −0.529388 0.916926i
$$435$$ −4.05495 0.215634i −0.194420 0.0103389i
$$436$$ −8.58516 −0.411154
$$437$$ −18.0027 + 34.0807i −0.861185 + 1.63030i
$$438$$ 9.62397i 0.459851i
$$439$$ −19.4194 33.6354i −0.926838 1.60533i −0.788579 0.614934i $$-0.789183\pi$$
−0.138259 0.990396i $$-0.544151\pi$$
$$440$$ 8.99119 + 0.478134i 0.428638 + 0.0227941i
$$441$$ −0.416515 + 0.721424i −0.0198340 + 0.0343535i
$$442$$ 0.408677 0.235950i 0.0194388 0.0112230i
$$443$$ 25.1014 + 14.4923i 1.19260 + 0.688549i 0.958896 0.283758i $$-0.0915811\pi$$
0.233707 + 0.972307i $$0.424914\pi$$
$$444$$ 1.68176 0.0798129
$$445$$ 18.8001 + 12.2295i 0.891212 + 0.579734i
$$446$$ 0.444327 0.769596i 0.0210395 0.0364414i
$$447$$ 16.2200 + 9.36462i 0.767180 + 0.442931i
$$448$$ 2.79875i 0.132229i
$$449$$ −11.5314 −0.544201 −0.272100 0.962269i $$-0.587718\pi$$
−0.272100 + 0.962269i $$0.587718\pi$$
$$450$$ −0.530281 + 4.97180i −0.0249977 + 0.234373i
$$451$$ −15.6316 27.0747i −0.736064 1.27490i
$$452$$ −1.07986 0.623455i −0.0507921 0.0293248i
$$453$$ 13.9771 8.06970i 0.656703 0.379147i
$$454$$ 0.113839 + 0.197176i 0.00534275 + 0.00925392i
$$455$$ 0.581860 + 0.378500i 0.0272780 + 0.0177444i
$$456$$ −3.69028 + 2.31988i −0.172813 + 0.108638i
$$457$$ 22.1107i 1.03430i −0.855896 0.517148i $$-0.826994\pi$$
0.855896 0.517148i $$-0.173006\pi$$
$$458$$ −14.0630 + 8.11926i −0.657119 + 0.379388i
$$459$$ 2.12729 + 3.68457i 0.0992932 + 0.171981i
$$460$$ 8.96292 + 17.6242i 0.417898 + 0.821731i
$$461$$ −9.08841 15.7416i −0.423289 0.733159i 0.572970 0.819577i $$-0.305791\pi$$
−0.996259 + 0.0864179i $$0.972458\pi$$
$$462$$ 9.75980 + 5.63482i 0.454067 + 0.262156i
$$463$$ 34.9548i 1.62449i 0.583318 + 0.812244i $$0.301754\pi$$
−0.583318 + 0.812244i $$0.698246\pi$$
$$464$$ −1.81599 −0.0843053
$$465$$ −7.98841 15.7079i −0.370453 0.728439i
$$466$$ −1.66979 + 2.89217i −0.0773517 + 0.133977i
$$467$$ 13.0120i 0.602125i −0.953604 0.301063i $$-0.902659\pi$$
0.953604 0.301063i $$-0.0973414\pi$$
$$468$$ 0.110916i 0.00512709i
$$469$$ −6.18652 + 10.7154i −0.285667 + 0.494790i
$$470$$ 0.571836 10.7532i 0.0263768 0.496010i
$$471$$ 3.88918 6.73626i 0.179204 0.310390i
$$472$$ −0.326675 + 0.188606i −0.0150364 + 0.00868128i
$$473$$ −26.0327 + 15.0300i −1.19699 + 0.691081i
$$474$$ 4.23690 0.194607
$$475$$ 1.49477 21.7432i 0.0685845 0.997645i
$$476$$ −11.9075 −0.545780
$$477$$ −6.45034 + 3.72410i −0.295341 + 0.170515i
$$478$$ 24.5444 14.1707i 1.12263 0.648153i
$$479$$ −15.1415 + 26.2259i −0.691833 + 1.19829i 0.279403 + 0.960174i $$0.409863\pi$$
−0.971237 + 0.238117i $$0.923470\pi$$
$$480$$ −0.118742 + 2.23291i −0.00541980 + 0.101918i
$$481$$ 0.0932671 0.161543i 0.00425261 0.00736574i
