Properties

Label 570.2.q.c.349.2
Level $570$
Weight $2$
Character 570.349
Analytic conductor $4.551$
Analytic rank $0$
Dimension $20$
CM no
Inner twists $4$

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) \(=\) \( 570 = 2 \cdot 3 \cdot 5 \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 570.q (of order \(6\), degree \(2\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(4.55147291521\)
Analytic rank: \(0\)
Dimension: \(20\)
Relative dimension: \(10\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{20} - \cdots)\)
Defining polynomial: \(x^{20} - 49 x^{16} - 8 x^{15} + 72 x^{13} + 2145 x^{12} - 648 x^{11} + 32 x^{10} - 7056 x^{9} - 11968 x^{8} + 10368 x^{7} + 9344 x^{6} + 18176 x^{5} + 56320 x^{4} + 28160 x^{3} + 8192 x^{2} + 4096 x + 1024\)
Coefficient ring: \(\Z[a_1, \ldots, a_{19}]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 349.2
Root \(-1.19457 - 0.320085i\) of defining polynomial
Character \(\chi\) \(=\) 570.349
Dual form 570.2.q.c.49.2

$q$-expansion

\(f(q)\) \(=\) \(q+(-0.866025 + 0.500000i) q^{2} +(0.866025 - 0.500000i) q^{3} +(0.500000 - 0.866025i) q^{4} +(-1.34502 + 1.78632i) q^{5} +(-0.500000 + 0.866025i) q^{6} -4.03495i q^{7} +1.00000i q^{8} +(0.500000 - 0.866025i) q^{9} +O(q^{10})\) \(q+(-0.866025 + 0.500000i) q^{2} +(0.866025 - 0.500000i) q^{3} +(0.500000 - 0.866025i) q^{4} +(-1.34502 + 1.78632i) q^{5} +(-0.500000 + 0.866025i) q^{6} -4.03495i q^{7} +1.00000i q^{8} +(0.500000 - 0.866025i) q^{9} +(0.271659 - 2.21950i) q^{10} -1.47054 q^{11} -1.00000i q^{12} +(-4.38320 - 2.53064i) q^{13} +(2.01747 + 3.49437i) q^{14} +(-0.271659 + 2.21950i) q^{15} +(-0.500000 - 0.866025i) q^{16} +(-0.0812933 + 0.0469347i) q^{17} +1.00000i q^{18} +(-4.00172 + 1.72807i) q^{19} +(0.874489 + 2.05798i) q^{20} +(-2.01747 - 3.49437i) q^{21} +(1.27352 - 0.735269i) q^{22} +(-2.22178 - 1.28274i) q^{23} +(0.500000 + 0.866025i) q^{24} +(-1.38186 - 4.80525i) q^{25} +5.06128 q^{26} -1.00000i q^{27} +(-3.49437 - 2.01747i) q^{28} +(2.10491 - 3.64581i) q^{29} +(-0.874489 - 2.05798i) q^{30} +4.26558 q^{31} +(0.866025 + 0.500000i) q^{32} +(-1.27352 + 0.735269i) q^{33} +(0.0469347 - 0.0812933i) q^{34} +(7.20770 + 5.42707i) q^{35} +(-0.500000 - 0.866025i) q^{36} -1.53807i q^{37} +(2.60156 - 3.49741i) q^{38} -5.06128 q^{39} +(-1.78632 - 1.34502i) q^{40} +(-3.88123 - 6.72248i) q^{41} +(3.49437 + 2.01747i) q^{42} +(-3.97202 + 2.29325i) q^{43} +(-0.735269 + 1.27352i) q^{44} +(0.874489 + 2.05798i) q^{45} +2.56549 q^{46} +(3.49530 + 2.01801i) q^{47} +(-0.866025 - 0.500000i) q^{48} -9.28080 q^{49} +(3.59936 + 3.47054i) q^{50} +(-0.0469347 + 0.0812933i) q^{51} +(-4.38320 + 2.53064i) q^{52} +(-9.22964 - 5.32873i) q^{53} +(0.500000 + 0.866025i) q^{54} +(1.97790 - 2.62685i) q^{55} +4.03495 q^{56} +(-2.60156 + 3.49741i) q^{57} +4.20982i q^{58} +(-3.07599 - 5.32777i) q^{59} +(1.78632 + 1.34502i) q^{60} +(0.653722 - 1.13228i) q^{61} +(-3.69410 + 2.13279i) q^{62} +(-3.49437 - 2.01747i) q^{63} -1.00000 q^{64} +(10.4160 - 4.42603i) q^{65} +(0.735269 - 1.27352i) q^{66} +(9.31187 + 5.37621i) q^{67} +0.0938694i q^{68} -2.56549 q^{69} +(-8.95558 - 1.09613i) q^{70} +(4.33806 + 7.51373i) q^{71} +(0.866025 + 0.500000i) q^{72} +(11.0108 - 6.35711i) q^{73} +(0.769037 + 1.33201i) q^{74} +(-3.59936 - 3.47054i) q^{75} +(-0.504306 + 4.32963i) q^{76} +5.93355i q^{77} +(4.38320 - 2.53064i) q^{78} +(-6.48112 - 11.2256i) q^{79} +(2.21950 + 0.271659i) q^{80} +(-0.500000 - 0.866025i) q^{81} +(6.72248 + 3.88123i) q^{82} +2.06328i q^{83} -4.03495 q^{84} +(0.0255005 - 0.208344i) q^{85} +(2.29325 - 3.97202i) q^{86} -4.20982i q^{87} -1.47054i q^{88} +(-0.813846 + 1.40962i) q^{89} +(-1.78632 - 1.34502i) q^{90} +(-10.2110 + 17.6860i) q^{91} +(-2.22178 + 1.28274i) q^{92} +(3.69410 - 2.13279i) q^{93} -4.03603 q^{94} +(2.29549 - 9.47263i) q^{95} +1.00000 q^{96} +(10.3479 - 5.97438i) q^{97} +(8.03741 - 4.64040i) q^{98} +(-0.735269 + 1.27352i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 20q + 10q^{4} - 10q^{6} + 10q^{9} + O(q^{10}) \) \( 20q + 10q^{4} - 10q^{6} + 10q^{9} - 2q^{10} + 12q^{11} + 10q^{14} + 2q^{15} - 10q^{16} + 6q^{19} - 10q^{21} + 10q^{24} + 14q^{25} + 8q^{29} + 40q^{31} + 12q^{34} + 2q^{35} - 10q^{36} + 2q^{40} - 14q^{41} + 6q^{44} + 44q^{46} - 8q^{49} - 8q^{50} - 12q^{51} + 10q^{54} + 20q^{56} + 8q^{59} - 2q^{60} + 16q^{61} - 20q^{64} + 40q^{65} - 6q^{66} - 44q^{69} + 8q^{70} - 4q^{71} + 26q^{74} + 8q^{75} + 8q^{79} - 10q^{81} - 20q^{84} - 16q^{85} - 20q^{86} - 2q^{89} + 2q^{90} - 44q^{91} - 32q^{94} - 80q^{95} + 20q^{96} + 6q^{99} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/570\mathbb{Z}\right)^\times\).

\(n\) \(191\) \(211\) \(457\)
\(\chi(n)\) \(1\) \(e\left(\frac{1}{3}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.866025 + 0.500000i −0.612372 + 0.353553i
\(3\) 0.866025 0.500000i 0.500000 0.288675i
\(4\) 0.500000 0.866025i 0.250000 0.433013i
\(5\) −1.34502 + 1.78632i −0.601509 + 0.798866i
\(6\) −0.500000 + 0.866025i −0.204124 + 0.353553i
\(7\) 4.03495i 1.52507i −0.646949 0.762533i \(-0.723955\pi\)
0.646949 0.762533i \(-0.276045\pi\)
\(8\) 1.00000i 0.353553i
\(9\) 0.500000 0.866025i 0.166667 0.288675i
\(10\) 0.271659 2.21950i 0.0859061 0.701869i
\(11\) −1.47054 −0.443384 −0.221692 0.975117i \(-0.571158\pi\)
−0.221692 + 0.975117i \(0.571158\pi\)
\(12\) 1.00000i 0.288675i
\(13\) −4.38320 2.53064i −1.21568 0.701874i −0.251690 0.967808i \(-0.580986\pi\)
−0.963991 + 0.265934i \(0.914320\pi\)
\(14\) 2.01747 + 3.49437i 0.539192 + 0.933909i
\(15\) −0.271659 + 2.21950i −0.0701421 + 0.573074i
\(16\) −0.500000 0.866025i −0.125000 0.216506i
\(17\) −0.0812933 + 0.0469347i −0.0197165 + 0.0113833i −0.509826 0.860278i \(-0.670290\pi\)
0.490109 + 0.871661i \(0.336957\pi\)
\(18\) 1.00000i 0.235702i
\(19\) −4.00172 + 1.72807i −0.918058 + 0.396447i
\(20\) 0.874489 + 2.05798i 0.195542 + 0.460178i
\(21\) −2.01747 3.49437i −0.440249 0.762533i
\(22\) 1.27352 0.735269i 0.271516 0.156760i
\(23\) −2.22178 1.28274i −0.463273 0.267471i 0.250147 0.968208i \(-0.419521\pi\)
−0.713419 + 0.700737i \(0.752855\pi\)
\(24\) 0.500000 + 0.866025i 0.102062 + 0.176777i
\(25\) −1.38186 4.80525i −0.276373 0.961051i
\(26\) 5.06128 0.992599
\(27\) 1.00000i 0.192450i
\(28\) −3.49437 2.01747i −0.660373 0.381267i
\(29\) 2.10491 3.64581i 0.390872 0.677011i −0.601693 0.798728i \(-0.705507\pi\)
0.992565 + 0.121717i \(0.0388401\pi\)
\(30\) −0.874489 2.05798i −0.159659 0.375733i
\(31\) 4.26558 0.766120 0.383060 0.923723i \(-0.374870\pi\)
0.383060 + 0.923723i \(0.374870\pi\)
\(32\) 0.866025 + 0.500000i 0.153093 + 0.0883883i
\(33\) −1.27352 + 0.735269i −0.221692 + 0.127994i
\(34\) 0.0469347 0.0812933i 0.00804924 0.0139417i
\(35\) 7.20770 + 5.42707i 1.21832 + 0.917342i
\(36\) −0.500000 0.866025i −0.0833333 0.144338i
\(37\) 1.53807i 0.252858i −0.991976 0.126429i \(-0.959648\pi\)
0.991976 0.126429i \(-0.0403515\pi\)
\(38\) 2.60156 3.49741i 0.422028 0.567356i
\(39\) −5.06128 −0.810454
\(40\) −1.78632 1.34502i −0.282442 0.212666i
\(41\) −3.88123 6.72248i −0.606146 1.04987i −0.991869 0.127261i \(-0.959382\pi\)
0.385724 0.922614i \(-0.373952\pi\)
\(42\) 3.49437 + 2.01747i 0.539192 + 0.311303i
\(43\) −3.97202 + 2.29325i −0.605727 + 0.349717i −0.771291 0.636482i \(-0.780389\pi\)
0.165564 + 0.986199i \(0.447056\pi\)
\(44\) −0.735269 + 1.27352i −0.110846 + 0.191991i
\(45\) 0.874489 + 2.05798i 0.130361 + 0.306785i
\(46\) 2.56549 0.378261
\(47\) 3.49530 + 2.01801i 0.509842 + 0.294358i 0.732769 0.680478i \(-0.238228\pi\)
−0.222927 + 0.974835i \(0.571561\pi\)
\(48\) −0.866025 0.500000i −0.125000 0.0721688i
\(49\) −9.28080 −1.32583
\(50\) 3.59936 + 3.47054i 0.509026 + 0.490808i
\(51\) −0.0469347 + 0.0812933i −0.00657218 + 0.0113833i
\(52\) −4.38320 + 2.53064i −0.607840 + 0.350937i
\(53\) −9.22964 5.32873i −1.26779 0.731958i −0.293219 0.956045i \(-0.594727\pi\)
−0.974569 + 0.224087i \(0.928060\pi\)
\(54\) 0.500000 + 0.866025i 0.0680414 + 0.117851i
\(55\) 1.97790 2.62685i 0.266700 0.354204i
\(56\) 4.03495 0.539192
\(57\) −2.60156 + 3.49741i −0.344584 + 0.463244i
\(58\) 4.20982i 0.552777i
\(59\) −3.07599 5.32777i −0.400460 0.693617i 0.593321 0.804966i \(-0.297816\pi\)
−0.993781 + 0.111349i \(0.964483\pi\)
\(60\) 1.78632 + 1.34502i 0.230613 + 0.173641i
\(61\) 0.653722 1.13228i 0.0837005 0.144974i −0.821136 0.570732i \(-0.806659\pi\)
0.904837 + 0.425759i \(0.139993\pi\)
\(62\) −3.69410 + 2.13279i −0.469151 + 0.270864i
\(63\) −3.49437 2.01747i −0.440249 0.254178i
\(64\) −1.00000 −0.125000
\(65\) 10.4160 4.42603i 1.29195 0.548982i
\(66\) 0.735269 1.27352i 0.0905054 0.156760i
\(67\) 9.31187 + 5.37621i 1.13763 + 0.656808i 0.945842 0.324629i \(-0.105239\pi\)
0.191784 + 0.981437i \(0.438573\pi\)
\(68\) 0.0938694i 0.0113833i
\(69\) −2.56549 −0.308849
\(70\) −8.95558 1.09613i −1.07040 0.131013i
\(71\) 4.33806 + 7.51373i 0.514833 + 0.891716i 0.999852 + 0.0172126i \(0.00547923\pi\)
−0.485019 + 0.874503i \(0.661187\pi\)
\(72\) 0.866025 + 0.500000i 0.102062 + 0.0589256i
\(73\) 11.0108 6.35711i 1.28872 0.744044i 0.310296 0.950640i \(-0.399572\pi\)
0.978426 + 0.206596i \(0.0662386\pi\)
\(74\) 0.769037 + 1.33201i 0.0893987 + 0.154843i
\(75\) −3.59936 3.47054i −0.415618 0.400743i
\(76\) −0.504306 + 4.32963i −0.0578479 + 0.496642i
\(77\) 5.93355i 0.676190i
\(78\) 4.38320 2.53064i 0.496300 0.286539i
\(79\) −6.48112 11.2256i −0.729183 1.26298i −0.957229 0.289332i \(-0.906567\pi\)
0.228046 0.973650i \(-0.426766\pi\)
\(80\) 2.21950 + 0.271659i 0.248148 + 0.0303724i
\(81\) −0.500000 0.866025i −0.0555556 0.0962250i
\(82\) 6.72248 + 3.88123i 0.742374 + 0.428610i
\(83\) 2.06328i 0.226475i 0.993568 + 0.113237i \(0.0361221\pi\)
−0.993568 + 0.113237i \(0.963878\pi\)
\(84\) −4.03495 −0.440249
\(85\) 0.0255005 0.208344i 0.00276592 0.0225980i
\(86\) 2.29325 3.97202i 0.247287 0.428314i
\(87\) 4.20982i 0.451340i
\(88\) 1.47054i 0.156760i
\(89\) −0.813846 + 1.40962i −0.0862675 + 0.149420i −0.905931 0.423426i \(-0.860827\pi\)
0.819663 + 0.572846i \(0.194161\pi\)
\(90\) −1.78632 1.34502i −0.188294 0.141777i
\(91\) −10.2110 + 17.6860i −1.07040 + 1.85399i
\(92\) −2.22178 + 1.28274i −0.231636 + 0.133735i
\(93\) 3.69410 2.13279i 0.383060 0.221160i
\(94\) −4.03603 −0.416285
\(95\) 2.29549 9.47263i 0.235513 0.971871i
\(96\) 1.00000 0.102062
\(97\) 10.3479 5.97438i 1.05067 0.606607i 0.127836 0.991795i \(-0.459197\pi\)
0.922838 + 0.385188i \(0.125864\pi\)
\(98\) 8.03741 4.64040i 0.811901 0.468751i
\(99\) −0.735269 + 1.27352i −0.0738974 + 0.127994i
\(100\) −4.85240 1.20590i −0.485240 0.120590i
\(101\) −0.252103 + 0.436656i −0.0250852 + 0.0434489i −0.878295 0.478118i \(-0.841319\pi\)
0.853210 + 0.521567i \(0.174652\pi\)
\(102\) 0.0938694i 0.00929446i
\(103\) 5.33797i 0.525966i −0.964800 0.262983i \(-0.915294\pi\)
0.964800 0.262983i \(-0.0847063\pi\)
\(104\) 2.53064 4.38320i 0.248150 0.429808i