$$482$$ 14.2591i 0.649485i
$$483$$ 24.7479i 1.12607i
$$484$$ 2.60701 4.51547i 0.118500 0.205249i
$$485$$ −5.29276 10.4074i −0.240332 0.472575i
$$486$$ 1.00000 0.0453609
$$487$$ 35.5166i 1.60941i −0.593674 0.804706i $$-0.702323\pi$$
0.593674 0.804706i $$-0.297677\pi$$
$$488$$ 10.7054 + 6.18078i 0.484612 + 0.279791i
$$489$$ −0.999118 1.73052i −0.0451817 0.0782570i
$$490$$ −0.844377 1.66034i −0.0381451 0.0750063i
$$491$$ 5.36057 + 9.28479i 0.241919 + 0.419017i 0.961261 0.275640i $$-0.0888897\pi$$
−0.719342 + 0.694656i $$0.755556\pi$$
$$492$$ 6.72386 3.88203i 0.303135 0.175015i
$$493$$ 7.72627i 0.347974i
$$494$$ 0.0181827 + 0.483129i 0.000818080 + 0.0217370i
$$495$$ 7.54753 + 4.90967i 0.339236 + 0.220673i
$$496$$ −3.94052 6.82518i −0.176935 0.306460i
$$497$$ −28.6335 + 16.5315i −1.28439 + 0.741541i
$$498$$ −7.15157 4.12896i −0.320470 0.185023i
$$499$$ 12.0259 + 20.8295i 0.538353 + 0.932455i 0.998993 + 0.0448675i $$0.0142866\pi$$
−0.460640 + 0.887587i $$0.652380\pi$$
$$500$$ −8.67252 7.05602i −0.387847 0.315555i
$$501$$ −17.9892 −0.803700
$$502$$ 24.2873i 1.08400i
$$503$$ −34.4057 19.8642i −1.53408 0.885699i −0.999168 0.0407894i $$-0.987013\pi$$
−0.534909 0.844910i $$-0.679654\pi$$
$$504$$ −1.39938 + 2.42379i −0.0623332 + 0.107964i
$$505$$ −21.9895 14.3041i −0.978518 0.636526i
$$506$$ 35.6056 1.58286
$$507$$ 11.2477 + 6.49385i 0.499527 + 0.288402i
$$508$$ −11.9143 + 6.87872i −0.528611 + 0.305194i
$$509$$ −2.51441 + 4.35509i −0.111449 + 0.193036i −0.916355 0.400367i $$-0.868883\pi$$
0.804905 + 0.593403i $$0.202216\pi$$
$$510$$ −9.50009 0.505196i −0.420671 0.0223705i
$$511$$ −13.4676 23.3265i −0.595770 1.03190i
$$512$$ 1.00000i 0.0441942i
$$513$$ −4.35582 + 0.163933i −0.192314 + 0.00723780i
$$514$$ −2.38173 −0.105053
$$515$$ −40.0800 2.13138i −1.76614 0.0939196i
$$516$$ −3.73262 6.46509i −0.164320 0.284610i
$$517$$ −16.7936 9.69579i −0.738581 0.426420i
$$518$$ −4.07624 + 2.35342i −0.179100 + 0.103403i
$$519$$ −7.65871 + 13.2653i −0.336180 + 0.582281i
$$520$$ 0.207900 + 0.135239i 0.00911700 + 0.00593061i
$$521$$ −43.2225 −1.89361 −0.946806 0.321806i $$-0.895710\pi$$
−0.946806 + 0.321806i $$0.895710\pi$$
$$522$$ −1.57270 0.907996i −0.0688350 0.0397419i
$$523$$ 0.0430629 + 0.0248624i 0.00188301 + 0.00108716i 0.500941 0.865481i $$-0.332987\pi$$
−0.499058 + 0.866568i $$0.666321\pi$$
$$524$$ 12.8572 0.561669
$$525$$ −5.67213 12.7927i −0.247552 0.558318i
$$526$$ 3.99944 6.92724i 0.174384 0.302042i
$$527$$ 29.0382 16.7652i 1.26493 0.730305i
$$528$$ 3.48719 + 2.01333i 0.151761 + 0.0876190i
$$529$$ 27.5945 + 47.7951i 1.19976 + 2.07805i
$$530$$ 0.884415 16.6312i 0.0384165 0.722413i
$$531$$ −0.377211 −0.0163696
$$532$$ 5.69809 10.7870i 0.247044 0.467676i
$$533$$ 0.861157i 0.0373008i
$$534$$ 5.01501 + 8.68625i 0.217021 + 0.375891i
$$535$$ −33.7970 1.79726i −1.46117 0.0777023i
$$536$$ −2.21046 + 3.82862i −0.0954772 + 0.165371i
$$537$$ −9.43602 + 5.44789i −0.407195 + 0.235094i
$$538$$ 9.21576 + 5.32072i 0.397320 + 0.229393i
$$539$$ −3.35433 −0.144481
$$540$$ −1.21929 + 1.87439i −0.0524699 + 0.0806608i
$$541$$ 3.67092 6.35822i 0.157825 0.273361i −0.776259 0.630414i $$-0.782885\pi$$
0.934084 + 0.357053i $$0.116218\pi$$
$$542$$ 13.9888 + 8.07644i 0.600871 + 0.346913i
$$543$$ 18.2521i 0.783271i
$$544$$ −4.25457 −0.182413
$$545$$ 17.1113 8.70211i 0.732969 0.372757i
$$546$$ 0.155213 + 0.268837i 0.00664252 + 0.0115052i
$$547$$ −20.7675 11.9901i −0.887954 0.512660i −0.0146810 0.999892i $$-0.504673\pi$$
−0.873273 + 0.487232i $$0.838007\pi$$
$$548$$ 7.06060 4.07644i 0.301614 0.174137i
$$549$$ 6.18078 + 10.7054i 0.263789 + 0.456896i
$$550$$ −18.4053 + 8.16069i −0.784803 + 0.347973i
$$551$$ 6.99922 + 3.69725i 0.298177 + 0.157508i
$$552$$ 8.84246i 0.376360i
$$553$$ −10.2694 + 5.92903i −0.436698 + 0.252128i
$$554$$ −10.8475 18.7884i −0.460865 0.798242i
$$555$$ −3.35197 + 1.70467i −0.142283 + 0.0723593i
$$556$$ −1.14277 1.97934i −0.0484644 0.0839429i
$$557$$ −21.6447 12.4966i −0.917115 0.529497i −0.0344016 0.999408i $$-0.510953\pi$$
−0.882714 + 0.469911i $$0.844286\pi$$
$$558$$ 7.88104i 0.333631i
$$559$$ −0.828015 −0.0350213
$$560$$ −2.83688 5.57828i −0.119880 0.235725i
$$561$$ −8.56587 + 14.8365i −0.361651 + 0.626398i
$$562$$ 1.19029i 0.0502092i
$$563$$ 23.2863i 0.981403i 0.871328 + 0.490701i $$0.163259\pi$$
−0.871328 + 0.490701i $$0.836741\pi$$
$$564$$ 2.40790 4.17060i 0.101391 0.175614i
$$565$$ 2.78424 + 0.148060i 0.117134 + 0.00622895i
$$566$$ 0.151267 0.262002i 0.00635822 0.0110128i
$$567$$ −2.42379 + 1.39938i −0.101790 + 0.0587683i
$$568$$ −10.2308 + 5.90675i −0.429274 + 0.247842i
$$569$$ 16.8454 0.706196 0.353098 0.935586i $$-0.385128\pi$$
0.353098 + 0.935586i $$0.385128\pi$$
$$570$$ 5.00373 8.36437i 0.209583 0.350345i
$$571$$ −16.1395 −0.675418 −0.337709 0.941250i $$-0.609652\pi$$
−0.337709 + 0.941250i $$0.609652\pi$$
$$572$$ 0.386785 0.223311i 0.0161723 0.00933709i
$$573$$ 14.9406 8.62594i 0.624151 0.360354i
$$574$$ −10.8648 + 18.8184i −0.453490 + 0.785467i
$$575$$ −35.7285 26.0422i −1.48998 1.08604i
$$576$$ −0.500000 + 0.866025i −0.0208333 + 0.0360844i
$$577$$ 3.05772i 0.127295i 0.997972 + 0.0636473i $$0.0202733\pi$$
−0.997972 + 0.0636473i $$0.979727\pi$$
$$578$$ 1.10139i 0.0458117i
$$579$$ 3.15885 5.47129i 0.131277 0.227379i
$$580$$ 3.61951 1.84073i 0.150292 0.0764322i
$$581$$ 23.1119 0.958843