\(105\) 8.95558 + 1.09613i 0.873976 + 0.106971i
\(106\) 10.6575 1.03514
\(107\) 17.9275i 1.73312i 0.499076 + 0.866558i \(0.333673\pi\)
−0.499076 + 0.866558i \(0.666327\pi\)
\(108\) −0.866025 0.500000i −0.0833333 0.0481125i
\(109\) −4.43631 7.68392i −0.424922 0.735986i 0.571492 0.820608i \(-0.306365\pi\)
−0.996413 + 0.0846222i \(0.973032\pi\)
\(110\) −0.399485 + 3.26387i −0.0380894 + 0.311198i
\(111\) −0.769037 1.33201i −0.0729937 0.126429i
\(112\) −3.49437 + 2.01747i −0.330187 + 0.190633i
\(113\) 15.8667i 1.49261i 0.665603 + 0.746306i \(0.268174\pi\)
−0.665603 + 0.746306i \(0.731826\pi\)
\(114\) 0.504306 4.32963i 0.0472326 0.405507i
\(115\) 5.27972 2.24349i 0.492336 0.209207i
\(116\) −2.10491 3.64581i −0.195436 0.338505i
\(117\) −4.38320 + 2.53064i −0.405227 + 0.233958i
\(118\) 5.32777 + 3.07599i 0.490461 + 0.283168i
\(119\) 0.189379 + 0.328014i 0.0173604 + 0.0300690i
\(120\) −2.21950 0.271659i −0.202612 0.0247990i
\(121\) −8.83752 −0.803410
\(122\) 1.30744i 0.118370i
\(123\) −6.72248 3.88123i −0.606146 0.349958i
\(124\) 2.13279 3.69410i 0.191530 0.331740i
\(125\) 10.4423 + 3.99469i 0.933991 + 0.357296i
\(126\) 4.03495 0.359462
\(127\) 5.77290 + 3.33298i 0.512262 + 0.295755i 0.733763 0.679406i \(-0.237762\pi\)
−0.221501 + 0.975160i \(0.571096\pi\)
\(128\) 0.866025 0.500000i 0.0765466 0.0441942i
\(129\) −2.29325 + 3.97202i −0.201909 + 0.349717i
\(130\) −6.80751 + 9.04106i −0.597058 + 0.792953i
\(131\) −3.53784 6.12771i −0.309102 0.535381i 0.669064 0.743205i \(-0.266695\pi\)
−0.978166 + 0.207824i \(0.933362\pi\)
\(132\) 1.47054i 0.127994i
\(133\) 6.97268 + 16.1467i 0.604608 + 1.40010i
\(134\) −10.7524 −0.928867
\(135\) 1.78632 + 1.34502i 0.153742 + 0.115761i
\(136\) −0.0469347 0.0812933i −0.00402462 0.00697084i
\(137\) 16.3302 + 9.42826i 1.39519 + 0.805511i 0.993883 0.110435i \(-0.0352245\pi\)
0.401302 + 0.915946i \(0.368558\pi\)
\(138\) 2.22178 1.28274i 0.189130 0.109194i
\(139\) −9.99616 + 17.3139i −0.847864 + 1.46854i 0.0352474 + 0.999379i \(0.488778\pi\)
−0.883111 + 0.469164i \(0.844555\pi\)
\(140\) 8.30383 3.52852i 0.701802 0.298214i
\(141\) 4.03603 0.339895
\(142\) −7.51373 4.33806i −0.630538 0.364042i
\(143\) 6.44566 + 3.72141i 0.539014 + 0.311200i
\(144\) −1.00000 −0.0833333
\(145\) 3.68144 + 8.66372i 0.305727 + 0.719483i
\(146\) −6.35711 + 11.0108i −0.526119 + 0.911264i
\(147\) −8.03741 + 4.64040i −0.662914 + 0.382734i
\(148\) −1.33201 0.769037i −0.109491 0.0632144i
\(149\) 6.10397 + 10.5724i 0.500056 + 0.866123i 1.00000 6.51503e-5i \(2.07380e-5\pi\)
−0.499944 + 0.866058i \(0.666646\pi\)
\(150\) 4.85240 + 1.20590i 0.396197 + 0.0984611i
\(151\) 19.9109 1.62032 0.810161 0.586207i \(-0.199380\pi\)
0.810161 + 0.586207i \(0.199380\pi\)
\(152\) −1.72807 4.00172i −0.140165 0.324582i
\(153\) 0.0938694i 0.00758889i
\(154\) −2.96677 5.13860i −0.239069 0.414080i
\(155\) −5.73727 + 7.61968i −0.460828 + 0.612027i
\(156\) −2.53064 + 4.38320i −0.202613 + 0.350937i
\(157\) 14.0594 8.11721i 1.12206 0.647824i 0.180137 0.983641i \(-0.442346\pi\)
0.941927 + 0.335817i \(0.109012\pi\)
\(158\) 11.2256 + 6.48112i 0.893063 + 0.515610i
\(159\) −10.6575 −0.845192
\(160\) −2.05798 + 0.874489i −0.162697 + 0.0691344i
\(161\) −5.17581 + 8.96476i −0.407911 + 0.706522i
\(162\) 0.866025 + 0.500000i 0.0680414 + 0.0392837i
\(163\) 2.05750i 0.161156i 0.996748 + 0.0805780i \(0.0256766\pi\)
−0.996748 + 0.0805780i \(0.974323\pi\)
\(164\) −7.76245 −0.606146
\(165\) 0.399485 3.26387i 0.0310999 0.254092i
\(166\) −1.03164 1.78686i −0.0800709 0.138687i
\(167\) −18.8169 10.8639i −1.45609 0.840676i −0.457278 0.889324i \(-0.651176\pi\)
−0.998816 + 0.0486476i \(0.984509\pi\)
\(168\) 3.49437 2.01747i 0.269596 0.155651i
\(169\) 6.30829 + 10.9263i 0.485253 + 0.840483i
\(170\) 0.0820878 + 0.193181i 0.00629584 + 0.0148163i
\(171\) −0.504306 + 4.32963i −0.0385652 + 0.331095i
\(172\) 4.58649i 0.349717i
\(173\) −20.0963 + 11.6026i −1.52790 + 0.882132i −0.528447 + 0.848966i \(0.677226\pi\)
−0.999450 + 0.0331655i \(0.989441\pi\)
\(174\) 2.10491 + 3.64581i 0.159573 + 0.276388i
\(175\) −19.3889 + 5.57575i −1.46567 + 0.421487i
\(176\) 0.735269 + 1.27352i 0.0554230 + 0.0959955i
\(177\) −5.32777 3.07599i −0.400460 0.231206i
\(178\) 1.62769i 0.122001i
\(179\) −6.37559 −0.476534 −0.238267 0.971200i \(-0.576579\pi\)
−0.238267 + 0.971200i \(0.576579\pi\)
\(180\) 2.21950 + 0.271659i 0.165432 + 0.0202483i
\(181\) 4.39603 7.61415i 0.326755 0.565955i −0.655111 0.755532i \(-0.727378\pi\)
0.981866 + 0.189577i \(0.0607116\pi\)
\(182\) 20.4220i 1.51378i
\(183\) 1.30744i 0.0966491i
\(184\) 1.28274 2.22178i 0.0945652 0.163792i
\(185\) 2.74749 + 2.06873i 0.201999 + 0.152096i
\(186\) −2.13279 + 3.69410i −0.156384 + 0.270864i
\(187\) 0.119545 0.0690193i 0.00874200 0.00504719i
\(188\) 3.49530 2.01801i 0.254921 0.147179i
\(189\) −4.03495 −0.293499
\(190\) 2.74836 + 9.35128i 0.199387 + 0.678413i
\(191\) 12.9659 0.938177 0.469088 0.883151i \(-0.344583\pi\)
0.469088 + 0.883151i \(0.344583\pi\)
\(192\) −0.866025 + 0.500000i −0.0625000 + 0.0360844i
\(193\) −5.29710 + 3.05828i −0.381294 + 0.220140i −0.678381 0.734710i \(-0.737318\pi\)
0.297087 + 0.954850i \(0.403985\pi\)
\(194\) −5.97438 + 10.3479i −0.428936 + 0.742939i
\(195\) 6.80751 9.04106i 0.487496 0.647444i
\(196\) −4.64040 + 8.03741i −0.331457 + 0.574101i
\(197\) 7.34941i 0.523624i −0.965119 0.261812i \(-0.915680\pi\)
0.965119 0.261812i \(-0.0843200\pi\)
\(198\) 1.47054i 0.104507i
\(199\) 1.71780 2.97531i 0.121771 0.210914i −0.798695 0.601736i \(-0.794476\pi\)
0.920466 + 0.390822i \(0.127809\pi\)
\(200\) 4.80525 1.38186i 0.339783 0.0977125i
\(201\) 10.7524 0.758417
\(202\) 0.504207i 0.0354759i
\(203\) −14.7107 8.49321i −1.03249 0.596106i
\(204\) 0.0469347 + 0.0812933i 0.00328609 + 0.00569167i
\(205\) 17.2288 + 2.10874i 1.20331 + 0.147281i
\(206\) 2.66899 + 4.62282i 0.185957 + 0.322087i
\(207\) −2.22178 + 1.28274i −0.154424 + 0.0891569i
\(208\) 5.06128i 0.350937i
\(209\) 5.88469 2.54120i 0.407052 0.175778i
\(210\) −8.30383 + 3.52852i −0.573019 + 0.243491i
\(211\) 2.01970 + 3.49822i 0.139042 + 0.240827i 0.927134 0.374730i \(-0.122264\pi\)
−0.788092 + 0.615557i \(0.788931\pi\)
\(212\) −9.22964 + 5.32873i −0.633894 + 0.365979i
\(213\) 7.51373 + 4.33806i 0.514833 + 0.297239i
\(214\) −8.96375 15.5257i −0.612749 1.06131i
\(215\) 1.24596 10.1797i 0.0849739 0.694253i
\(216\) 1.00000 0.0680414
\(217\) 17.2114i 1.16838i
\(218\) 7.68392 + 4.43631i 0.520421 + 0.300465i
\(219\) 6.35711 11.0108i 0.429574 0.744044i
\(220\) −1.28597 3.02634i −0.0867001 0.204035i
\(221\) 0.475100 0.0319587
\(222\) 1.33201 + 0.769037i 0.0893987 + 0.0516144i
\(223\) −15.6334 + 9.02593i −1.04689 + 0.604421i −0.921776 0.387722i \(-0.873262\pi\)
−0.125111 + 0.992143i \(0.539929\pi\)
\(224\) 2.01747 3.49437i 0.134798 0.233477i
\(225\) −4.85240 1.20590i −0.323494 0.0803931i
\(226\) −7.93334 13.7409i −0.527718 0.914034i
\(227\) 26.8513i 1.78219i −0.453820 0.891093i \(-0.649939\pi\)
0.453820 0.891093i \(-0.350061\pi\)
\(228\) 1.72807 + 4.00172i 0.114444 + 0.265020i
\(229\) 13.7131 0.906190 0.453095 0.891462i \(-0.350320\pi\)
0.453095 + 0.891462i \(0.350320\pi\)
\(230\) −3.45062 + 4.58278i −0.227527 + 0.302180i
\(231\) 2.96677 + 5.13860i 0.195199 + 0.338095i
\(232\) 3.64581 + 2.10491i 0.239359 + 0.138194i
\(233\) −0.00572506 + 0.00330537i −0.000375061 + 0.000216542i −0.500188 0.865917i \(-0.666736\pi\)
0.499812 + 0.866134i \(0.333402\pi\)
\(234\) 2.53064 4.38320i 0.165433 0.286539i
\(235\) −8.30605 + 3.52946i −0.541827 + 0.230237i
\(236\) −6.15198 −0.400460
\(237\) −11.2256 6.48112i −0.729183 0.420994i
\(238\) −0.328014 0.189379i −0.0212620 0.0122756i
\(239\) 4.67499 0.302400 0.151200 0.988503i \(-0.451686\pi\)
0.151200 + 0.988503i \(0.451686\pi\)
\(240\) 2.05798 0.874489i 0.132842 0.0564480i
\(241\) 13.9044 24.0831i 0.895659 1.55133i 0.0626717 0.998034i \(-0.480038\pi\)
0.832987 0.553292i \(-0.186629\pi\)
\(242\) 7.65351 4.41876i 0.491986 0.284049i
\(243\) −0.866025 0.500000i −0.0555556 0.0320750i
\(244\) −0.653722 1.13228i −0.0418503 0.0724868i
\(245\) 12.4828 16.5785i 0.797498 1.05916i
\(246\) 7.76245 0.494916
\(247\) 21.9135 + 2.55244i 1.39432 + 0.162408i
\(248\) 4.26558i 0.270864i
\(249\) 1.03164 + 1.78686i 0.0653776 + 0.113237i
\(250\) −11.0407 + 1.76166i −0.698274 + 0.111417i
\(251\) 3.03259 5.25259i 0.191415 0.331541i −0.754304 0.656525i \(-0.772026\pi\)
0.945719 + 0.324984i \(0.105359\pi\)
\(252\) −3.49437 + 2.01747i −0.220124 + 0.127089i
\(253\) 3.26721 + 1.88633i 0.205408 + 0.118592i
\(254\) −6.66597 −0.418260
\(255\) −0.0820878 0.193181i −0.00514054 0.0120975i
\(256\) −0.500000 + 0.866025i −0.0312500 + 0.0541266i
\(257\) −1.11707 0.644941i −0.0696809 0.0402303i 0.464755 0.885439i \(-0.346142\pi\)
−0.534436 + 0.845209i \(0.679476\pi\)
\(258\) 4.58649i 0.285543i
\(259\) −6.20604 −0.385625
\(260\) 1.37494 11.2335i 0.0852704 0.696675i
\(261\) −2.10491 3.64581i −0.130291 0.225670i
\(262\) 6.12771 + 3.53784i 0.378571 + 0.218568i
\(263\) 24.4863 14.1372i 1.50989 0.871737i 0.509959 0.860199i \(-0.329661\pi\)
0.999933 0.0115378i \(-0.00367269\pi\)
\(264\) −0.735269 1.27352i −0.0452527 0.0783800i
\(265\) 21.9328 9.31984i 1.34732 0.572513i
\(266\) −14.1119 10.4971i −0.865255 0.643621i
\(267\) 1.62769i 0.0996131i
\(268\) 9.31187 5.37621i 0.568813 0.328404i
\(269\) −13.8782 24.0377i −0.846169 1.46561i −0.884602 0.466346i \(-0.845570\pi\)
0.0384337 0.999261i \(-0.487763\pi\)
\(270\) −2.21950 0.271659i −0.135075 0.0165326i
\(271\) −5.42826 9.40202i −0.329743 0.571132i 0.652718 0.757601i \(-0.273629\pi\)
−0.982461 + 0.186469i \(0.940296\pi\)
\(272\) 0.0812933 + 0.0469347i 0.00492913 + 0.00284584i
\(273\) 20.4220i 1.23600i
\(274\) −18.8565 −1.13916
\(275\) 2.03208 + 7.06631i 0.122539 + 0.426115i
\(276\) −1.28274 + 2.22178i −0.0772122 + 0.133735i
\(277\) 24.5237i 1.47349i −0.676173 0.736743i \(-0.736363\pi\)
0.676173 0.736743i \(-0.263637\pi\)
\(278\) 19.9923i 1.19906i
\(279\) 2.13279 3.69410i 0.127687 0.221160i
\(280\) −5.42707 + 7.20770i −0.324329 + 0.430742i
\(281\) 3.29709 5.71073i 0.196688 0.340674i −0.750765 0.660570i \(-0.770315\pi\)
0.947453 + 0.319896i \(0.103648\pi\)
\(282\) −3.49530 + 2.01801i −0.208142 + 0.120171i
\(283\) −20.4709 + 11.8189i −1.21687 + 0.702559i −0.964247 0.265006i \(-0.914626\pi\)
−0.252621 + 0.967565i \(0.581293\pi\)
\(284\) 8.67611 0.514833
\(285\) −2.74836 9.35128i −0.162799 0.553922i
\(286\) −7.44281 −0.440103
\(287\) −27.1248 + 15.6605i −1.60113 + 0.924412i
\(288\) 0.866025 0.500000i 0.0510310 0.0294628i
\(289\) −8.49559 + 14.7148i −0.499741 + 0.865577i
\(290\) −7.52008 5.66228i −0.441595 0.332501i
\(291\) 5.97438 10.3479i 0.350225 0.606607i
\(292\) 12.7142i 0.744044i
\(293\) 23.0123i 1.34439i −0.740374 0.672195i \(-0.765352\pi\)
0.740374 0.672195i \(-0.234648\pi\)
\(294\) 4.64040 8.03741i 0.270634 0.468751i
\(295\) 13.6544 + 1.67124i 0.794987 + 0.0973034i
\(296\) 1.53807 0.0893987
\(297\) 1.47054i 0.0853293i
\(298\) −10.5724 6.10397i −0.612442 0.353593i
\(299\) 6.49233 + 11.2451i 0.375461 + 0.650318i
\(300\) −4.80525 + 1.38186i −0.277431 + 0.0797819i
\(301\) 9.25313 + 16.0269i 0.533341 + 0.923774i
\(302\) −17.2433 + 9.95543i −0.992241 + 0.572870i
\(303\) 0.504207i 0.0289659i
\(304\) 3.49741 + 2.60156i 0.200590 + 0.149209i
\(305\) 1.14335 + 2.69069i 0.0654678 + 0.154068i
\(306\) −0.0469347 0.0812933i −0.00268308 0.00464723i
\(307\) −22.0807 + 12.7483i −1.26021 + 0.727584i −0.973116 0.230318i \(-0.926023\pi\)
−0.287097 + 0.957902i \(0.592690\pi\)
\(308\) 5.13860 + 2.96677i 0.292799 + 0.169048i
\(309\) −2.66899 4.62282i −0.151833 0.262983i
\(310\) 1.15878 9.46747i 0.0658144 0.537716i
\(311\) −30.3172 −1.71913 −0.859565 0.511027i \(-0.829265\pi\)
−0.859565 + 0.511027i \(0.829265\pi\)
\(312\) 5.06128i 0.286539i
\(313\) 6.54063 + 3.77623i 0.369698 + 0.213445i 0.673327 0.739345i \(-0.264865\pi\)
−0.303628 + 0.952791i \(0.598198\pi\)
\(314\) −8.11721 + 14.0594i −0.458081 + 0.793419i
\(315\) 8.30383 3.52852i 0.467868 0.198809i
\(316\) −12.9622 −0.729183
\(317\) −12.1344 7.00579i −0.681535 0.393484i 0.118898 0.992906i \(-0.462064\pi\)
−0.800433 + 0.599422i \(0.795397\pi\)
\(318\) 9.22964 5.32873i 0.517572 0.298821i
\(319\) −3.09535 + 5.36131i −0.173307 + 0.300176i
\(320\) 1.34502 1.78632i 0.0751887 0.0998582i
\(321\) 8.96375 + 15.5257i 0.500308 + 0.866558i
\(322\) 10.3516i 0.576873i
\(323\) 0.244207 0.328300i 0.0135880 0.0182671i
\(324\) −1.00000 −0.0555556