$$582$$ 5.22163i 0.216444i
$$583$$ −25.9733 14.9957i −1.07571 0.621059i
$$584$$ −4.81199 8.33460i −0.199121 0.344888i
$$585$$ 0.112427 + 0.221070i 0.00464828 + 0.00914012i
$$586$$ −12.6039 21.8306i −0.520662 0.901813i
$$587$$ 26.8130 15.4805i 1.10669 0.638949i 0.168722 0.985664i $$-0.446036\pi$$
0.937971 + 0.346714i $$0.112703\pi$$
$$588$$ 0.833029i 0.0343535i
$$589$$ 1.29196 + 34.3284i 0.0532343 + 1.41448i
$$590$$ 0.459930 0.707041i 0.0189350 0.0291084i
$$591$$ −4.39624 7.61451i −0.180837 0.313219i
$$592$$ −1.45645 + 0.840881i −0.0598597 + 0.0345600i
$$593$$ −21.9486 12.6720i −0.901322 0.520379i −0.0236932 0.999719i $$-0.507542\pi$$
−0.877629 + 0.479341i $$0.840876\pi$$
$$594$$ 2.01333 + 3.48719i 0.0826080 + 0.143081i
$$595$$ 23.7332 12.0697i 0.972967 0.494810i
$$596$$ −18.7292 −0.767180
$$597$$ 4.77209i 0.195309i
$$598$$ 0.849371 + 0.490385i 0.0347334 + 0.0200533i
$$599$$ −11.1523 + 19.3163i −0.455670 + 0.789243i −0.998726 0.0504529i $$-0.983934\pi$$
0.543057 + 0.839696i $$0.317267\pi$$
$$600$$ −2.02666 4.57085i −0.0827382 0.186604i
$$601$$ 27.6758 1.12892 0.564460 0.825460i $$-0.309084\pi$$
0.564460 + 0.825460i $$0.309084\pi$$
$$602$$ 18.0942 + 10.4467i 0.737465 + 0.425775i
$$603$$ −3.82862 + 2.21046i −0.155914 + 0.0900167i
$$604$$ −8.06970 + 13.9771i −0.328351 + 0.568721i
$$605$$ −0.619123 + 11.6425i −0.0251709 + 0.473333i
$$606$$ −5.86577 10.1598i −0.238281 0.412714i
$$607$$ 16.7201i 0.678650i 0.940669 + 0.339325i $$0.110199\pi$$
−0.940669 + 0.339325i $$0.889801\pi$$
$$608$$ 2.03594 3.85421i 0.0825682 0.156309i
$$609$$ 5.08252 0.205954
$$610$$ −27.6023 1.46784i −1.11758 0.0594309i
$$611$$ −0.267074 0.462586i −0.0108047 0.0187142i
$$612$$ −3.68457 2.12729i −0.148940 0.0859904i
$$613$$ −25.3849 + 14.6560i −1.02529 + 0.591950i −0.915631 0.402020i $$-0.868308\pi$$
−0.109656 + 0.993970i $$0.534975\pi$$
$$614$$ −11.3911 + 19.7299i −0.459707 + 0.796235i
$$615$$ −9.46663 + 14.5528i −0.381731 + 0.586827i
$$616$$ −11.2696 −0.454067
$$617$$ 32.4820 + 18.7535i 1.30767 + 0.754986i 0.981708 0.190395i $$-0.0609769\pi$$
0.325967 + 0.945381i $$0.394310\pi$$
$$618$$ −15.5448 8.97482i −0.625305 0.361020i
$$619$$ −39.0394 −1.56912 −0.784562 0.620050i $$-0.787112\pi$$
−0.784562 + 0.620050i $$0.787112\pi$$
$$620$$ 14.7721 + 9.60928i 0.593263 + 0.385918i
$$621$$ −4.42123 + 7.65779i −0.177418 + 0.307297i
$$622$$ −10.4575 + 6.03762i −0.419306 + 0.242087i
$$623$$ −24.3107 14.0358i −0.973987 0.562331i
$$624$$ 0.0554580 + 0.0960560i 0.00222010 + 0.00384532i
$$625$$ 24.4376 + 5.27290i 0.977504 + 0.210916i
$$626$$ 10.6499 0.425655
$$627$$ −9.34137 14.8595i −0.373058 0.593432i
$$628$$ 7.77836i 0.310390i