\(325\) −6.10339 + 24.5594i −0.338555 + 1.36231i
\(326\) −1.02875 1.78185i −0.0569773 0.0986875i
\(327\) −7.68392 4.43631i −0.424922 0.245329i
\(328\) 6.72248 3.88123i 0.371187 0.214305i
\(329\) 8.14258 14.1034i 0.448915 0.777544i
\(330\) 1.28597 + 3.02634i 0.0707903 + 0.166594i
\(331\) −2.20541 −0.121220 −0.0606102 0.998162i \(-0.519305\pi\)
−0.0606102 + 0.998162i \(0.519305\pi\)
\(332\) 1.78686 + 1.03164i 0.0980665 + 0.0566187i
\(333\) −1.33201 0.769037i −0.0729937 0.0421429i
\(334\) 21.7279 1.18890
\(335\) −22.1282 + 9.40287i −1.20899 + 0.513734i
\(336\) −2.01747 + 3.49437i −0.110062 + 0.190633i
\(337\) −3.35026 + 1.93428i −0.182500 + 0.105367i −0.588467 0.808521i \(-0.700268\pi\)
0.405966 + 0.913888i \(0.366935\pi\)
\(338\) −10.9263 6.30829i −0.594311 0.343126i
\(339\) 7.93334 + 13.7409i 0.430880 + 0.746306i
\(340\) −0.167681 0.126256i −0.00909376 0.00684719i
\(341\) −6.27270 −0.339685
\(342\) −1.72807 4.00172i −0.0934434 0.216388i
\(343\) 9.20290i 0.496910i
\(344\) −2.29325 3.97202i −0.123644 0.214157i
\(345\) 3.45062 4.58278i 0.185775 0.246729i
\(346\) 11.6026 20.0963i 0.623761 1.08039i
\(347\) −10.6406 + 6.14337i −0.571219 + 0.329793i −0.757636 0.652677i \(-0.773646\pi\)
0.186417 + 0.982471i \(0.440312\pi\)
\(348\) −3.64581 2.10491i −0.195436 0.112835i
\(349\) 23.1329 1.23828 0.619139 0.785282i \(-0.287482\pi\)
0.619139 + 0.785282i \(0.287482\pi\)
\(350\) 14.0034 14.5232i 0.748515 0.776298i
\(351\) −2.53064 + 4.38320i −0.135076 + 0.233958i
\(352\) −1.27352 0.735269i −0.0678791 0.0391900i
\(353\) 2.27216i 0.120935i 0.998170 + 0.0604674i \(0.0192591\pi\)
−0.998170 + 0.0604674i \(0.980741\pi\)
\(354\) 6.15198 0.326974
\(355\) −19.2567 2.35694i −1.02204 0.125094i
\(356\) 0.813846 + 1.40962i 0.0431338 + 0.0747098i
\(357\) 0.328014 + 0.189379i 0.0173604 + 0.0100230i
\(358\) 5.52142 3.18779i 0.291816 0.168480i
\(359\) −10.3404 17.9101i −0.545746 0.945260i −0.998560 0.0536549i \(-0.982913\pi\)
0.452813 0.891605i \(-0.350420\pi\)
\(360\) −2.05798 + 0.874489i −0.108465 + 0.0460896i
\(361\) 13.0275 13.8305i 0.685660 0.727922i
\(362\) 8.79207i 0.462101i
\(363\) −7.65351 + 4.41876i −0.401705 + 0.231925i
\(364\) 10.2110 + 17.6860i 0.535202 + 0.926997i
\(365\) −3.45394 + 28.2193i −0.180787 + 1.47707i
\(366\) 0.653722 + 1.13228i 0.0341706 + 0.0591852i
\(367\) 31.7744 + 18.3450i 1.65861 + 0.957600i 0.973357 + 0.229296i \(0.0736424\pi\)
0.685255 + 0.728304i \(0.259691\pi\)
\(368\) 2.56549i 0.133735i
\(369\) −7.76245 −0.404097
\(370\) −3.41376 0.417831i −0.177473 0.0217220i
\(371\) −21.5012 + 37.2411i −1.11628 + 1.93346i
\(372\) 4.26558i 0.221160i
\(373\) 19.5380i 1.01164i −0.862640 0.505819i \(-0.831190\pi\)
0.862640 0.505819i \(-0.168810\pi\)
\(374\) −0.0690193 + 0.119545i −0.00356890 + 0.00618152i
\(375\) 11.0407 1.76166i 0.570138 0.0909719i
\(376\) −2.01801 + 3.49530i −0.104071 + 0.180256i
\(377\) −18.4525 + 10.6536i −0.950352 + 0.548686i
\(378\) 3.49437 2.01747i 0.179731 0.103768i
\(379\) −3.46802 −0.178140 −0.0890701 0.996025i \(-0.528390\pi\)
−0.0890701 + 0.996025i \(0.528390\pi\)
\(380\) −7.05579 6.72427i −0.361954 0.344948i
\(381\) 6.66597 0.341508
\(382\) −11.2288 + 6.48293i −0.574514 + 0.331696i
\(383\) 21.7388 12.5509i 1.11080 0.641322i 0.171765 0.985138i \(-0.445053\pi\)
0.939037 + 0.343816i \(0.111720\pi\)
\(384\) 0.500000 0.866025i 0.0255155 0.0441942i
\(385\) −10.5992 7.98072i −0.540185 0.406735i
\(386\) 3.05828 5.29710i 0.155662 0.269615i
\(387\) 4.58649i 0.233145i
\(388\) 11.9488i 0.606607i
\(389\) 7.02074 12.1603i 0.355965 0.616550i −0.631317 0.775525i \(-0.717485\pi\)
0.987283 + 0.158974i \(0.0508188\pi\)
\(390\) −1.37494 + 11.2335i −0.0696230 + 0.568832i
\(391\) 0.240821 0.0121788
\(392\) 9.28080i 0.468751i
\(393\) −6.12771 3.53784i −0.309102 0.178460i
\(394\) 3.67471 + 6.36478i 0.185129 + 0.320653i
\(395\) 28.7698 + 3.52131i 1.44756 + 0.177176i
\(396\) 0.735269 + 1.27352i 0.0369487 + 0.0639970i
\(397\) 26.6267 15.3729i 1.33635 0.771544i 0.350089 0.936716i \(-0.386151\pi\)
0.986265 + 0.165172i \(0.0528179\pi\)
\(398\) 3.43559i 0.172211i
\(399\) 14.1119 + 10.4971i 0.706478 + 0.525514i
\(400\) −3.47054 + 3.59936i −0.173527 + 0.179968i
\(401\) −19.3518 33.5183i −0.966381 1.67382i −0.705857 0.708355i \(-0.749438\pi\)
−0.260525 0.965467i \(-0.583896\pi\)
\(402\) −9.31187 + 5.37621i −0.464434 + 0.268141i
\(403\) −18.6969 10.7946i −0.931357 0.537719i
\(404\) 0.252103 + 0.436656i 0.0125426 + 0.0217244i
\(405\) 2.21950 + 0.271659i 0.110288 + 0.0134988i
\(406\) 16.9864 0.843022
\(407\) 2.26180i 0.112113i
\(408\) −0.0812933 0.0469347i −0.00402462 0.00232361i
\(409\) −10.3920 + 17.9994i −0.513850 + 0.890014i 0.486021 + 0.873947i \(0.338448\pi\)
−0.999871 + 0.0160671i \(0.994885\pi\)
\(410\) −15.9749 + 6.78818i −0.788946 + 0.335244i
\(411\) 18.8565 0.930123
\(412\) −4.62282 2.66899i −0.227750 0.131491i
\(413\) −21.4973 + 12.4115i −1.05781 + 0.610728i
\(414\) 1.28274 2.22178i 0.0630435 0.109194i
\(415\) −3.68568 2.77515i −0.180923 0.136227i
\(416\) −2.53064 4.38320i −0.124075 0.214904i
\(417\) 19.9923i 0.979029i
\(418\) −3.82569 + 5.14308i −0.187121 + 0.251556i
\(419\) 36.2672 1.77177 0.885883 0.463908i \(-0.153553\pi\)
0.885883 + 0.463908i \(0.153553\pi\)
\(420\) 5.42707 7.20770i 0.264814 0.351700i
\(421\) 10.7212 + 18.5697i 0.522519 + 0.905030i 0.999657 + 0.0262013i \(0.00834109\pi\)
−0.477137 + 0.878829i \(0.658326\pi\)
\(422\) −3.49822 2.01970i −0.170291 0.0983174i
\(423\) 3.49530 2.01801i 0.169947 0.0981192i
\(424\) 5.32873 9.22964i 0.258786 0.448231i
\(425\) 0.337869 + 0.325778i 0.0163891 + 0.0158025i
\(426\) −8.67611 −0.420359
\(427\) −4.56869 2.63773i −0.221094 0.127649i
\(428\) 15.5257 + 8.96375i 0.750461 + 0.433279i
\(429\) 7.44281 0.359342
\(430\) 4.01084 + 9.43890i 0.193420 + 0.455184i
\(431\) 2.91216 5.04400i 0.140274 0.242961i −0.787326 0.616537i \(-0.788535\pi\)
0.927600 + 0.373576i \(0.121868\pi\)
\(432\) −0.866025 + 0.500000i −0.0416667 + 0.0240563i
\(433\) −27.3690 15.8015i −1.31527 0.759371i −0.332305 0.943172i \(-0.607826\pi\)
−0.982963 + 0.183801i \(0.941160\pi\)
\(434\) 8.60569 + 14.9055i 0.413086 + 0.715486i
\(435\) 7.52008 + 5.66228i 0.360560 + 0.271486i
\(436\) −8.87262 −0.424922
\(437\) 11.1076 + 1.29379i 0.531349 + 0.0618904i
\(438\) 12.7142i 0.607509i
\(439\) −0.932951 1.61592i −0.0445273 0.0771236i 0.842903 0.538066i \(-0.180845\pi\)
−0.887430 + 0.460942i \(0.847512\pi\)
\(440\) 2.62685 + 1.97790i 0.125230 + 0.0942926i
\(441\) −4.64040 + 8.03741i −0.220971 + 0.382734i
\(442\) −0.411448 + 0.237550i −0.0195706 + 0.0112991i
\(443\) 13.6368 + 7.87318i 0.647902 + 0.374066i 0.787652 0.616121i \(-0.211297\pi\)
−0.139750 + 0.990187i \(0.544630\pi\)
\(444\) −1.53807 −0.0729937
\(445\) −1.42340 3.34975i −0.0674755 0.158794i
\(446\) 9.02593 15.6334i 0.427390 0.740262i
\(447\) 10.5724 + 6.10397i 0.500056 + 0.288708i
\(448\) 4.03495i 0.190633i
\(449\) −29.7436 −1.40369 −0.701845 0.712330i \(-0.747640\pi\)
−0.701845 + 0.712330i \(0.747640\pi\)
\(450\) 4.80525 1.38186i 0.226522 0.0651417i
\(451\) 5.70749 + 9.88567i 0.268755 + 0.465498i
\(452\) 13.7409 + 7.93334i 0.646320 + 0.373153i
\(453\) 17.2433 9.95543i 0.810161 0.467747i
\(454\) 13.4257 + 23.2539i 0.630098 + 1.09136i
\(455\) −17.8588 42.0280i −0.837234 1.97030i
\(456\) −3.49741 2.60156i −0.163781 0.121829i
\(457\) 12.7891i 0.598250i 0.954214 + 0.299125i \(0.0966948\pi\)
−0.954214 + 0.299125i \(0.903305\pi\)
\(458\) −11.8759 + 6.85657i −0.554926 + 0.320387i
\(459\) 0.0469347 + 0.0812933i 0.00219073 + 0.00379445i
\(460\) 0.696938 5.69412i 0.0324949 0.265490i
\(461\) 5.96303 + 10.3283i 0.277726 + 0.481035i 0.970819 0.239813i \(-0.0770860\pi\)
−0.693093 + 0.720848i \(0.743753\pi\)
\(462\) −5.13860 2.96677i −0.239069 0.138027i
\(463\) 19.3208i 0.897913i 0.893554 + 0.448956i \(0.148204\pi\)
−0.893554 + 0.448956i \(0.851796\pi\)
\(464\) −4.20982 −0.195436
\(465\) −1.15878 + 9.46747i −0.0537372 + 0.439043i
\(466\) 0.00330537 0.00572506i 0.000153118 0.000265208i
\(467\) 26.7009i 1.23557i −0.786347 0.617785i \(-0.788030\pi\)
0.786347 0.617785i \(-0.211970\pi\)
\(468\) 5.06128i 0.233958i
\(469\) 21.6927 37.5729i 1.00168 1.73496i
\(470\) 5.42852 7.20963i 0.250399 0.332555i
\(471\) 8.11721 14.0594i 0.374021 0.647824i
\(472\) 5.32777 3.07599i 0.245231 0.141584i
\(473\) 5.84101 3.37231i 0.268570 0.155059i
\(474\) 12.9622 0.595375
\(475\) 13.8337 + 16.8413i 0.634732 + 0.772733i
\(476\) 0.378758 0.0173604
\(477\) −9.22964 + 5.32873i −0.422596 + 0.243986i
\(478\) −4.04866 + 2.33750i −0.185182 + 0.106915i
\(479\) −6.79124 + 11.7628i −0.310299 + 0.537454i −0.978427 0.206592i \(-0.933763\pi\)
0.668128 + 0.744047i \(0.267096\pi\)
\(480\) −1.34502 + 1.78632i −0.0613913 + 0.0815339i
\(481\) −3.89231 + 6.74168i −0.177474 + 0.307394i
\(482\) 27.8087i 1.26665i
\(483\) 10.3516i 0.471015i
\(484\) −4.41876 + 7.65351i −0.200853 + 0.347887i
\(485\) −3.24599 + 26.5204i −0.147393 + 1.20423i
\(486\) 1.00000 0.0453609
\(487\) 8.03640i 0.364164i −0.983283 0.182082i \(-0.941716\pi\)
0.983283 0.182082i \(-0.0582837\pi\)
\(488\) 1.13228 + 0.653722i 0.0512559 + 0.0295926i
\(489\) 1.02875 + 1.78185i 0.0465217 + 0.0805780i
\(490\) −2.52121 + 20.5988i −0.113897 + 0.930558i
\(491\) 10.3390 + 17.9077i 0.466593 + 0.808163i 0.999272 0.0381546i \(-0.0121479\pi\)
−0.532679 + 0.846317i \(0.678815\pi\)
\(492\) −6.72248 + 3.88123i −0.303073 + 0.174979i
\(493\) 0.395174i 0.0177977i
\(494\) −20.2538 + 8.74626i −0.911263 + 0.393513i
\(495\) −1.28597 3.02634i −0.0578000 0.136024i
\(496\) −2.13279 3.69410i −0.0957650 0.165870i
\(497\) 30.3175 17.5038i 1.35993 0.785154i
\(498\) −1.78686 1.03164i −0.0800709 0.0462290i
\(499\) −0.551160 0.954638i −0.0246733 0.0427355i 0.853425 0.521216i \(-0.174521\pi\)
−0.878098 + 0.478480i \(0.841188\pi\)
\(500\) 8.68068 7.04598i 0.388212 0.315106i
\(501\) −21.7279 −0.970729
\(502\) 6.06517i 0.270702i
\(503\) −21.0518 12.1543i −0.938653 0.541932i −0.0491154 0.998793i \(-0.515640\pi\)
−0.889538 + 0.456861i \(0.848974\pi\)
\(504\) 2.01747 3.49437i 0.0898654 0.155651i
\(505\) −0.440923 1.03765i −0.0196208 0.0461746i
\(506\) −3.77265 −0.167715
\(507\) 10.9263 + 6.30829i 0.485253 + 0.280161i
\(508\) 5.77290 3.33298i 0.256131 0.147877i
\(509\) −4.96728 + 8.60358i −0.220171 + 0.381347i −0.954860 0.297057i \(-0.903995\pi\)
0.734689 + 0.678404i \(0.237328\pi\)
\(510\) 0.167681 + 0.126256i 0.00742502 + 0.00559071i
\(511\) −25.6506 44.4282i −1.13472 1.96539i
\(512\) 1.00000i 0.0441942i
\(513\) 1.72807 + 4.00172i 0.0762962 + 0.176680i
\(514\) 1.28988 0.0568942
\(515\) 9.53531 + 7.17966i 0.420176 + 0.316373i
\(516\) 2.29325 + 3.97202i 0.100955 + 0.174858i
\(517\) −5.13998 2.96757i −0.226056 0.130513i
\(518\) 5.37459 3.10302i 0.236146 0.136339i
\(519\) −11.6026 + 20.0963i −0.509299 + 0.882132i
\(520\) 4.42603 + 10.4160i 0.194094 + 0.456772i
\(521\) −20.9057 −0.915895 −0.457947 0.888979i \(-0.651415\pi\)
−0.457947 + 0.888979i \(0.651415\pi\)
\(522\) 3.64581 + 2.10491i 0.159573 + 0.0921295i
\(523\) −27.3676 15.8007i −1.19670 0.690916i −0.236883 0.971538i \(-0.576126\pi\)
−0.959818 + 0.280622i \(0.909459\pi\)
\(524\) −7.07568 −0.309102
\(525\) −14.0034 + 14.5232i −0.611160 + 0.633845i
\(526\) −14.1372 + 24.4863i −0.616411 + 1.06766i
\(527\) −0.346763 + 0.200204i −0.0151052 + 0.00872101i
\(528\) 1.27352 + 0.735269i 0.0554230 + 0.0319985i
\(529\) −8.20913 14.2186i −0.356919 0.618202i
\(530\) −14.3345 + 19.0376i −0.622649 + 0.826942i
\(531\) −6.15198 −0.266973
\(532\) 17.4698 + 2.03485i 0.757413 + 0.0882218i
\(533\) 39.2880i 1.70175i
\(534\) −0.813846 1.40962i −0.0352186 0.0610003i
\(535\) −32.0242 24.1128i −1.38453 1.04249i
\(536\) −5.37621 + 9.31187i −0.232217 + 0.402211i
\(537\) −5.52142 + 3.18779i −0.238267 + 0.137563i
\(538\) 24.0377 + 13.8782i 1.03634 + 0.598332i
\(539\) 13.6478 0.587851
\(540\) 2.05798 0.874489i 0.0885612 0.0376320i
\(541\) −2.50615 + 4.34078i −0.107748 + 0.186625i −0.914858 0.403777i \(-0.867697\pi\)
0.807110 + 0.590402i \(0.201031\pi\)
\(542\) 9.40202 + 5.42826i 0.403851 + 0.233164i
\(543\) 8.79207i 0.377304i
\(544\) −0.0938694 −0.00402462
\(545\) 19.6928 + 2.41033i 0.843548 + 0.103247i
\(546\) −10.2110 17.6860i −0.436991 0.756890i
\(547\) 30.7554 + 17.7566i 1.31500 + 0.759218i 0.982920 0.184032i \(-0.0589150\pi\)
0.332084 + 0.943250i \(0.392248\pi\)
\(548\) 16.3302 9.42826i 0.697593 0.402755i
\(549\) −0.653722 1.13228i −0.0279002 0.0483245i