$$629$$ −3.57759 6.19657i −0.142648 0.247073i
$$630$$ 0.332330 6.24938i 0.0132403 0.248981i
$$631$$ 13.0406 22.5870i 0.519139 0.899174i −0.480614 0.876932i $$-0.659586\pi$$
0.999753 0.0222421i $$-0.00708045\pi$$
$$632$$ −3.66927 + 2.11845i −0.145956 + 0.0842675i
$$633$$ 18.5047 + 10.6837i 0.735497 + 0.424640i
$$634$$ −16.5300 −0.656489
$$635$$ 16.7743 25.7868i 0.665668 1.02332i
$$636$$ 3.72410 6.45034i 0.147670 0.255772i
$$637$$ −0.0800175 0.0461981i −0.00317041 0.00183044i
$$638$$ 7.31239i 0.289500i
$$639$$ −11.8135 −0.467335
$$640$$ −1.01362 1.99313i −0.0400670 0.0787854i
$$641$$ 1.56243 + 2.70621i 0.0617122 + 0.106889i 0.895231 0.445603i $$-0.147011\pi$$
−0.833519 + 0.552491i $$0.813677\pi$$
$$642$$ −13.1080 7.56792i −0.517333 0.298682i
$$643$$ −17.9701 + 10.3750i −0.708671 + 0.409151i −0.810569 0.585644i $$-0.800842\pi$$
0.101898 + 0.994795i $$0.467509\pi$$
$$644$$ −12.3739 21.4323i −0.487601 0.844550i
$$645$$ 13.9928 + 9.10230i 0.550965 + 0.358403i
$$646$$ 16.3980 + 8.66205i 0.645172 + 0.340804i
$$647$$ 16.4405i 0.646344i −0.946340 0.323172i $$-0.895251\pi$$
0.946340 0.323172i $$-0.104749\pi$$
$$648$$ −0.866025 + 0.500000i −0.0340207 + 0.0196419i
$$649$$ −0.759452 1.31541i −0.0298111 0.0516343i
$$650$$ −0.551452 0.0588166i −0.0216297 0.00230698i
$$651$$ 11.0286 + 19.1020i 0.432243 + 0.748667i
$$652$$ 1.73052 + 0.999118i 0.0677725 + 0.0391285i
$$653$$ 6.77814i 0.265249i −0.991166 0.132625i $$-0.957660\pi$$
0.991166 0.132625i $$-0.0423405\pi$$
$$654$$ 8.58516 0.335706
$$655$$ −25.6261 + 13.0323i −1.00129 + 0.509216i
$$656$$ −3.88203 + 6.72386i −0.151568 + 0.262523i
$$657$$ 9.62397i 0.375467i
$$658$$ 13.4782i 0.525436i
$$659$$ 12.0863 20.9341i 0.470817 0.815478i −0.528626 0.848855i $$-0.677293\pi$$
0.999443 + 0.0333765i $$0.0106260\pi$$
$$660$$ −8.99119 0.478134i −0.349982 0.0186113i
$$661$$ −13.5085 + 23.3974i −0.525420 + 0.910055i 0.474141 + 0.880449i $$0.342759\pi$$
−0.999562 + 0.0296059i $$0.990575\pi$$
$$662$$ 28.9121 16.6924i 1.12370 0.648768i
$$663$$ −0.408677 + 0.235950i −0.0158717 + 0.00916354i
$$664$$ 8.25792 0.320470
$$665$$ −0.423090 + 27.2756i −0.0164067 + 1.05770i
$$666$$ −1.68176 −0.0651670
$$667$$ 13.9065 8.02892i 0.538461 0.310881i
$$668$$ 15.5791 8.99462i 0.602775 0.348012i
$$669$$ −0.444327 + 0.769596i −0.0171787 + 0.0297543i
$$670$$ 0.524948 9.87151i 0.0202805 0.381370i
$$671$$ −24.8879 + 43.1071i −0.960788 + 1.66413i
$$672$$ 2.79875i 0.107964i
$$673$$ 21.9407i 0.845751i −0.906188 0.422875i $$-0.861021\pi$$
0.906188 0.422875i $$-0.138979\pi$$
$$674$$ −11.0893 + 19.2072i −0.427144 + 0.739834i
$$675$$ 0.530281 4.97180i 0.0204105 0.191365i
$$676$$ −12.9877 −0.499527
$$677$$ 18.8185i 0.723254i 0.932323 + 0.361627i $$0.117779\pi$$
−0.932323 + 0.361627i $$0.882221\pi$$
$$678$$ 1.07986 + 0.623455i 0.0414716 + 0.0239436i
$$679$$ 7.30703 + 12.6562i 0.280418 + 0.485699i
$$680$$ 8.47992 4.31253i 0.325190 0.165378i
$$681$$ −0.113839 0.197176i −0.00436234 0.00755579i
$$682$$ 27.4827 15.8672i 1.05237 0.607585i
$$683$$ 19.3651i 0.740986i 0.928835 + 0.370493i $$0.120811\pi$$
−0.928835 + 0.370493i $$0.879189\pi$$
$$684$$ 3.69028 2.31988i 0.141101 0.0887027i
$$685$$ −9.94073 + 15.2817i −0.379816 + 0.583882i
$$686$$ −8.62992 14.9475i −0.329492 0.570697i
$$687$$ 14.0630 8.11926i 0.536536 0.309769i
$$688$$ 6.46509 + 3.73262i 0.246479 + 0.142305i
$$689$$ −0.413062 0.715445i −0.0157364 0.0272563i
$$690$$ −8.96292 17.6242i −0.341212 0.670941i
$$691$$ 0.642365 0.0244367 0.0122184 0.999925i $$-0.496111\pi$$
0.0122184 + 0.999925i $$0.496111\pi$$
$$692$$ 15.3174i 0.582281i
$$693$$ −9.75980 5.63482i −0.370744 0.214049i
$$694$$ 9.08564 15.7368i 0.344886 0.597360i
$$695$$ 4.28401 + 2.78675i 0.162502 + 0.105707i
$$696$$ 1.81599 0.0688350
$$697$$ −28.6072 16.5164i −1.08357 0.625602i
$$698$$ −4.80634 + 2.77494i −0.181923 + 0.105033i
$$699$$ 1.66979 2.89217i 0.0631574 0.109392i
$$700$$ 11.3086 + 8.24272i 0.427423 + 0.311545i
$$701$$ −22.4846 38.9445i −0.849233 1.47091i −0.881894 0.471448i $$-0.843732\pi$$
0.0326612 0.999466i $$-0.489602\pi$$
$$702$$ 0.110916i 0.00418625i
$$703$$ 7.32544 0.275695i 0.276284 0.0103981i
$$704$$ −4.02666 −0.151761
$$705$$ −0.571836 + 10.7532i −0.0215366 + 0.404991i
$$706$$ 5.99991 + 10.3922i 0.225810 + 0.391114i
$$707$$ 28.4348 + 16.4169i 1.06940 + 0.617419i
$$708$$ 0.326675 0.188606i 0.0122772 0.00708824i
$$709$$ 4.09461 7.09207i 0.153776 0.266348i −0.778836 0.627227i $$-0.784190\pi$$
0.932613 + 0.360879i $$0.117523\pi$$
$$710$$ 14.4041 22.1431i 0.540575 0.831015i
$$711$$ −4.23690 −0.158896
$$712$$ −8.68625 5.01501i −0.325531 0.187945i
$$713$$ 60.3514 + 34.8439i 2.26018 + 1.30491i
$$714$$ 11.9075 0.445627
$$715$$ −0.544561 + 0.837142i −0.0203654 + 0.0313073i
$$716$$ 5.44789 9.43602i 0.203597 0.352641i
$$717$$ −24.5444 + 14.1707i −0.916626 + 0.529214i
$$718$$ 27.4515 + 15.8492i 1.02448 + 0.591485i
$$719$$ 25.2772 + 43.7813i 0.942679 + 1.63277i 0.760334 + 0.649533i $$0.225035\pi$$
0.182345 + 0.983235i $$0.441631\pi$$
$$720$$ 0.118742 2.23291i 0.00442525 0.0832158i
$$721$$ 50.2367 1.87091
$$722$$ −15.6939 + 10.7099i −0.584066 + 0.398582i
$$723$$ 14.2591i 0.530302i
$$724$$ 9.12604 + 15.8068i 0.339167 + 0.587454i
$$725$$ −5.34835 + 7.33764i −0.198633 + 0.272513i
$$726$$ −2.60701 + 4.51547i −0.0967552 + 0.167585i
$$727$$ 2.96717 1.71310i 0.110046 0.0635353i −0.443967 0.896043i $$-0.646429\pi$$