\(550\) −5.29299 5.10356i −0.225694 0.217617i
\(551\) −2.12304 + 18.2270i −0.0904445 + 0.776495i
\(552\) 2.56549i 0.109194i
\(553\) −45.2948 + 26.1510i −1.92613 + 1.11205i
\(554\) 12.2618 + 21.2381i 0.520956 + 0.902322i
\(555\) 3.41376 + 0.417831i 0.144906 + 0.0177360i
\(556\) 9.99616 + 17.3139i 0.423932 + 0.734271i
\(557\) 8.45640 + 4.88231i 0.358309 + 0.206870i 0.668339 0.743857i \(-0.267006\pi\)
−0.310030 + 0.950727i \(0.600339\pi\)
\(558\) 4.26558i 0.180576i
\(559\) 23.2135 0.981828
\(560\) 1.09613 8.95558i 0.0463199 0.378443i
\(561\) 0.0690193 0.119545i 0.00291400 0.00504719i
\(562\) 6.59418i 0.278159i
\(563\) 11.5237i 0.485665i −0.970068 0.242833i \(-0.921923\pi\)
0.970068 0.242833i \(-0.0780766\pi\)
\(564\) 2.01801 3.49530i 0.0849737 0.147179i
\(565\) −28.3429 21.3409i −1.19240 0.897820i
\(566\) 11.8189 20.4709i 0.496784 0.860456i
\(567\) −3.49437 + 2.01747i −0.146750 + 0.0847259i
\(568\) −7.51373 + 4.33806i −0.315269 + 0.182021i
\(569\) −1.93925 −0.0812978 −0.0406489 0.999173i \(-0.512943\pi\)
−0.0406489 + 0.999173i \(0.512943\pi\)
\(570\) 7.05579 + 6.72427i 0.295535 + 0.281649i
\(571\) −38.0052 −1.59047 −0.795235 0.606301i \(-0.792652\pi\)
−0.795235 + 0.606301i \(0.792652\pi\)
\(572\) 6.44566 3.72141i 0.269507 0.155600i
\(573\) 11.2288 6.48293i 0.469088 0.270828i
\(574\) 15.6605 27.1248i 0.653658 1.13217i
\(575\) −3.09372 + 12.4488i −0.129017 + 0.519150i
\(576\) −0.500000 + 0.866025i −0.0208333 + 0.0360844i
\(577\) 28.3094i 1.17854i −0.807938 0.589268i \(-0.799416\pi\)
0.807938 0.589268i \(-0.200584\pi\)
\(578\) 16.9912i 0.706740i
\(579\) −3.05828 + 5.29710i −0.127098 + 0.220140i
\(580\) 9.34372 + 1.14364i 0.387977 + 0.0474869i
\(581\) 8.32524 0.345389
\(582\) 11.9488i 0.495292i
\(583\) 13.5725 + 7.83611i 0.562117 + 0.324539i
\(584\) 6.35711 + 11.0108i 0.263059 + 0.455632i
\(585\) 1.37494 11.2335i 0.0568469 0.464450i
\(586\) 11.5061 + 19.9292i 0.475314 + 0.823267i
\(587\) −9.39980 + 5.42698i −0.387971 + 0.223995i −0.681281 0.732022i \(-0.738577\pi\)
0.293309 + 0.956018i \(0.405243\pi\)
\(588\) 9.28080i 0.382734i
\(589\) −17.0696 + 7.37122i −0.703342 + 0.303726i
\(590\) −12.6606 + 5.37984i −0.521230 + 0.221484i
\(591\) −3.67471 6.36478i −0.151157 0.261812i
\(592\) −1.33201 + 0.769037i −0.0547453 + 0.0316072i
\(593\) 24.0190 + 13.8674i 0.986341 + 0.569464i 0.904179 0.427155i \(-0.140484\pi\)
0.0821625 + 0.996619i \(0.473817\pi\)
\(594\) −0.735269 1.27352i −0.0301685 0.0522533i
\(595\) −0.840656 0.102893i −0.0344635 0.00421821i
\(596\) 12.2079 0.500056
\(597\) 3.43559i 0.140609i
\(598\) −11.2451 6.49233i −0.459844 0.265491i
\(599\) 15.6071 27.0323i 0.637690 1.10451i −0.348248 0.937402i \(-0.613223\pi\)
0.985938 0.167109i \(-0.0534433\pi\)
\(600\) 3.47054 3.59936i 0.141684 0.146943i
\(601\) 42.3271 1.72656 0.863280 0.504726i \(-0.168406\pi\)
0.863280 + 0.504726i \(0.168406\pi\)
\(602\) −16.0269 9.25313i −0.653207 0.377129i
\(603\) 9.31187 5.37621i 0.379209 0.218936i
\(604\) 9.95543 17.2433i 0.405081 0.701620i
\(605\) 11.8866 15.7866i 0.483259 0.641817i
\(606\) −0.252103 0.436656i −0.0102410 0.0177379i
\(607\) 12.9882i 0.527176i −0.964635 0.263588i \(-0.915094\pi\)
0.964635 0.263588i \(-0.0849059\pi\)
\(608\) −4.32963 0.504306i −0.175590 0.0204523i
\(609\) −16.9864 −0.688324
\(610\) −2.33551 1.75853i −0.0945621 0.0712009i
\(611\) −10.2137 17.6907i −0.413204 0.715690i
\(612\) 0.0812933 + 0.0469347i 0.00328609 + 0.00189722i
\(613\) 23.2303 13.4120i 0.938264 0.541707i 0.0488484 0.998806i \(-0.484445\pi\)
0.889416 + 0.457099i \(0.151112\pi\)
\(614\) 12.7483 22.0807i 0.514480 0.891105i
\(615\) 15.9749 6.78818i 0.644172 0.273726i
\(616\) −5.93355 −0.239069
\(617\) −11.9663 6.90877i −0.481747 0.278136i 0.239398 0.970922i \(-0.423050\pi\)
−0.721144 + 0.692785i \(0.756383\pi\)
\(618\) 4.62282 + 2.66899i 0.185957 + 0.107362i
\(619\) 36.2091 1.45537 0.727684 0.685912i \(-0.240597\pi\)
0.727684 + 0.685912i \(0.240597\pi\)
\(620\) 3.73020 + 8.77846i 0.149808 + 0.352551i
\(621\) −1.28274 + 2.22178i −0.0514748 + 0.0891569i
\(622\) 26.2555 15.1586i 1.05275 0.607804i
\(623\) 5.68775 + 3.28383i 0.227875 + 0.131564i
\(624\) 2.53064 + 4.38320i 0.101307 + 0.175468i
\(625\) −21.1809 + 13.2804i −0.847236 + 0.531216i
\(626\) −7.55247 −0.301857
\(627\) 3.82569 5.14308i 0.152783 0.205395i
\(628\) 16.2344i 0.647824i
\(629\) 0.0721890 + 0.125035i 0.00287837 + 0.00498547i
\(630\) −5.42707 + 7.20770i −0.216220 + 0.287162i
\(631\) −1.00438 + 1.73963i −0.0399836 + 0.0692536i −0.885325 0.464973i \(-0.846064\pi\)
0.845341 + 0.534227i \(0.179397\pi\)
\(632\) 11.2256 6.48112i 0.446532 0.257805i
\(633\) 3.49822 + 2.01970i 0.139042 + 0.0802758i
\(634\) 14.0116 0.556471
\(635\) −13.7184 + 5.82932i −0.544399 + 0.231329i
\(636\) −5.32873 + 9.22964i −0.211298 + 0.365979i
\(637\) 40.6796 + 23.4864i 1.61178 + 0.930564i
\(638\) 6.19071i 0.245093i
\(639\) 8.67611 0.343222
\(640\) −0.271659 + 2.21950i −0.0107383 + 0.0877336i
\(641\) −8.04795 13.9395i −0.317875 0.550575i 0.662170 0.749354i \(-0.269636\pi\)
−0.980044 + 0.198779i \(0.936302\pi\)
\(642\) −15.5257 8.96375i −0.612749 0.353771i
\(643\) 34.6016 19.9773i 1.36455 0.787826i 0.374328 0.927296i \(-0.377873\pi\)
0.990226 + 0.139470i \(0.0445399\pi\)
\(644\) 5.17581 + 8.96476i 0.203955 + 0.353261i
\(645\) −4.01084 9.43890i −0.157927 0.371656i
\(646\) −0.0473389 + 0.406420i −0.00186252 + 0.0159904i
\(647\) 32.2985i 1.26979i 0.772600 + 0.634893i \(0.218956\pi\)
−0.772600 + 0.634893i \(0.781044\pi\)
\(648\) 0.866025 0.500000i 0.0340207 0.0196419i
\(649\) 4.52336 + 7.83470i 0.177558 + 0.307539i
\(650\) −6.99400 24.3207i −0.274327 0.953938i
\(651\) −8.60569 14.9055i −0.337283 0.584192i
\(652\) 1.78185 + 1.02875i 0.0697826 + 0.0402890i
\(653\) 25.3382i 0.991559i 0.868448 + 0.495780i \(0.165118\pi\)
−0.868448 + 0.495780i \(0.834882\pi\)
\(654\) 8.87262 0.346947
\(655\) 15.7045 + 1.92217i 0.613625 + 0.0751054i
\(656\) −3.88123 + 6.72248i −0.151536 + 0.262469i
\(657\) 12.7142i 0.496029i
\(658\) 16.2852i 0.634862i
\(659\) 2.44914 4.24204i 0.0954051 0.165247i −0.814372 0.580343i \(-0.802919\pi\)
0.909778 + 0.415096i \(0.136252\pi\)
\(660\) −2.62685 1.97790i −0.102250 0.0769896i