0.554013 + 0.832508i $$0.313096\pi$$
$$728$$ −0.268837 0.155213i −0.00996377 0.00575259i
$$729$$ −1.00000 −0.0370370
$$730$$ 18.0391 + 11.7344i 0.667656 + 0.434310i
$$731$$ −15.8807 + 27.5062i −0.587369 + 1.01735i
$$732$$ −10.7054 6.18078i −0.395684 0.228448i
$$733$$ 0.420632i 0.0155364i −0.999970 0.00776819i $$-0.997527\pi$$
0.999970 0.00776819i $$-0.00247272\pi$$
$$734$$ −3.62820 −0.133919
$$735$$ 0.844377 + 1.66034i 0.0311453 + 0.0612424i
$$736$$ −4.42123 7.65779i −0.162969 0.282270i
$$737$$ −15.4166 8.90076i −0.567877 0.327864i
$$738$$ −6.72386 + 3.88203i −0.247509 + 0.142899i
$$739$$ 6.70752 + 11.6178i 0.246740 + 0.427366i 0.962619 0.270858i $$-0.0873073\pi$$
−0.715879 + 0.698224i $$0.753974\pi$$
$$740$$ 2.05056 3.15228i 0.0753799 0.115880i
$$741$$ −0.0181827 0.483129i −0.000667959 0.0177482i
$$742$$ 20.8457i 0.765270i
$$743$$ 29.4635 17.0108i 1.08091 0.624064i 0.149769 0.988721i $$-0.452147\pi$$
0.931142 + 0.364657i $$0.118814\pi$$
$$744$$ 3.94052 + 6.82518i 0.144467 + 0.250223i
$$745$$ 37.3298 18.9844i 1.36766 0.695534i
$$746$$ −3.87450 6.71084i −0.141856 0.245701i
$$747$$ 7.15157 + 4.12896i 0.261662 + 0.151071i
$$748$$ 17.1317i 0.626398i
$$749$$ 42.3615 1.54786
$$750$$ 8.67252 + 7.05602i 0.316676 + 0.257649i
$$751$$ −11.0748 + 19.1820i −0.404123 + 0.699962i −0.994219 0.107371i $$-0.965757\pi$$
0.590096 + 0.807333i $$0.299090\pi$$
$$752$$ 4.81579i 0.175614i
$$753$$ 24.2873i 0.885079i
$$754$$ 0.100711 0.174437i 0.00366769 0.00635262i
$$755$$ 1.91642 36.0379i 0.0697458 1.31155i
$$756$$ 1.39938 2.42379i 0.0508949 0.0881525i
$$757$$ −5.58767 + 3.22604i −0.203087 + 0.117252i −0.598095 0.801425i $$-0.704075\pi$$
0.395008 + 0.918678i $$0.370742\pi$$
$$758$$ 5.78694 3.34109i 0.210191 0.121354i
$$759$$ −35.6056 −1.29240
$$760$$ −0.151171 + 9.74562i −0.00548354 + 0.353511i
$$761$$ 25.4438 0.922338 0.461169 0.887312i $$-0.347430\pi$$
0.461169 + 0.887312i $$0.347430\pi$$
$$762$$ 11.9143 6.87872i 0.431609 0.249190i
$$763$$ −20.8086 + 12.0139i −0.753323 + 0.434931i
$$764$$ −8.62594 + 14.9406i −0.312075 + 0.540531i
$$765$$ 9.50009 + 0.505196i 0.343476 + 0.0182654i
$$766$$ −10.1067 + 17.5053i −0.365170 + 0.632492i
$$767$$ 0.0418388i 0.00151071i
$$768$$ 1.00000i 0.0360844i
$$769$$ 22.8321 39.5464i 0.823348 1.42608i −0.0798275 0.996809i $$-0.525437\pi$$
0.903175 0.429272i $$-0.141230\pi$$
$$770$$ 22.4619 11.4232i 0.809470 0.411662i
$$771$$ 2.38173 0.0857758
$$772$$ 6.31770i 0.227379i
$$773$$ −23.3288 13.4689i −0.839080 0.484443i 0.0178717 0.999840i $$-0.494311\pi$$
−0.856951 + 0.515397i $$0.827644\pi$$
$$774$$ 3.73262 + 6.46509i 0.134166 + 0.232383i
$$775$$ −39.1830