\(661\) −24.1271 + 41.7893i −0.938435 + 1.62542i −0.170044 + 0.985437i \(0.554391\pi\)
−0.768391 + 0.639980i \(0.778942\pi\)
\(662\) 1.90994 1.10271i 0.0742320 0.0428579i
\(663\) 0.411448 0.237550i 0.0159793 0.00922567i
\(664\) −2.06328 −0.0800709
\(665\) −38.2216 9.26219i −1.48217 0.359172i
\(666\) 1.53807 0.0595991
\(667\) −9.35330 + 5.40013i −0.362161 + 0.209094i
\(668\) −18.8169 + 10.8639i −0.728047 + 0.420338i
\(669\) −9.02593 + 15.6334i −0.348963 + 0.604421i
\(670\) 14.4622 19.2072i 0.558723 0.742040i
\(671\) −0.961324 + 1.66506i −0.0371115 + 0.0642790i
\(672\) 4.03495i 0.155651i
\(673\) 11.3374i 0.437025i −0.975834 0.218512i \(-0.929880\pi\)
0.975834 0.218512i \(-0.0701204\pi\)
\(674\) 1.93428 3.35026i 0.0745055 0.129047i
\(675\) −4.80525 + 1.38186i −0.184954 + 0.0531880i
\(676\) 12.6166 0.485253
\(677\) 30.8182i 1.18444i −0.805776 0.592220i \(-0.798252\pi\)
0.805776 0.592220i \(-0.201748\pi\)
\(678\) −13.7409 7.93334i −0.527718 0.304678i
\(679\) −24.1063 41.7534i −0.925116 1.60235i
\(680\) 0.208344 + 0.0255005i 0.00798961 + 0.000977899i
\(681\) −13.4257 23.2539i −0.514473 0.891093i
\(682\) 5.43231 3.13635i 0.208014 0.120097i
\(683\) 10.5683i 0.404386i 0.979346 + 0.202193i \(0.0648069\pi\)
−0.979346 + 0.202193i \(0.935193\pi\)
\(684\) 3.49741 + 2.60156i 0.133727 + 0.0994730i
\(685\) −38.8063 + 16.4898i −1.48271 + 0.630043i
\(686\) −4.60145 7.96995i −0.175684 0.304294i
\(687\) 11.8759 6.85657i 0.453095 0.261595i
\(688\) 3.97202 + 2.29325i 0.151432 + 0.0874292i
\(689\) 26.9702 + 46.7138i 1.02748 + 1.77965i
\(690\) −0.696938 + 5.69412i −0.0265320 + 0.216771i
\(691\) −0.570970 −0.0217207 −0.0108604 0.999941i \(-0.503457\pi\)
−0.0108604 + 0.999941i \(0.503457\pi\)
\(692\) 23.2053i 0.882132i
\(693\) 5.13860 + 2.96677i 0.195199 + 0.112698i
\(694\) 6.14337 10.6406i 0.233199 0.403913i
\(695\) −17.4831 41.1438i −0.663171 1.56067i
\(696\) 4.20982 0.159573
\(697\) 0.631035 + 0.364328i 0.0239022 + 0.0137999i
\(698\) −20.0337 + 11.5665i −0.758287 + 0.437797i
\(699\) −0.00330537 + 0.00572506i −0.000125020 + 0.000216542i
\(700\) −4.86573 + 19.5792i −0.183907 + 0.740024i
\(701\) 3.36247 + 5.82398i 0.126999 + 0.219969i 0.922513 0.385967i \(-0.126132\pi\)
−0.795514 + 0.605936i \(0.792799\pi\)
\(702\) 5.06128i 0.191026i
\(703\) 2.65790 + 6.15494i 0.100245 + 0.232138i
\(704\) 1.47054 0.0554230
\(705\) −5.42852 + 7.20963i −0.204450 + 0.271530i
\(706\) −1.13608 1.96775i −0.0427569 0.0740571i
\(707\) 1.76188 + 1.01722i 0.0662625 + 0.0382566i
\(708\) −5.32777 + 3.07599i −0.200230 + 0.115603i
\(709\) −15.4517 + 26.7632i −0.580302 + 1.00511i 0.415141 + 0.909757i \(0.363732\pi\)
−0.995443 + 0.0953554i \(0.969601\pi\)
\(710\) 17.8552 7.58716i 0.670095 0.284741i
\(711\) −12.9622 −0.486122
\(712\) −1.40962 0.813846i −0.0528278 0.0305002i
\(713\) −9.47717 5.47164i −0.354923 0.204915i
\(714\) −0.378758 −0.0141747
\(715\) −15.3171 + 6.50866i −0.572828 + 0.243410i
\(716\) −3.18779 + 5.52142i −0.119133 + 0.206345i
\(717\) 4.04866 2.33750i 0.151200 0.0872954i
\(718\) 17.9101 + 10.3404i 0.668400 + 0.385901i
\(719\) −11.7185 20.2970i −0.437025 0.756949i 0.560434 0.828199i \(-0.310634\pi\)
−0.997458 + 0.0712504i \(0.977301\pi\)
\(720\) 1.34502 1.78632i 0.0501258 0.0665721i
\(721\) −21.5384 −0.802133
\(722\) −4.36691 + 18.4914i −0.162520 + 0.688177i
\(723\) 27.8087i 1.03422i
\(724\) −4.39603 7.61415i −0.163377 0.282978i
\(725\) −20.4278 5.07661i −0.758668 0.188541i
\(726\) 4.41876 7.65351i 0.163995 0.284049i
\(727\) −34.0238 + 19.6436i −1.26187 + 0.728543i −0.973437 0.228957i \(-0.926469\pi\)
−0.288436 + 0.957499i \(0.593135\pi\)
\(728\) −17.6860 10.2110i −0.655486 0.378445i
\(729\) −1.00000 −0.0370370
\(730\) −11.1184 26.1656i −0.411512 0.968432i
\(731\) 0.215266 0.372851i 0.00796189 0.0137904i
\(732\) −1.13228 0.653722i −0.0418503 0.0241623i
\(733\) 45.2875i 1.67273i −0.548171 0.836366i \(-0.684676\pi\)
0.548171 0.836366i \(-0.315324\pi\)
\(734\) −36.6899 −1.35425
\(735\) 2.52121 20.5988i 0.0929963 0.759797i
\(736\) −1.28274 2.22178i −0.0472826 0.0818959i
\(737\) −13.6935 7.90592i −0.504405 0.291218i
\(738\) 6.72248 3.88123i 0.247458 0.142870i
\(739\) 15.7422 + 27.2663i 0.579086 + 1.00301i 0.995585 + 0.0938695i \(0.0299237\pi\)
−0.416499 + 0.909136i \(0.636743\pi\)
\(740\) 3.16532 1.34503i 0.116359 0.0494442i
\(741\) 20.2538 8.74626i 0.744043 0.321302i
\(742\) 43.0023i 1.57866i
\(743\) 40.4415 23.3489i 1.48365 0.856587i 0.483826 0.875164i \(-0.339247\pi\)
0.999827 + 0.0185770i \(0.00591359\pi\)
\(744\) 2.13279 + 3.69410i 0.0781918 + 0.135432i
\(745\) −27.0956 3.31640i −0.992705 0.121503i
\(746\) 9.76898 + 16.9204i 0.357668 + 0.619499i
\(747\) 1.78686 + 1.03164i 0.0653776 + 0.0377458i
\(748\) 0.138039i 0.00504719i
\(749\) 72.3365 2.64312
\(750\) −8.68068 + 7.04598i −0.316973 + 0.257283i
\(751\) −14.8807 + 25.7741i −0.543004 + 0.940510i 0.455726 + 0.890120i \(0.349380\pi\)
−0.998730 + 0.0503901i \(0.983954\pi\)
\(752\) 4.03603i 0.147179i
\(753\) 6.06517i 0.221027i
\(754\) 10.6536 18.4525i 0.387980 0.672000i
\(755\) −26.7804 + 35.5671i −0.974639 + 1.29442i
\(756\) −2.01747 + 3.49437i −0.0733748 + 0.127089i
\(757\) 11.2784 6.51161i 0.409922 0.236668i −0.280834 0.959756i \(-0.590611\pi\)
0.690756 + 0.723088i \(0.257278\pi\)
\(758\) 3.00339 1.73401i 0.109088 0.0629820i
\(759\) 3.77265 0.136939
\(760\) 9.47263 + 2.29549i 0.343608 + 0.0832662i
\(761\) 43.4538 1.57520 0.787600 0.616187i \(-0.211324\pi\)
0.787600 + 0.616187i \(0.211324\pi\)
\(762\) −5.77290 + 3.33298i −0.209130 + 0.120741i
\(763\) −31.0042 + 17.9003i −1.12243 + 0.648034i
\(764\) 6.48293 11.2288i 0.234544 0.406242i
\(765\) −0.167681 0.126256i −0.00606251 0.00456479i
\(766\) −12.5509 + 21.7388i −0.453483 + 0.785456i
\(767\) 31.1369i 1.12429i
\(768\) 1.00000i 0.0360844i
\(769\) −23.6418 + 40.9487i −0.852544 + 1.47665i 0.0263617 + 0.999652i \(0.491608\pi\)
−0.878905 + 0.476996i \(0.841725\pi\)
\(770\) 13.1695 + 1.61190i 0.474597 + 0.0580889i
\(771\) −1.28988 −0.0464539
\(772\) 6.11656i 0.220140i
\(773\) −11.4692 6.62172i −0.412517 0.238167i 0.279354 0.960188i \(-0.409880\pi\)
−0.691871 + 0.722022i \(0.743213\pi\)
\(774\) −2.29325 3.97202i −0.0824290 0.142771i
\(775\) −5.89445 20.4972i